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PREFACE

INTRODUCTION
============

BASIC has always been the most popular language for personal computers.
It is easy to learn and use, extremely powerful, and some form of BASIC is
included for free with nearly every PC.  Although BASIC is often associated
with beginners and students, it is in fact ideally suited for a wide range
of programming projects.  Because it offers the best features of a high-
level language coupled with direct access to DOS and BIOS system services,
BASIC is fast becoming the language of choice for beginners and
professional developers alike.
   This book is about power programming using Microsoft compiled BASIC.
It is intended for people who already possess a fundamental understanding
of BASIC programming concepts, but want to achieve the best performance
possible from their BASIC compiler.
   Power programming is knowing when and how to use BASIC commands such as
CALL INTERRUPT, VARSEG and VARPTR, and even PEEK and POKE effectively.  It
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involves understanding the PC's memory organization sufficiently to
determine how much stack space is needed for a recursive subprogram or
function.  A power programmer knows how to translate a time-critical
portion of a BASIC program into assembly language when needed.  Finally,
and perhaps most importantly, power programming means knowing enough about
BASIC's internal operation to determine which sequence of instructions is
smaller or faster than another.
   This book will show you how to go beyond creating programs that merely
work.  Because it explains how the compiler operates and how it interacts
with the BASIC runtime language library, this book will teach you how to
write programs that are as small and fast as possible.  Although the
emphasis here is on Microsoft QuickBASIC and the BASIC Professional
Development System (PDS), much of the information will apply to other BASIC
compilers such as Power Basic from Spectra Publishing.
   Despite what you may have read, BASIC is the most capable and easy to
learn of the high-level languages.  Modern BASIC compilers are highly
optimizing, and can thus create extremely efficient executable programs.
In addition, you can often achieve with just a few BASIC statements what
would take many pages of code in another high-level language.  Moreover,
beginners can be immediately productive in BASIC, while serious programmers
have a wealth of powerful capabilities at their disposal.
   Microsoft BASIC has many capabilities that are not available in any
other high-level language.  Among these are dynamic (variable-length)
strings, automatic memory allocation and heap management, built-in support
for sophisticated graphics, and interrupt-driven communications.  Add to
that huge arrays, network file handling, music and sound, and protection
against inadvertently overwriting memory, and you can see why BASIC is so
popular.
   This book aims to provide intermediate to advanced programmers with
information that is not available elsewhere.  It does not, however, cover
elementary topics such as navigating the QuickBASIC editor, loading and
saving files, or using the Search and Replace feature.  That information
is readily available elsewhere.  Rather, it delves into previously
uncharted territory, and examines compiled BASIC at its innermost layer.
   Besides the discussions and programs in the text, this book includes a
companion disk [separate ZIP file] that contains all of the subroutines and
other code listed in this book, including several useful utilities.
Installing these programs is described in the Appendix.

CONVENTIONS USED IN THIS BOOK
=============================

This book uses the terms QuickBASIC and QB to mean the Microsoft QuickBASIC
4.x and 7.x editing environments.  BC and Compiler indicate the BC.EXE
command-line compiler that comes with QuickBASIC, Microsoft BASIC PDS, and
the now-discontinued BASIC 6.0.  When a distinction is necessary, QBX will
refer to the QuickBASIC Extended editor that comes with the BASIC
Professional Development System (PDS).  In most cases, the discussions will
be the same for all of these versions of BASIC.  When a difference does
occur, the PDS and QBX exceptions will be indicated.
   [Because there is no way to indicate italics in a disk file, where they
would have been used for emphasis or clarity the words are instead
surrounded by asterisks (*).]

HOW THIS BOOK IS ORGANIZED
==========================

This book is divided into parts, and each part contains several chapters
that discuss a specific aspect of BASIC programming.  You needn't fully
understand an entire chapter before moving on to the next one.  Each topic
will be covered in great depth, and in many cases you will want to return
to a given chapter as your knowledge and understanding of the subject
matter increases.
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   Part 1 is "Under the Hood," and its three chapters describe in detail
how your BASIC source code is manipulated throughout the compiling and
linking process.
   Chapter 1 presents an overview of compilers in general, and BASIC
compilers in particular,  It discusses what BASIC compilers are all about
and how they work, and how the compiled code that is generated interacts
with routines in the runtime libraries.
   Chapter 2 discusses variables, constants, and other program data, and
how they fit within the context of the PC's memory organization.  This
chapter also covers bit manipulation using AND, OR, and XOR.
   Chapter 3 examines the various control flow methods available in BASIC,
showing which statements and procedure constructs are appropriate in
different situations.  In particular, you will learn the relative
advantages and disadvantages of each method, based on their capabilities,
code size, and speed.
   Part 2, "Programming Hands On," examines programming techniques, and
shows specific examples of writing effective code and also making it work.
   Chapter 4 explores program debugging using the facilities built into the
QuickBASIC editing environment, as well as the CodeView utility that comes
with Microsoft BASIC PDS.  This chapter also discusses common programming
problems, along with the appropriate solutions.
   Chapter 5 explains compiling and linking, both from within the QB
environment, and directly from DOS.  A number of compiler options are
inadequately documented by Microsoft, and each is discussed here in great
detail.  A thorough discussion of the LIB.EXE utility program included with
BASIC explains how libraries are manipulated and organized.
   Chapter 6 covers all aspects of file and device handling, and discusses
the many different ways in which data may be read and written.  The
emphasis here is on speeding file handling as much as possible, and storing
data on disk efficiently.  Because input/output (I/O) devices are accessed
similarly, they too are described here in detail.
   Chapter 7 explains the basics of writing database and network
applications, and discusses file locking strategies using practical
programming examples.  A series of subroutines show how to read and write
files using the popular dBASE format, and these may be incorporated into
program that you write.
   Chapter 9 shows how to sort and search array data as quickly as
possible.  Several methods are examined including conventional and indexed
sorting, and many useful subroutines are presented.
   The final part, "Beyond BASIC," includes information that is rarely
covered in books about BASIC.  Its three chapters go far beyond the
information provided in any of the Microsoft manuals.
   Chapter 10 identifies many of the key memory areas in the PC, and shows
when and how they can be manipulated in a BASIC program.
   Chapter 11 presents an in-depth discussion of accessing DOS and BIOS
services using CALL INTERRUPT.  These services offer a wealth of
functionality that BASIC cannot otherwise provide directly.
   Chapter 12 is an introduction to assembly language, from a BASIC
programmer's perspective.  This chapter presents many useful subroutines,
and includes a thorough discussion of how they work.
   Finally, the Appendix describes the additional source files that
accompany this book.

A BRIEF HISTORY OF MICROSOFT COMPILED BASIC
===========================================

In March of 1982, IBM released the first BASIC compiler for the IBM PC.
This compiler, BASCOM 1.0, was written by Microsoft for IBM using code and
methods developed by Bill Gates, Greg Whitten, and others.  Although
Microsoft had already written BASIC compilers for the Apple II and CP/M
computers, BASCOM 1.0 was the most powerful they had produced so far.
   Compared to the Microsoft BASIC interpreters available at that time,
BASCOM 1.0 offered many additional capabilities, and also an enormous
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increase in program execution speed.  Line numbers were no longer
mandatory, program statements could exceed 255 characters, and a single
string could be as long as 32,767 characters.  Further, assembly language
subroutines could be linked directly to a compiled BASIC application.
   Over the next few years, Microsoft continued to enhance the compiler,
and in 1985 it was released by IBM as BASCOM 2.0.  This version offered
many improvements over the older BASCOM 1.0.  Among the most important were
multi-line DEF FN functions, dynamic arrays, descriptive line labels (as
opposed to numbers), network record locking, and an ISAM file handler.
With named subroutines programmers were finally able to exceed the 64K code
size limitation, by writing separate modules that could then be linked
together.  The inclusion of subroutine parameters--long overdue for BASIC-
-was an equally important step toward fostering structured programming
techniques in the language.
   At the same time that IBM released BASCOM 2.0, Microsoft offered
essentially the same product as QuickBASIC 1.0, but without the ISAM file
handler.  However, there was one other big difference between these
compilers: QuickBASIC 1.0 carried a list price of only $99.  This low price
was perhaps the most important feature of all, because high-performance
BASIC was finally available to everyone, and not just professional
developers.
   Encouraged by the tremendous acceptance of QuickBASIC 1.0, Microsoft
quickly followed that with QuickBASIC version 2.0 in early 1986.  This
important new release added an integrated editing environment, as well as
EGA graphics capabilities.  The editor was especially welcome, because it
allowed programs to be developed and tested very rapidly.  The environment
was further enhanced with the advent of Quick Libraries, which allowed
assembly language subroutines to be easily added to a BASIC program.  Quick
Libraries also helped launch the start of a new class of BASIC product:
third-party add-on libraries.
   In early 1987 Microsoft released the next major enhancement to
QuickBASIC, version 3.0.  QuickBASIC 3.0 included a limited form of step
and trace debugging, as well as the ability to monitor a variable's value
continuously during program execution.  Also added was support for the
EGA's 43-line text mode, and several new language features.  Perhaps most
impressive of the new features was the control flow statements DO and LOOP,
and SELECT CASE.  Beyond merely providing a useful alternative to the IF
statement, these constructs also let the compiler generate more efficient
code.
   Also added with version 3.0 was optional support for an 8087 numeric
coprocessor.  In order to support a coprocessor, however, Microsoft had to
abandon their own proprietary numeric format.
Both the Microsoft and IEEE methods for storing single- and double
precision numbers use four bytes and eight bytes respectively, but the bits
are organized differently.  Although the IEEE format which the 8087
requires is substantially slower than Microsoft's own, it is the current
standard.  Therefore, a second version of the compiler was included solely
to support IEEE math.
   By the time QuickBASIC 4.0 was announced in late 1987, hundreds of
thousands of copies of QuickBASIC were already in use world-wide.  With
QuickBASIC 4.0, Microsoft had created the most sophisticated programming
environment ever seen in a main-stream language: the threaded p-code
interpreter.  This remarkable technology allowed programmers to enjoy the
best features of an interpreted language, but with the execution speed of
a compiler.
   In addition to an Immediate mode whereby program statements could be
executed one by one, QuickBASIC 4.0 also supported program break-points,
monitoring the value of multiple variables and expressions, and even
stepping *backwards* through a program.  This greatly enhanced the
debugging capabilities of the language, and increased programmer
productivity enormously.
   Also new in QuickBASIC 4.0 was support for inter-language calling.
Although this meant that a program written in Microsoft BASIC could now
call subroutines written in any of the other Microsoft languages, it also
meant that IEEE math was no longer an option--it became mandatory.  When
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a QuickBASIC 4.0 program was run on a PC equipped with a coprocessor,
floating point math was performed very quickly indeed.  However, it was
very much slower on every other computer!  This remained a sore point for
many BASIC programmers, until Microsoft introduced BASIC 6.0 later that
year.  That version included an alternate math library that was similar to
their original proprietary format.
   Also added in QuickBASIC 4.0 were huge arrays, long (4-byte) integer
variables, user-defined TYPE variables, fixed-length strings, true
functions, and support for CodeView debugging.  With the introduction of
huge arrays, BASIC programmers could create arrays that exceeded 64K in
size, with only a few restrictions.  TYPE variables let the programmer
define a composite data type comprised of any mix of BASIC's intrinsic
data forms, thus adding structure to a program's data as well as to its
code.  The newly added FUNCTION procedures greatly improved on BASIC's
earlier DEF FN-style functions by allowing recursion, the passing of TYPE
variables and entire arrays as arguments, and the ability to modify an
incoming parameter.
   Although BASIC 6.0 provided essentially the same environment and
compiler as QuickBASIC 4.0, it also included the ability to create programs
that could be run under OS/2.  Other features of this release were a
utility program to create custom run-time libraries, and a copy of the
Microsoft Programmer's Editor.  The custom run-time utility was
particularly valuable, since it allowed programmers to combine frequently-
used subroutines with the BRUN.EXE language library, and then share those
routines among any number of chained modules.
   QuickBASIC 4.5 was introduced in 1988, although the only major
enhancement over the earlier 4.0 version was a new help system and slightly
improved pull-down menus.  Unfortunately, the new menus required much more
memory than QuickBASIC 4.0, and the "improved" environment reduced the
memory available for programs and data by approximately 40K.  To this day,
many programmers continue to use QuickBASIC 4.0 precisely because of its
increased program capacity.
   In answer to programmer's demands for more string memory and  smaller,
more efficient programs, Microsoft released the BASIC Professional
Development System version 7.0 in late 1989.  This was an enormous project
even for a company the size of Microsoft, and at one point more than fifty
programmers were working on the new compiler and QBX environment.  PDS
version 7.0 finally let BASIC programmers exceed the usual 64K string
memory limit, albeit with some limitations.
   Other features introduced with that version were an ISAM file handler,
improved library granularity, example tool box packages for creating simple
graphics and pull-down menus, local error handling, arrays within TYPE
variables, and greatly improved documentation.  Because the QBX editor uses
expanded memory to store subprograms and functions, much larger programs
could be developed without resorting to editing and compiling outside of
the environment.
   Sixth months later PDS version 7.1 was released, with the long-overdue
ability to redimension an array but without destroying its contents.  Also
added in that version were support for passing fixed-length string arrays
to subprograms and functions, and an option to pass parameters by value to
BASIC procedures.  Although the BYVAL option had been available since
QuickBASIC 4.0, it was useable only with subroutines written in non-BASIC
languages.  With this mechanism, BASIC can now create more efficient object
code than ever before.
   [Just as this book was being completed, Microsoft released Visual Basic
for DOS.  Although this book does not address VB/DOS specifically, most of
the information about BASIC PDS applies to VB/DOS.  One notable exception
is that VB/DOS supports far strings only, where BASIC PDS lets you specify
either near strings or far.  Because far strings are stored in a separate
"far" area of DOS memory, it takes slightly longer to access those strings.
Therefore, a VB/DOS program that is string-intensive will not be as fast
as an equivalent compiled with QuickBASIC or with PDS near strings.  This
book also does not cover the pseudo event-driven forms used by VB/DOS.]
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README-File

Notes on this disk version of "BASIC Techniques and Utilities"

ENTIRE CONTENTS OF THIS TEXT AND SOFTWARE COPYRIGHT (C) 1994 ETHAN WINER

This is a disk version of "PC Magazine BASIC Techniques and Utilities",
which was originally published by Ziff-Davis Press in Emeryville, CA.
When Ziff-Davis Press decided it was no longer profitable for them to
continue printing it, they returned the rights to me.  This disk version
of my book is provided free as a service to the programming community.
You are welcome to use any of the code fragments or complete programs in
any way you see fit for no charge, including for commercial applications.
However, the author retains all copyrights for the text and the programs.
You may share this book and the accompanying programs with others, but
only if you distribute the entire WINER.ZIP file as it was originally
uploaded by me to CompuServe.

While I should not have to belabor the obvious: All of this software and
the accompanying text are provided "as is", with no warranty expressed or
implied.  The author is not liable for any damages whatsoever, including
incidental or consequential.  Use this information at your own risk.  If
you wipe out your hard disk or CMOS memory, I am not responsible!

Although this book is provided at no charge, I hope I will be allowed one
small commercial plug:  If you find this information useful and would
like to learn more about BASIC and assembly language programming, please
considering purchasing QuickPak Professional and/or P.D.Q. from Crescent
Software.  A brief advertisement for Crescent describing their products
for DOS BASIC is in the CRESCENT.AD file.

The text is divided into individual chapter files rather than one huge
file, to make it easier to locate information in each chapter.  The text
you see here is what I sent to the publisher, and does not include any
editing for style they applied.  You may print this book by copying the
chapter files to a printer from a DOS prompt using the COPY command:

    COPY CHAP*.TXT LPT1.

Or you may view it using any ASCII file browsing program such as Vern
Buerg's LIST utility.  Where appropriate, the CHR$(12) hard page feeds were
retained before and after long program listings, to aid print formatting.
these will appear as the universal Female symbol when viewed with LIST.

There was no easy way to create a page index for a book supplied as text
files, but the included TEXTFIND utility will help you locate information
in the text.  TEXTFIND accepts a file specification and search string, and
then searches all files that match that specification for the string.  So
to determine which CHAP*.TXT files mention, say, DEF SEG, you would start
TEXTFIND like this:

  TEXTFIND CHAP*.TXT

and then enter "DEF SEG" (without the quotes) at the prompt.  Note that
TEXTFIND searches without regard to capitalization in either the search
string or the file's text, so entering "def seg" would also work.  I have
also included a version of this program called FT.EXE (find text), which
is essentially the same program but compiled with Crescent's P.D.Q. add-on
library.  If you look at the size of this program (4956 bytes) and compare
that with what you get after compiling and linking TEXTFIND with VB/DOS
(46698 bytes), you can see the enormous improvement that P.D.Q. offers.

In some cases, figures from the printed book could not be included.  In
the printed book Chapter 6 contains a picture of a floppy disk showing how
the sectors and clusters are organized.  And in Chapter 4 there are some
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figures of CodeView display screens that were originally created as .GIF
file graphics-mode screen shots.  I have tried to recreate as many of the
other figures as possible with standard and extended ASCII characters.  If
your printer does not support extended characters (those with ASCII values
greater than 127), figures that contain lines and boxes may print as rows
of italicized letters and numbers.

You will notice a few comments here and there that were added to this disk
version of my book only, and they are enclosed in square brackets: []  Some
of these comments relate to VB/DOS, which was not covered in the original
printed version.  Others were added as I read the book one last time before
uploading it, to clarify or enhance the information herein.  But since I do
not use VB/DOS on a regular basis, I can't guarantee that all of the VB/DOS
differences and features are documented completely.  In most cases, however,
the information about BASIC PDS applies equally to VB/DOS.

Also notice how the individual sections within each chapter are delineated.
Most printed books identify the different levels of section headings with
different fonts and type styles.  For example, major section headings are
often printed in bold capitalized text; smaller, less-bold fonts are used
for the lower section levels.  This disk version of my book uses uppercase
"underlined" text for major section headings, plain uppercase for the next
lower level, and mixed case for the lowest heading levels.

I will happily provide support for this book and answer questions as time
permits in sections 13 and 14 of the MSBASIC forum on CompuServe.  My CIS
account number is 72241,63.  I prefer to answer questions there rather than
through EMAIL, because public messages let others benefit from the answers.

-- End of README.TXT    Ethan Winer

                                CHAPTER 1

                    AN INTRODUCTION TO COMPILED BASIC

This chapter explores the internal workings of the BASIC compiler.  Many
people view a compiler simply as a "black box" which magically transforms
BASIC source files into executable code.  Of course, magic does not play
a part in any computer program, and the BC compiler that comes with
Microsoft BASIC is no exception.  It is merely a program that processes
data in the same way any other program would.  In this case, the data is
your BASIC source code.
   You will learn here what the BASIC compiler does, and how it does it.
You will also get an inside glimpse at some of the decisions a compiler
must make, as it transforms your code into the assembly language commands
the CPU will execute.  By truly understanding the compiler's role, you will
be able to exploit its strengths and also avoid its weaknesses.

COMPILER FUNDAMENTALS
=====================

No matter what language a program is written in, at some point it must be
translated into the binary codes that the PC's processor can understand.
Unlike BASIC commands, the CPU within every PC is capable of acting on only
very rudimentary instructions.  Some typical examples of these instructions
are "Add 3 to the value stored in memory location 100", and "Compare the
value stored at address 4012 to the number -12 and jump to the code at
address 2015 if it is less".  Therefore, one very important value of a
high-level language such as BASIC is that a programmer can use meaningful
names instead of memory addresses when referring to variables and
subroutines.  Another is the ability to perform complex actions that
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require many separate small steps using only one or two statements.
   As an example, when you use the command PRINT X% in a program, the value
of X% must first be converted from its native two-byte binary format into
an ASCII string suitable for display.  Next, the current cursor location
must be determined, at which point the characters in the string are placed
into the screen's memory area.  Further, the cursor position has to be
updated, to place it just past the digits that were printed.  Finally, if
the last digit happened to end up at the bottom-right corner of the screen,
the display must also be scrolled up a line.  As you can see, that's an
awful lot of activity for such a seemingly simple statement!
   A compiler, then, is a program that translates these English-like BASIC
source statements into the many separate and tiny steps the microprocessor
requires.  The BASIC compiler has four major responsibilities, as shown in
Figure 1-1 below.

   1. Translate BASIC statements into an equivalent series of assembly
   language commands.

   2. Assign addresses in memory to hold each of the variables being used
   by the program.

   3. Remember the addresses in the generated code where each line number
   or label occurs, for GOTO and GOSUB statements.

   4. Generate additional code to test for events and detect errors when
   the /v, /w, or /d compile options are used.

Figure 1-1: The primary actions performed by a BASIC compiler.

As the compiler processes a program's source code, it translates only the
most basic statements directly into assembly language.  For other, more
complex statements, it instead generates calls to routines in the BASIC
run-time library that is supplied with your compiler.  When designing a
BASIC program you would most likely identify operations that need to be
performed more than once, and then create subprograms or functions rather
than add the same code in-line repeatedly.  Likewise, the compiler takes
advantage of the inherent efficiency of using called subroutines.
   For example, when you use a BASIC statement such as PRINT Work$, the
compiler processes it as if you had used CALL PRINT(Work$).  That is, PRINT
really is a called subroutine.  Similarly, when you write OPEN FileName$
FOR RANDOM AS #1 LEN = 1024, the compiler treats that as a call to its Open
routine, and it creates code identical to CALL OPEN(FileName$, 1, 1024, 4).
Here, the first argument is the file name, the second is the file number
you specified, the third is the record length, and the value 4 is BASIC's
internal code for RANDOM.  Because these are BASIC key words, the CALL
statement is of course not required.  But the end result is identical.
   While the BC compiler could certainly create code to print the string
or open the file directly, that would be much less efficient than using
subroutines.  Indeed, all of the subroutines in the Microsoft-supplied
libraries are written in assembly language for the smallest size and
highest possible performance.

DATA STORAGE

The second important job the compiler must perform is to identify all of
the variables and other data your program is using, and allocate space for
them in the object file.  There are two kinds of data that are manipulated
in a BASIC program--static data and dynamic data.  The term static data
refers to any variable whose address and size does not change during the
execution of a program.  That is, all simple numeric and TYPE variables,
and static numeric and TYPE arrays.  String constants such as "Press a key
to continue" and DATA items are also considered to be static data, since
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their contents never change.
   Dynamic data is that which changes in size or location when the program
runs.  One example of dynamic data is a dynamic array, because space to
hold its contents is allocated when the program runs.  Another is string
data, which is constantly moved around in memory as new strings are
assigned and old ones are erased.  Variable and array storage is discussed
in depth in Chapter 2, so I won't belabor that now.  The goal here is
simply to introduce the concept of variable storage.  The important point
is that BC deals only with static data, because that must be placed into
the object file.
   As the compiler processes your source code, it must remember each
variable that is encountered, and allocate space in the object file to hold
it.  Further, all of this data must be able to fit into a single 64K
segment, which is called DGROUP (for Data Group).  Although the compiled
code in each object file may be as large as 64K, static data is combined
from all of the files in a multi-module program, and may not exceed 64K in
total size.  Note that this limitation is inherent in the design of the
Intel microprocessors, and has nothing to do with BC, LINK, or DOS.
   As each new variable is encountered, room to hold it is placed into the
next available data address in the object file.  (In truth, the compiler
retains all variable information in memory, and writes it to the end of the
file all at once following the generated code.)  For each integer variable,
two bytes are set aside.  Long integer and single precision variables
require four bytes each, while double precision variables occupy eight
bytes.  Fixed-length string and TYPE variables use a varying number of
bytes, depending on the components you have defined.
   Static numeric and TYPE arrays are also written to the object file by
the compiler.  The number of bytes that are written of course depends on
how many elements have been specified in the DIM statement.  Also, notice
that no matter what type of variable or array is encountered, only zeroes
are written to the file.  The only exceptions are quoted string constants
and DATA items, in which case the actual text must be stored.
   Unlike numeric, TYPE, and fixed-length variables, strings must be
handled somewhat differently.  For each string variable a program uses, a
four-byte table called a *string descriptor* is placed into the object
file.  However, since the actual string data is not assigned until the
program is run, space for that data need not be handled by the compiler.
With string arrays--whether static or dynamic--a table of four-byte
descriptors is allocated.
   Finally, each array in the program also requires an array descriptor.
This is simply a table that shows where the array's data is located in
memory, how many elements it currently holds, the length in bytes of each
element, and so forth.

ASSEMBLY LANGUAGE CONSIDERATIONS

In order to fully appreciate how the translation process operates, you will
first need to understand what assembly language is all about.  Please
understand that there is nothing inherently difficult about assembly
language.  Like BASIC, assembly language is comprised of individual
instructions that are executed in sequence.  However, each of these
instructions does much less than a typical BASIC statement.  Therefore,
many more steps are required to achieve a given result than in a high-level
language.  Some of these steps will be shown in the following examples.
If you are not comfortable with the idea of tackling assembly language
concepts just yet, please feel free to come back to this section at a later
time.
   Let's begin by examining some very simple BASIC statements, and see how
they are translated by the compiler.  For simplicity, I will show only
integer math operations.  The 80x86 family of microprocessors can
manipulate integer values directly, as opposed to single and double
precision numbers which are much more complex.  The short code fragment in
Listing 1-1 shows some very simple BASIC instructions, along with the
resulting compiled assembly code.  In case you are interested,
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disassemblies such as those you are about to see are easy to create for
yourself using the Microsoft CodeView utility.  CodeView is included with
the Macro Assembler as well as with BASIC PDS.

A% = 12
   MOV  WORD PTR [A%],12    ;move a 12 into the word variable A%

X% = X% + 1
   INC  WORD PTR [X%]       ;add 1 to the word variable X%

Y% = Y% + 100
   ADD  WORD PTR [Y%],100   ;add 100 to the word variable Y%

Z% = A% + B%
   MOV  AX,WORD PTR [B%]    ;move the contents of B% into AX
   ADD  AX,WORD PTR [A%]    ;add to that the value of A%
   MOV  WORD PTR [Z%],AX    ;move the result into Z%

Listing 1-1: These short examples show the compiled results of some simple
BASIC math operations.

The first statement, A% = 12, is directly translated to its assembler
equivalent.  Here, the value 12 is *moved* into the word-sized address
named A%.  Although an integer is the smallest data type supported by
BASIC, the microprocessor can in fact deal with variables as small as one
byte.  Therefore, the WORD PTR (word pointer) argument is needed to specify
that A% is a full two-byte integer, rather than a single byte.  Notice that
in assembly language, brackets are used to specify the contents of a memory
address.  This is not unlike BASIC's PEEK() function, where parentheses are
used for that purpose.
   In the second statement, X% = X% + 1, the compiler generates assembly
language code to increment, or add 1 to, the word-sized variable in the
location named X%.  Since adding or subtracting a value of 1 is such a
common operation in all programming languages, the designers of the 80x86
included the INC (and complementary DEC) instruction to handle that.
   Y% = Y% + 100 is similarly translated, but in this case to assembler
code that adds the value 100 to the word-sized variable at address Y%.  As
you can see, the simple BASIC statements shown thus far have a direct
assembly language equivalent.  Therefore, the code that BC creates is
extremely efficient, and in fact could not be improved upon even by a human
hand-coding those statements in assembly language.
   The last statement, Z% = A% + B%, is only slightly more complicated than
the others.  This is because separate steps are required to retrieve the
contents of one memory location, before manipulating it and assigning the
result to another location.  Here, the value held in variable B% is moved
into one of the processor's registers (AX).  The value of variable A% is
then added to AX, and finally the result is moved into Z%.  There are about
a dozen registers within the CPU, and you can think of them as special
variables that can be accessed very quickly.
   The next example in Listing 1-2 shows how BASIC passes arguments to its
internal routines, in this case PRINT and OPEN.  Whenever a variable is
passed to a routine, what is actually sent is the address (memory location)
of the variable.  This way, the routine can go to that address, and read
the value that is stored there.  As in Listing 1-1, the BASIC source code
is shown along with the resultant compiler-generated assembler
instructions.
   It may also be worth mentioning that the order in which the arguments
are sent to these routines is determined by how the routines are designed.
In BASIC, if a SUB is designed to accept, say, three parameters in a
certain order, then the caller must pass its arguments in that same order.
Parameters in assembler routines are handled in exactly the same manner.
Of course, any arbitrary order could be used, and what's important is
simply that they match.
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PRINT Work$
    MOV  AX,OFFSET Work$     ;move the address of Work$ into AX
    PUSH AX                  ;push that onto the CPU stack
    CALL B$PESD              ;call the string printing routine

OPEN FileName$ FOR OUTPUT AS #1
    MOV  AX,OFFSET FileName$ ;load the address of FileName$
    PUSH AX                  ;push that onto the stack
    MOV  AX,1                ;load the specified file number
    PUSH AX                  ;and push that as well
    MOV  AX,-1               ;-1 means that a LEN= was not given
    PUSH AX                  ;and push that
    MOV  AX,2                ;2 is the internal code for OUTPUT
    PUSH AX                  ;pass that on too
    CALL B$OPEN              ;finally, call the OPEN routine

Listing 1-2: Many BASIC statements create assembler code that passes
arguments to internal routines, as shown above.

When you tell BASIC to print a string, it first loads the address of the
string into AX, and then pushes that onto the stack.  The stack is a
special area in memory that all programs can access, and it is often used
in compiled languages to hold the arguments being sent to subroutines.  In
this case, the OFFSET operator tells the CPU to obtain the address where
the variable resides, as opposed to the current contents of the variable.
Notice that the words offset, address, and memory location all mean the
same thing.  Also notice that calls in assembly language work exactly the
same as calls in BASIC.  When the called routine has finished, execution
in the main program resumes with the next statement in sequence.
   Once the address for Work$ has been pushed, BASIC's B$PESD routine is
called.  Internally, one of the first things that B$PESD does is to
retrieve the incoming address from the stack.  This way it can locate the
characters that are to be printed.  B$PESD is responsible for printing
strings, and other BASIC library routines are provided to print each type
of data such as integers and single precision values.
   In case you are interested, PESD stands for Print End-of-line String
Descriptor.  Had a semicolon been used in the print statement--that is,
PRINT Work$;--then B$PSSD would have been called instead (Print Semicolon
String Descriptor).  Likewise, printing a 4-byte long integer with a
trailing comma as in PRINT Value&, would result in a call to B$PCI4 (Print
Comma Integer 4), where the 4 indicates the integer's size in bytes.
   In the second example of Listing 1-2 the OPEN routine is set up and
called in a similar fashion, except that four parameters are required
instead of only one.  Again, each parameter is pushed onto the stack in
turn, followed by a call to the routine.  Most of BASIC's internal routines
begin with the characters "B$", to avoid a conflict with subroutines of
your own.  Since a dollar sign is illegal in a BASIC procedure name, there
is no chance that you will inadvertently choose one of the same names that
BASIC uses.
   As you can see, there is nothing mysterious or even difficult about
assembly language, or the translations performed by the BASIC compiler.
However, a sequence of many small steps is often needed to perform even
simple calculations and assignments.  We will discuss assembly language in
much greater depth in Chapter 14, and my purpose here is merely to present
the underlying concepts.
   Please note that variable names are not retained after a program has
been compiled.  Once BC has finished its job, all references to each
variable name have been replaced with an equivalent memory addresses in the
object file.  Further, once LINK has joined the object files and linked
them to the BASIC language libraries, the procedure names are lost as well.
These issues will be explored in much greater detail in Chapter 14.
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COMPILER DIRECTIVES

As you have seen, some code is translated by the compiler into the
equivalent assembly language statements, while other code is instead
converted to calls to the language routines in the BASIC libraries.  Some
statements, however, are not translated at all.  Rather, they are known as
*compiler directives* that merely provide information to the compiler as
it works.  Some examples of these non-executable BASIC statements include
DEFINT, OPTION BASE, and REM, as well as the various "metacommands" such
as '$INCLUDE and '$DYNAMIC.  Some others are SHARED, BYVAL, DATA, DECLARE,
CONST, and TYPE.
   For our purposes here, it is important to understand that DIM when used
on a static array is also a non-executable statement.  Because the size of
the array is known when the program is compiled, BC can simply set aside
memory in the object file to hold the array contents.  Therefore, code does
not need to be generated to actually create the array.  Similarly, TYPE/END
TYPE statements also merely define a given number of bytes that will
ultimately end up in the program file when the TYPE variable is later
dimensioned by your program.

EVENT AND ERROR CHECKING

The last compiler responsibility I will discuss here is the generation of
additional code to test for events and debugging errors.  This occurs
whenever a program is compiled using the /d, /w, or /v command line
switches.  Although event trapping and debugging are entirely separate
issues, they are handled in a similar manner.  Let's start with event
trapping.
   When the IBM PC was first introduced, the ability to handle interrupt-
driven events distinguished it from its then-current Apple and Commodore
counterparts.  Interrupts can provide an enormous advantage over polling
methods, since polling requires a program to check constantly for, say,
keyboard or communications activity.  With polling, a program must
periodically examine the keyboard using INKEY$, to determine if a key was
pressed.  But when interrupts are used, the program can simply go about its
business, confident that any keystrokes will be processed.  Here's how that
works:
   Each time a key is pressed on a PC, the keyboard generates a hardware
interrupt that suspends whatever is currently happening and then calls a
routine in the ROM BIOS.  That routine in turn reads the character from the
keyboard's output port, places it into the PC's keyboard buffer, and
returns to the interrupted application.  The next time a program looks for
a keystroke, that key is already waiting to be read.  For example, a
program could begin writing a huge multi-megabyte disk file, and any
keystrokes will still be handled even if the operator continues to type.
   Understand that hardware interrupts are made possible by a direct
physical connection between the keyboard circuitry and the PC's
microprocessor.  The use of interrupts is a powerful concept, and one which
is important to understand.  Unfortunately, BASIC does not use interrupts
in most cases, and this discussion is presented solely in the interest of
completeness.

Event Trapping

BASIC provides a number of event handling statements that perhaps *could*
be handled via interrupts, but aren't.  When you use ON TIMER, for example,
code is added to periodically call a central event handler to check if the
number of seconds specified has elapsed.  Because there are so many
possible event traps that could be active at one time, it would be
unreasonable to expect BASIC to set up separate interrupts to handle each
possibility.  In some situations, such as ON KEY, there is a corresponding
interrupt.  In this case, the keyboard interrupt.  However, some events
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such as ON PLAY(Count), where a GOSUB is made whenever the PLAY buffer has
fewer than Count characters remaining, have no corresponding physical
interrupt.  Therefore, polling for that condition is the only reasonable
method.
   The example in Listing 1-3 shows what happens when you compile using the
/v switch.  Notice that the calls to B$EVCK (Event Check) are not part of
the original source code.  Rather, they show the additional code that BC
places just before each program statement.

DEFINT A-Z
    CALL B$EVCK              'this call is generated by BC
ON TIMER(1) GOSUB HandleTime
    CALL B$EVCK              'this call is generated by BC
TIMER ON
    CALL B$EVCK              'this call is generated by BC
X = 10
    CALL B$EVCK              'this call is generated by BC
Y = 100
    CALL B$EVCK              'this call is generated by BC
END

HandleTime:
    CALL B$EVCK              'this call is generated by BC
BEEP
    CALL B$EVCK              'this call is generated by BC
RETURN

Listing 1-3: When the /v compiler switch is used, BC generates calls to a
central event handler at each BASIC statement.

At five bytes per call, you can see that using /v can quickly bloat a
program to an unacceptable size.  One alternative is to instead use /w.
In fact, /w can be particularly attractive in those cases where event
handling cannot be avoided, because it lets you specify where a call to
B$EVCK is made: at each line label or line number in your source code.  The
only downside to using line numbers and labels is that additional working
memory is needed by BC to remember the addresses in the code where those
labels are placed.  This is not usually a problem, though, unless the
program is very large or every line is labeled.
   All of the various BASIC event handling commands are specified using the
ON statement.  It is important to understand, however, that ON GOTO and ON
GOSUB do not involve events.  That is, they are really just an alternate
form of GOTO and GOSUB respectively, and thus do not require compiling with
/w or /v.

Error Trapping

The last compiler option to consider here is the /d switch, because it too
generates extra code that you might not otherwise be aware of.  When a
program is compiled with /d, two things are added.  First, for every BASIC
statement a call is made to a routine named B$LINA, which merely checks to
see if Ctrl-Break has been pressed.  Normally, a compiled BASIC program is
immune to pressing the Ctrl-C and Ctrl-Break keys, except during an INPUT
or LINE INPUT statement.  Since much of the purpose of a debugging mode is
to let you break out of an errant program gone berserk, the Ctrl-Break
checking must be performed frequently.  These checks are handled in much
the same way as event trapping, by calling a special routine once for each
line in your source code.
   Another important factor resulting from the use of /d is that all array
references are handled through a special called routine which ensures that
the element number specified is in fact legal.  Many people don't realize
this, but when a program is compiled without /d and an invalid element is



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 16   -

given, BASIC will blindly write to the wrong memory locations.  For
example, if you use DIM Array%(1 TO 100) and then attempt to assign, say,
element number 200, BASIC is glad to oblige.  Of course, there *is* no
element 200 in that case, and some other data will no doubt be overwritten
in the process.
   To prevent these errors from going undetected, BC calls the B$HARY (Huge
Array) routine to calculate the address based on the element number
specified.  If B$HARY determines that the array reference is out of bounds,
it invokes an internal error handler and you receive the familiar
"Subscript out of range" message.  Normally, the compiler accesses array
elements using as little code as possible, to achieve the highest possible
performance.  If a static array is dimensioned to 100 elements and you
assign element 10, BC knows at the time it compiles your program the
address at which that element resides.  It can therefore access that
element directly, just as if it were a non-array variable.
   Even when you use a variable to specify an array element such as
Array%(X) = 12, the starting address of the array is known, and the value
in X can be used to quickly calculate how far into the array that element
is located.  Therefore, the lack of bounds checking in programs that do not
use /d is not a bug in BASIC.  Rather, it is merely a trade-off to obtain
very high performance.  Indeed, one of the primary purposes of using /d is
to let BC find mistakes in your programs during development, though at the
cost of execution speed.
   The biggest complication from BASIC's point of view is when huge
(greater than 64K) arrays are being manipulated.  In fact, B$HARY is the
very same routine that BC calls when you use the /ah switch to specify huge
arrays (hence the name HARY).  Since extra code is needed to set up and
call B$HARY compared to the normal array access, using /ah also creates
programs that are larger and slower than when it is not used.  Further,
because B$HARY is used by both /d and /ah, invalid element accesses will
also be trapped when you compile using /ah.

Overflow Errors

The final result of using /d is that extra code is generated after certain
math operations, to check for overflow errors that might otherwise go
undetected.  Overflow errors are those that result in a value too large for
a given data type.  For example,
if you multiply two integers and the result exceeds 32767, that causes an
overflow error.  Similarly, an underflow error would be created by a
calculation resulting a value that is too small.
   When a floating point math operation is performed, errors that result
from overflow are detected by the routines that perform the calculation.
When that happens there is no recourse other than halting your program with
an appropriate message.  Integer operations, however, are handled directly
by 80x86 instructions.  Further, an out of bounds result is not necessarily
illegal to the CPU.  Thus, programs compiled without the /d option can
produce erroneous results, and without any indication that an error
occurred.
   To prove this to yourself, compile and run the short program shown in
Listing 1-4, but without using /d.  Although the correct result should be
90000, the answer that is actually displayed is 24464.  And you will notice
that no error message is displayed!
As with illegal array references, BC would rather optimize for speed, and
give you the option of using /d as an aid for tracking down such errors as
they occur.  If you compile the program in Listing 1-4 with the /d option,
then BASIC will report the error as expected.
   Since an overflow resulting from integer operations is not technically
an error as far as the CPU is concerned, how, then, can BASIC trap for
that?  Although an error in the usual sense is not created, there is a
special flag variable within the CPU that is set whenever such a condition
occurs.  Further, a little-used assembler instruction, INTO (Interrupt 4
if Overflow), will generate software Interrupt 4 if that flag is set.
Therefore, all BC has to do is create an Interrupt 4 handler, and then
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place an INTO instruction after every integer math operation in the
compiled code.  The interrupt handler will receive control and display an
"Overflow" message whenever an INTO calls it.  Since the INTO instruction
is only one byte and is also very fast, using it this way results in very
little size or performance degradation.

X% = 30000
Y% = X% * 10
PRINT Y%

Listing 1-4: This brief program illustrates how overflow errors are handled
in BASIC.

COMPILER OPTIMIZATION

Designing a compiler for a language as complex as BASIC involves some very
tricky programming indeed.  Although it is one thing to translate a BASIC
source file into a series of assembly language commands, it is another
matter entirely to do it well!  Consider that the compiler must be able to
accept a BASIC statement such as X! = ABS(SQR((Y# + Z!) ^ VAL(Work$))), and
reduce that to the individual steps necessary to arrive at the correct
result.
   Many, many details must be accounted for and handled, not the least of
which are syntax or other errors in the source code.  Moreover, there are
an infinite number of ways that a programmer can accomplish the same thing.
Therefore, the compiler must be able to recognize many different
programming patterns, and substitute efficient blocks of assembler code
whenever it can.  This is the role of an *optimizing compiler*.
   One important type of optimization is called *constant folding*.  This
means that as much math as possible is performed during compilation, rather
than creating code to do that when the program runs.  For example, if you
have a statement such as X = 4 * Y * 3 BC can, and does, change that to X
= Y * 12.  After all, why multiply 3 times 4 later, when the answer can be
determined now?  This substitution is performed entirely by the BC
compiler, without your knowing about it.
   Another important type of optimization is BASIC's ability to remember
calculations it has already performed, and use the results again later if
possible.  BC is especially brilliant in this regard, and it can look ahead
many lines in your source code for a repeated use of the same calculations.
Listing 1-5 shows a short fragment of BASIC source code, along with the
resultant assembler output.

X% = 3 * Y% * 4
    MOV  AX,12               ;move the value 12 into AX
    IMUL WORD PTR [Y%]       ;Integer-Multiply that times Y%
    MOV  WORD PTR [X%],AX    ;assign the result in AX to X%

A% = S% * 100
    MOV  BX,AX               ;save the result from above in BX
    MOV  AX,100              ;then assign AX to 100
    IMUL WORD PTR [S%]       ;now multiply AX times S%
    MOV  WORD PTR [A%],AX    ;and assign A% from the result

Z% = Y% * 12
    MOV  WORD PTR [Z%],BX    ;assign Z% from the earlier result

Listing 1-5: These short code fragments illustrate how adept BC is at
reusing the result of earlier calculations already performed.

As you can see in the first part of Listing 1-5, the value of 3 times 4 was
resolved to 12 by the compiler.  Code was then generated to multiply the
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12 times Y%, and the result is in turn assigned to X%.  This is similar to
the compiled code examined earlier in Listing 1-1.  Notice, however, that
before the second multiplication of S% is performed, the result currently
in AX is saved in the BX register.  Although AX is destroyed by the
subsequent multiplication of S% times 100, the result that was saved
earlier in BX can be used to assign Z% later on.  Also notice that even
though 3 * 4 was used first, BC was smart enough to realize that this is
the same as the 12 used later.
   While the compiler can actually look ahead in your source code as it
works, such optimization will be thwarted by the presence of line numbers
and labels, as well as IF blocks.  Since a GOTO or GOSUB could jump to a
labeled source line from anywhere in the program, there is no way for BC
to be sure that earlier statements were executed in sequence.  Likewise,
the compiler has no way to know which path in an IF/ELSE block will be
taken at run time, and thus cannot optimize across those statements.

THE BASIC RUN-TIME LIBRARIES

Microsoft compiled BASIC lets you create two fundamentally different types
of programs.  Those that are entirely self-contained in one .EXE file are
compiled with the /o command line switch.  In this case, the compiler
creates translations such as those we have already discussed, and also
generates calls to the BASIC language routines contained in the library
files supplied by Microsoft.  When your compiled program is subsequently
linked, only those routines that are actually used will be added to your
program.
   When /o is not used, a completely different method is employed.  In this
case, a special .EXE file that contains support for every BASIC statement
is loaded along with the BASIC program when the program is run from the DOS
command line.  As you are about to see, there are advantages and
disadvantages to each method.  For the purpose of this discussion I will
refer to stand-alone programs as BCOM programs, after the BCOMxx.LIB
library name used in all versions of QuickBASIC.  Programs that instead
require the BRUNxx.LIB library to be present at run time will be called
BRUN programs.
   Beginning with BASIC 7 PDS, the library naming conventions used by
Microsoft have become more obscure.  This is because PDS includes a number
of variations for each method, depending on the type of "math package" that
is specified when compiling and whether you are compiling a program to run
under DOS or OS/2.  These variations will be discussed fully in Chapter 6,
when we examine all of the possible options that each compiler version has
to offer.  But for now, we will consider only the two basic methods--BCOM
and BRUN.  The primary differences between these two types of programs are
shown in Figure 1-2.

   1.  BCOM programs require less memory, run faster, and do   not require
   the presence of the BRUNxx.EXE file when the program is run.

   2.  BRUN programs occupy less disk space, and also allow subsequent
   chaining to other programs that can share the common library code which
   is already resident.  Chained-to programs also load quickly because the
   BRUN library is already in memory.

Figure 1-2: A comparison of the fundamental differences between BCOM and
BRUN programs.

Stand-alone BCOM programs are always larger than an equivalent BRUN program
because the library code for PRINT, INSTR, and so forth is included in the
final .EXE file.  However, less *memory* will be required when the program
runs, since only the code that is really needed is loaded into the PC.
Likewise, a BRUN program will take less disk space, because it contains
only the compiled code.  The actual routines to handle each BASIC
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statements are stored in the BRUNxx.LIB library, and that library is loaded
automatically when the main program is run from DOS.
   You might think that since a BRUN program is physically smaller on disk
it will load faster, but this is not necessarily true.  When you execute
a BRUN program from the DOS command line, one of the first things it does
is load the BRUN .EXE support file.  Since this support file is fairly
large, the overall load time will be much greater than the compiled BASIC
program's file size would indicate.  However, if the main program
subsequently chains to another BASIC program, that program will load
quickly because the BRUN file does not need to be loaded a second time.
   One other important difference between these two methods is the way that
the BASIC language routines are accessed.  When a BCOM program is compiled
and linked, the necessary routines are called in the usual fashion.  That
is, the compiler generates code that calls the routines in the BCOM library
directly.  When the program is subsequently linked, the procedure names are
translated by LINK into the equivalent memory addresses.  That is, a call
to PRINT is in effect translated from CALL B$PESD to CALL ####:####, where
####:#### is a segment and address.
   BRUN programs, on the other hand, instead use a system of interrupts to
access the BASIC language routines.  Since there is no way for LINK to know
exactly where in memory the BRUNxx.EXE file will be ultimately loaded, the
interrupt vector table located in low memory is used to hold the various
routine addresses.  Although many of these interrupt entries are used by
the PC's system resources, many others are available.  Again, I will defer
a thorough treatment of call methods and interrupts until Chapter 14.  But
for now, suffice it to say that a direct call is slightly faster than an
indirect call, where the address to be called must first be retrieved from
a table.
   As an interesting aside, the routines in the BRUNxx.EXE file in fact
modify the caller's code to perform a direct call, rather than an interrupt
instruction.  Therefore, the first time a given block of code is executed,
it calls the run-time routines through an interrupt instruction.
Thereafter, the address where the BRUN file has been loaded is known, and
will be used the next time that same block of code is executed.  In
practice, however, this improves only code that lies within a FOR/NEXT,
WHILE, or DO loop.  Further, code that is executed only once will actually
be much slower than in a BCOM program, because of the added self-
modification (the program changes itself) instructions.
   Notice that when BC compiles your program, it places the name of the
appropriate library into the object file.  The name BC uses depends on
which compiler options were given.  This way you don't have to specify the
correct name manually, and LINK can read that name and act accordingly.
Although QuickBASIC provides only two libraries--one for BCOM programs and
one for BRUN--BASIC PDS offers a number of additional options.  Each of
these options requires the program to be linked with a different library.
That is, there are both BRUN and BCOM libraries for use with OS/2, for near
and far strings, and for using IEEE or Microsoft's alternate math
libraries.  Yet another library is provided for 8087-only operation.

GRANULARITY

Until now, we have examined only the actions and methods used by the BC
compiler.  However, the process of creating an .EXE file that can be run
from the DOS command line is not complete until the compiled object file
has been linked to the BASIC libraries.  I stated earlier that when a
stand-alone program is created using the /o switch, only those routines in
the BCOM library that are actually needed will be added to the program.
Unfortunately, that is not entirely accurate.  While it is true that LINK
is very smart and will bring in only those routines that are actually
called, there is one catch.
   Imagine that you have written a BASIC program which is comprised of two
separate modules.  In one file is the main program that contains only in-
line code, and in the other are two BASIC subprograms.  Even if the main
program calls only one of those subprograms, both will be added when the
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program is linked.  That is, LINK can resolve routines to the source file
level only, but cannot extract a single routine from an object module which
contains multiple routines.  Since an .LIB library file is merely a
collection of separate object modules, all of the routines that reside in
a given module will be added to a program, even if only one has been
accessed.  This property is called *granularity*, and it determines how
finely LINK can remove routines from a library.
   In the case of the libraries supplied with BASIC, the determining factor
is which assembly language routines were combined with which other routines
in the same source file by the programmers at Microsoft.  In QuickBASIC
4.5, for example, when a program uses the CLS statement, the routines that
handle COLOR, CSRLIN, POS(0), LOCATE, and the function form of SCREEN are
also added.  This is true even if none of those other statements have been
used.  Fortunately, Microsoft has done much to improve this situation in
BASIC PDS, but there is still room for improvement.  In BASIC PDS, CLS is
stored in a separate file, however POS(0), CSRLIN, and SCREEN are still
together, as are COLOR and LOCATE.
   Obviously, Microsoft has their reasons for doing what they do, and I
won't attempt to second guess their expertise here.  The BASIC language
libraries are extremely complex and contain many routines.  (The QuickBASIC
4.5 BCOM45.LIB file contains 1,485 separate assembler procedures.)  With
such an enormous number of assembly language source files to deal with, it
no doubt makes a lot of sense to organize the related routines together.
But it is worth mentioning that Crescent Software's P.D.Q. library can
replace much of the functionality of the BCOM libraries, and with complete
granularity.  In fact, P.D.Q. can create working .EXE programs from BASIC
source that are less than 800 bytes in size.

SUMMARY
=======

In this chapter, you learned about the process of compiling, and the kinds
of decisions a sophisticated compiler such as Microsoft BASIC must make.
In some cases, the BASIC compiler performs a direct translation of your
BASIC source code into assembly language, and in others it creates calls
to existing routines in the BCOM libraries.  Besides creating the actual
assembler code, BASIC must also allocate space for all of the data used in
a program.
   You also learned some basics about assembly language, which will be
covered in more detail in Chapter 13.  However, examples in upcoming
chapters will also use brief assembly language examples to show the
relative efficiency of different coding styles.  In Chapter 2, you will
learn how variables and other data are stored in memory.

                                 CHAPTER 2

                            VARIABLES AND DATA

DATA BASICS
===========

In Chapter 1 you examined the role of a compiler, and learned how it
translates BASIC source code into the assembly language commands a PC
requires.  But no matter how important the compiler is when creating a
final executable program, it is only half of the story.  This chapter
discusses the equally important other half: data.  Indeed, some form of
data is integral to the operation of every useful program you will ever
write.  Even a program that merely prints "Hello" to the display screen
requires the data "Hello".
     Data comes in many shapes and sizes, starting with a single bit,
continuing through eight-byte double precision variables, and extending all
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the way to multi-megabyte disk files.  In this chapter you will learn about
the many types of data that are available to you, and how they are
manipulated in a BASIC program.  You will also learn how data is stored and
assigned, and how BASIC's memory management routines operate.
     Compiled BASIC supports two fundamental types of data (numeric and
string), two primary methods of storage (static and dynamic), and two kinds
of memory allocation (near and far).  Of course, the myriad of data types
and methods is not present to confuse you.  Rather, each is appropriate in
certain situations.  By fully understanding this complex subject, you will
be able to write programs that operate as quickly as possible, and use the
least amount of memory.
     I will discuss each of the following types of data: integer and
floating point numeric data, fixed-length and dynamic (variable-length)
string data, and user-defined TYPE variables.  Besides variables which are
identified by name, BASIC supports named constant data such as literal
numbers and quoted strings.
     I will also present a complete comparison of the memory storage
methods used by BASIC, to compare near versus far storage, and dynamic
versus static allocation.  It is important to understand that near storage
refers to variables and other data that compete for the same 64K data space
that is often referred to as Near Memory or Data Space.  By contrast, far
storage refers to the remaining memory in a PC, up to the 640K limit that
DOS imposes.
     The distinction between dynamic and static allocation is also
important to establish now.  Dynamic data is allocated in whatever memory
is available when a program runs, and it may be resized or erased as
necessary.  Static data, on the other hand, is created by the compiler and
placed directly into the .EXE file.  Therefore, the memory that holds
static data may not be relinquished for other uses.
     Each type of data has its advantages and disadvantages, as does each
storage method.  To use an extreme example, you could store all numeric
data in string variables if you really wanted to.  But this would require
using STR$ every time a value was to be assigned, and VAL whenever a
calculation had to be made.  Because STR$ and VAL are relatively slow,
using strings this way will greatly reduce a program's performance.
Further, storing numbers as ASCII digits can also be very wasteful of
memory.  That is, the double precision value 123456789.12345 requires
fifteen bytes, as opposed to the usual eight.
     Much of BASIC's broad appeal is that it lets you do pretty much
anything you choose, using the style of programming you prefer.  But as the
example above illustrates, selecting an appropriate data type can have a
decided impact on a program's efficiency.  With that in mind, let's examine
each kind of data that can be used with BASIC, beginning with integers.

INTEGERS AND LONG INTEGERS
==========================

An integer is the smallest unit of numeric storage that BASIC supports, and
it occupies two bytes of memory, or one "word".  Although various tricks
can be used to store single bytes in a one-character string, the integer
remains the most compact data type that can be directly manipulated as a
numeric value.  Since the 80x86 microprocessor can operate on integers
directly, using them in calculations will be faster and require less code
than any other type of data.  An integer can hold any whole number within
the range of -32768 to 32767 inclusive, and it should be used in all
situations where that range is sufficient.  Indeed, the emphasis on using
integers whenever possible will be a recurring theme throughout this book.
     When the range of integer values is not adequate in a given
programming situation, a long integer should be used.  Like the regular
integer, long integers can accommodate whole numbers only.  A long integer,
however, occupies four bytes of memory, and can thus hold more information.
This yields an allowable range of values that spans from -2147483648
through 2147483647 (approximately +/- 2.15 billion).  Although the PC's
processor cannot directly manipulate a long integer in most situations,
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calculations using them will still be much faster and require less code
when compared to floating point numbers.
     Regardless of which type of integer is being considered, the way they
are stored in memory is very similar.  That is, each integer is comprised
of either two or four bytes, and each of those bytes contains eight bits.
Since a bit can hold a value of either 0 or 1 only, you can see why a
larger number of bits is needed to accommodate a wider range of values.
Two bits are required to count up to three, three bits to count to seven,
four bits to count to fifteen, and so forth.
     A single byte can hold any value between 0 and 255, however that same
range can also be considered as spanning from -128 to 127.  Similarly, an
integer value can hold numbers that range from either 0 to 65535 or -32768
through 32767, depending on your perspective.  When the range is considered
to be 0 to 65535 the values are referred to as *unsigned*, because only
positive values may be represented.  BASIC does not, however, support
unsigned integer values.  Therefore, that same range is used in BASIC
programs to represent values between -32768 and 32767.  When integer
numbers are considered as using this range they are called *signed*.
     If you compile and run the short program in the listing that follows,
the transition from positive to negative numbers will show how BASIC treats
values that exceed the integer range of 32767.  Be sure not to use the /d
debugging option, since that will cause an overflow error to be generated
at the transition point.  The BASIC environment performs the same checking
as /d does, and it too will report an error before this program can run to
completion.

Number% = 32760
FOR X% = 1 TO 14
    Number% = Number% + 1
    PRINT Number%,
NEXT

Displayed result:

 32761     32762     32763     32764     32765
 32766     32767    -32768    -32767    -32766
-32765    -32764    -32763    -32762    -32761

As you can see, once an integer reaches 32767, adding 1 again causes the
value to "wrap" around to -32768.  When Number% is further incremented its
value continues to rise as expected, but in this case by becoming "less
negative".  In order to appreciate why this happens you must understand how
an integer is constructed from individual bits.  I am not going to belabor
binary number theory or other esoteric material, and the brief discussion
that follows is presented solely in the interest of completeness.

BITS 'N' BYTES
==============

Sixteen bits are required to store an integer value.  These bits are
numbered 0 through 15, and the least significant bit is bit number 0.  To
help understand this terminology, consider the decimal number 1234.  Here,
4 is the least significant digit, because it contributes the least value to
the entire number.  Similarly, 1 is the most significant portion, because
it tells how many thousands there are, thus contributing the most to the
total value.  The binary numbers that a PC uses are structured in an
identical manner.  But instead of ones, tens, and hundreds, each binary
digit represents the number of ones, twos, fours, eights, and so forth that
comprise a given byte or word.
     To represent the range of values between 0 and 32767 requires fifteen
bits, as does the range from -32768 to -1.  When considered as signed
numbers, the most significant bit is used to indicate which range is being



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 23   -

considered.  This bit is therefore called the sign bit.  Long integers use
the same method except that four bytes are used, so the sign bit is kept in
the highest position of the fourth byte.
     Selected portions of the successive range from 0 through -1 (or 65535)
are shown in Table 2-1, to illustrate how binary counting operates.  When
counting with decimal numbers, once you reach 9 the number is wrapped
around to 0, and then a 1 is placed in the next column.  Since binary bits
can count only to one, they wrap around much more frequently.  The
Hexadecimal equivalents are also shown in the table, since they too are
related to binary numbering.  That is, any Hex value whose most significant
digit is 8 or higher is by definition negative.

 Signed   Unsigned
Decimal    Decimal          Binary          Hex
-------   --------   -------------------   ----
     0          0    0000 0000 0000 0000   0000
     1          1    0000 0000 0000 0001   0001
     2          2    0000 0000 0000 0010   0002
     3          3    0000 0000 0000 0011   0003
     4          4    0000 0000 0000 0100   0004
     .          .                      .      .
     .          .                      .      .
 32765      32765    0111 1111 1111 1101   7FFD
 32766      32767    0111 1111 1111 1110   7FFE
 32767      32767    0111 1111 1111 1111   7FFF
-32768      32768    1000 0000 0000 0000   8000
-32767      32769    1000 0000 0000 0001   8001
-32766      32770    1000 0000 0000 0010   8002
     .          .                      .      .
     .          .                      .      .
    -4      65531    1111 1111 1111 1100   FFFB
    -3      65532    1111 1111 1111 1101   FFFC
    -2      65533    1111 1111 1111 1110   FFFD
    -1      65534    1111 1111 1111 1111   FFFE
     0      65535    0000 0000 0000 0000   FFFF

Table 2-1: When a signed integer is incremented past 32767, its value wraps
around and becomes negative.

MEMORY ADDRESSES AND POINTERS
=============================

Before we can discuss such issues as variable and data storage, a few terms
must be clarified.  A memory address is a numbered location in which a
given piece of data is said to reside.  Addresses refer to places that
exist in a PC's memory, and they are referenced by those numbers.  Every PC
has thousands of memory addresses in which both data and code instructions
may be stored.
     A *pointer* is simply a variable that holds an address.  Consider a
single precision variable named Value that has been stored by the compiler
at memory address 10.  If another variable--let's call it Address%--is then
assigned the value 10, Address% could be considered to be a pointer to
Value.  Pointer variables are the bread and butter of languages such as C
and assembler, because data is often read and written by referring to one
variable which in turn holds the address of another variable.
     Although BASIC shields you as the programmer from such details,
pointers are in fact used internally by the BASIC language library
routines.  This method of using pointers is sometimes called indirection,
because an additional, indirect step is needed to first go to one variable,
get an address, and then go to that address to access the actual data.  Now
let's see how these memory issues affect a BASIC program.
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INTEGER STORAGE
===============

When a conventional two-byte integer is stored in the PC's memory, the
lower byte is kept in the lower memory address.  For example, if X% is said
to reside at address 10, then the least significant byte is at address 10
and the most significant byte is at address 11.  Likewise, a long integer
stored at address 102 actually occupies addresses 102 through 105, with the
least significant portion at the lowest address.  This is shown graphically
in Figure 2-1.

   +------------- X% ------------+
   ¦     LSB             MSB     ¦
- ----------------------------------- - -
  ¦1¦0¦0¦1¦1¦0¦1¦0¦0¦0¦1¦0¦1¦1¦0¦1¦
- ----------------------------------- - -
   ^               ^               ^
   +- Address 10   +- Address 11   +- Address 12

Figure 2-1: An integer is stored in two adjacent memory locations, with the
Least Significant Byte at the lower address, and the Most Significant Byte
at the higher.

This arrangement certainly seems sensible, and it is.  However, some people
get confused when looking at a range of memory addresses being displayed,
because the values in lower addresses are listed at the left and the higher
address values are shown on the right.  For example, the DEBUG utility that
comes with DOS will display the Hex number ABCD as CD followed by AB.  I
mention this only because the order in which digits are displayed will
become important when we discuss advanced debugging in Chapter 4.
     In case you are wondering, the compiler assigns addresses in the order
in which variables are encountered.  The first address used is generally 36
Hex, so in the program below the variables will be stored at addresses 36,
38, 3A, and then 3C.  Hex numbering is used for these examples because
that's the way DEBUG and CodeView report them.

A% = 1         'this is at address &H36
B% = 2         'this is at address &H38
C% = 3         'this is at address &H3A
D% = 4         'this is at address &H3C

FLOATING POINT VALUES
=====================

Floating point variables and numbers are constructed in an entirely
different manner than integers.  Where integers and long integers simply
use the entire two or four bytes to hold a single binary number, floating
point data is divided into portions.  The first portion is called the
mantissa, and it holds the base value of the number.  The second portion is
the exponent, and it indicates to what power the mantissa must be raised to
express the complete value.  Like integers, a sign bit is used to show if
the number is positive or negative.
     The structure of single precision values in both IEEE and the original
proprietary Microsoft Binary Format (MBF) is shown in Figure 2-2.  For IEEE
numbers, the sign bit is in the most significant position, followed by
eight exponent bits, which are in turn followed by 23 bits for the
mantissa.  Double precision IEEE values are structured similarly, except
eleven bits are used for the exponent and 52 for the mantissa.
     Double precision MBF numbers use only eight bits for an exponent
rather than eleven, trading a reduced absolute range for increased
resolution.  That is, there are fewer exponent bits than the IEEE method
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uses, which means that extremely large and extremely small numbers cannot
be represented.  However, the additional mantissa bits offer more absolute
digits of precision.

The IEEE format:

+-----------------------------------+
¦SEEEEEEE¦EMMMMMMM¦MMMMMMMM¦MMMMMMMM¦
+-----------------------------------+

The MBF format:

+-----------------------------------+
¦EEEEEEEE¦SMMMMMMM¦MMMMMMMM¦MMMMMMMM¦
+-----------------------------------+

Figure 2-2: A single precision value is comprised of a Sign bit, eight
Exponent bits, and 23 bits to represent the Mantissa.  Each letter shown
here represents one bit, and the bytes on the left are at higher addresses.

Notice that with IEEE numbers, the exponent spans a byte boundary.  This
undoubtedly contributes to the slow speed that results from using numbers
in this format when a coprocessor is not present.  Contrast that with
Microsoft's MBF format in which the sign bit is placed between the exponent
and mantissa.  This allows direct access to the exponent with fewer
assembler instructions, since the various bits don't have to be shifted
around.
     The IEEE format is used in QuickBASIC 4.0 and later, and BASIC PDS
unless the /fpa option is used.  BASIC PDS uses the /fpa switch to specify
an alternate math package which provides increased speed but with a
slightly reduced accuracy.  Although the /fpa format is in fact newer than
the original MBF used in interpreted BASIC and QuickBASIC 2 and 3, it is
not quite as fast.
     As was already mentioned, double precision data requires twice as many
bytes as single precision.  Further, due to the inherent complexity of the
way floating point data is stored, an enormous amount of assembly language
code is required to manipulate it.  Common sense therefore indicates that
you would use single precision variables whenever possible, and reserve
double precision only for those cases where the added accuracy is truly
necessary.  Using either floating point variable type, however, is still
very much slower than using integers and long integers.  Worse, rounding
errors are inevitable with any floating point method, as the following
short program fragment illustrates.

FOR X% = 1 TO 10000
    Number! = Number! + 1.1
NEXT
PRINT Number!

Displayed result:

10999.52

Although the correct answer should be 11000, the result of adding 1.1 ten
thousand times is incorrect by a small amount.  If you are writing a
program that computes, say, tax returns, even this small error will be
unacceptable.  Recognizing this problem, Microsoft developed a new Currency
data type which was introduced with BASIC PDS version 7.0.
     The Currency data type is a cross between an integer and a floating
point number.  Like a double precision value, Currency data also uses eight
bytes for storage.  However, the numbers are stored in an integer format
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with an implied scaling of 10000.  That is, a binary value of 1 is used to
represent the value .0001, and a binary value of 20000 is treated as a 2.
This yields an absolute accuracy to four decimal places, which is more than
sufficient for financial work.  The absolute range of Currency data is plus
or minus 9.22 times 10 ^ 14 (± 9.22E14 or 922,000,000,000,000.0000), which
is very wide indeed.  This type of storage is called Fixed-Point, because
the number of decimal places is fixed (in this case at four places).
     Currency data offers the best compromise of all, since only whole
numbers are represented and the fractional portion is implied.  Further,
since a separate exponent and mantissa are not used, calculations involving
Currency data are extremely fast.  In practice, a loop that adds a series
of Currency variables will run about half as fast as the same loop using
long integers.  Since twice as many bytes must be manipulated, the net
effect is an overall efficiency that is comparable to long integers.
Compare that to double precision calculations, where manipulating the same
eight bytes takes more than six times longer.
     As you have seen, there is a great deal more to "simple" numeric data
than would appear initially.  But this hardly begins to scratch the surface
of data storage and manipulation in BASIC.  We will continue our tour of
BASIC's data types with conventional dynamic (variable-length) strings,
before proceeding to fixed-length strings and TYPE variables.

DYNAMIC STRINGS
===============

One of the most important advantages that BASIC holds over all of the other
popular high-level languages is its support for dynamic string data.  In
Pascal, for example, you must declare every string that your program will
use, as well as its length, before the program can be compiled.  If you
determine during execution of the program that additional characters must
be stored in a string, you're out of luck.
     Likewise, strings in C are treated internally as an array of single
character bytes, and there is no graceful way to extend or shorten them.
Specifying more characters than necessary will of course waste memory, and
specifying too few will cause subsequent data to be overwritten.  Since C
performs virtually no error checking during program execution, assigning to
a string that is not long enough will corrupt memory.  And indeed, problems
such as this cause untold grief for C programmers.
     Dynamic string memory handling is built into BASIC, and those routines
are written in assembly language.  BASIC is therefore extremely efficient
and very fast in this regard.  Since C is a high-level language, writing an
equivalent memory manager in C would be quite slow and bulky by comparison.
I feel it is important to point out BASIC's superiority over C in this
regard, because C has an undeserved reputation for being a very fast and
powerful language.
     Compiled BASIC implements dynamic strings with varying lengths by
maintaining a *string descriptor* for each string.  A string descriptor is
simply a four-byte table that holds the current length of the string as
well as its current address.  The format for a BASIC string descriptor is
shown in Figure 2-3.  In QuickBASIC programs and BASIC PDS when far strings
are not specified, all strings are stored in an area of memory called the
*near heap*.  The string data in this memory area is frequently shuffled
around, as new strings are assigned and old ones are abandoned.

+------+   Higher addresses
¦  64  ¦           ^
+------¦ Address   ¦
¦  B2  ¦           ¦
¦------¦           ¦
¦  00  ¦           ¦
+------¦ Length
¦  0A  ¦ _---------------- VARPTR(Work$)
+------+
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Figure 2-3: Each string in a QuickBASIC program has a corresponding string
descriptor, which holds its current length and address.  The string in this
example has a length of ten characters (0A Hex) and its data is presently
at address 25778 (64B2 Hex).

The lower two bytes in a string descriptor together hold the current length
of the string, and the second two bytes hold its address.  The memory
location at the bottom of Figure 2-3 is at the lowest address.  The short
program below shows how you could access a string by peeking at its
descriptor.

DEFINT A-Z

Test$ = "BASIC Techniques and Utilities"
Descr = VARPTR(Test$)
Length = PEEK(Descr) + 256 * PEEK(Descr + 1)
Addr = PEEK(Descr + 2) + 256 * PEEK(Descr + 3)

PRINT "The length is"; Length
PRINT "The address is"; Addr
PRINT "The string contains ";
FOR X = Addr TO Addr + Length - 1
  PRINT CHR$(PEEK(X));
NEXT

Displayed result:

The length is 17
The address is 15646 (this will vary)
The string contains BASIC Techniques and Utilities

Each time a string is assigned or reassigned, memory in the heap is claimed
and the string's descriptor is updated to reflect its new length and
address.  The old data is then marked as being abandoned, so the space it
occupied may be reclaimed later on if it is needed.  Since each assignment
claims new memory, at some point the heap will become full.  When this
happens, BASIC shuffles all of the string data that is currently in use
downward on top of the older, abandoned data.  This heap compaction process
is often referred to colorfully as *garbage collection*.
     In practice, there are two ways to avoid having BASIC claim new space
for each string assignment--which takes time--and you should consider these
when speed is paramount.  One method is to use LSET or RSET, to insert new
characters into an existing string.  Although this cannot be used to make a
string longer or shorter, it is very much faster than a straight assignment
which invokes the memory management routines.  The second method is to use
the statement form of MID$, which is not quite as fast as LSET, but is more
flexible.
     Microsoft BASIC performs some additional trickery as it manages the
string data in a program.  For example, whenever a string is assigned, an
even number of bytes is always requested.  Thus, if a five-character string
is reassigned to one with six characters, the same space can be reused.
Since claiming new memory requires a finite amount of time and also causes
garbage collection periodically, this technique helps to speed up the
string assignment process.
     For example, in a program that builds a string by adding new
characters to the end in a loop, BASIC can reduce the number of times it
must claim new memory to only every other assignment.  Another advantage to
always allocating an even number of bytes is that the 80286 and later
microprocessors can copy two-byte words much faster than they can copy the
equivalent number of bytes.  This has an obvious advantage when long
strings are being assigned.
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     In most cases, BASIC's use of string descriptors is much more
efficient than the method used by C and other languages.  In C, each string
has an extra trailing CHR$(0) byte just to mark where it ends.  While using
a single byte is less wasteful than requiring a four-byte table, BASIC's
method is many times faster.  In C the entire string must be searched just
to see how long it is, which takes time.  Likewise, comparing and
concatenating strings in C requires scanning both strings for the
terminating zero character.  The same operations in BASIC require but a
single step to obtain the current length.
     Pascal uses a method that is similar to BASIC's, in that it remembers
the current length of the string. The length is stored with the actual
string data, in a byte just before the first character.  Unfortunately,
using a single byte limits the maximum length of a Pascal string to only
255 characters.  And again, when a string is shortened in Pascal, the extra
characters are not released for use by other data.  But it is only fair to
point out that Pascal's method is both fast and compact.  And since strings
in C and Pascal never move around in memory, garbage collection is not
required.
     Although a BASIC string descriptor uses four bytes of additional
memory beyond that needed for the actual data, this is only part of the
story.  An additional two bytes are needed to hold a special "variable"
called a *back pointer*.  A back pointer is an integer word that is stored
in memory immediately before the actual string data, and it holds the
address of the data's string descriptor.  Thus, it is called a back pointer
because it points back to the descriptor, as opposed to the descriptor
which points to the data.
     Because of this back pointer, six additional bytes are actually needed
to store each string, beyond the number of characters that it contains.
For example, the statement Work$ = "BASIC" requires twelve bytes of data
memory--five for the string itself, one more because an even number of
bytes is always claimed, four for the descriptor, and two more for a back
pointer.  Every string that is defined in a program has a corresponding
descriptor which is always present, however a back pointer is maintained
only while the string has characters assigned to it.  Therefore, when a
string is erased the two bytes for its back pointer are also relinquished.
     I won't belabor this discussion of back pointers further, because
understanding them is of little practical use.  Suffice it to say that a
back pointer helps speed up the heap compaction process.  Since the address
portion of the descriptor must be updated whenever the string data is
moved, this pointer provides a fast link between the data being moved and
its descriptor.  By the way, the term "pointer" refers to any variable that
holds a memory address, regardless of what language is being considered.

FAR STRINGS IN BASIC PDS

BASIC PDS offers an option to specify "far strings", whereby the string
data is not stored in the same 64K memory area that holds most of a
program's data.  The method of storage used for far strings is of necessity
much more complex than near strings, because both an address and a segment
must be kept track of.  Although Microsoft has made it clear that the
structure of far string descriptors may change in the future, I would be
remiss if this undocumented information were not revealed here.  The
following description is valid as of BASIC 7.1 [it is still valid for
VB/DOS too].
     For each far string in a program, a four-byte descriptor is maintained
in near memory.  The lower two bytes of the descriptor together hold the
address of an integer variable that holds yet another address: that of the
string length and data.  The second pair of bytes also holds the address of
a pointer, in this case a pointer to a variable that indicates the segment
in which the string data resides.  Thus, by retrieving the address and
segment from the descriptor, you can locate the string's length and data,
albeit with an extra level of indirection.
     It is interesting to note that when far strings are being used, the
string's length is kept just before its data, much like the way Pascal
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operates.  Therefore, the address pointer holds the address of the length
word which immediately precedes the actual string data.
     The short program that follows shows how to locate all of the
components of a far string based on examining its descriptor and related
pointers.  Notice that long integers are used to avoid the possibility of
an overflow error if the segment or addresses happen to be higher than
32767.  This way you can run the program in the QBX [or VB/DOS] editing
environment.  Figure 2-4 in turn illustrates the relationship between the
address and pointer information graphically.

DEF FNPeekWord& (A&)
  FNPeekWord& = PEEK(A&) + 256& * PEEK(A& + 1)
END DEF

Work$ = "This is a test"

DescAddr& = VARPTR(Work$)
AddressPtr& = FNPeekWord&(DescAddr&)
SegmentPtr& = FNPeekWord&(DescAddr& + 2)
Segment& = FNPeekWord&(SegmentPtr&)

DEF SEG = Segment&
DataAddr& = FNPeekWord&(AddressPtr&)
Length% = FNPeekWord&(DataAddr&)
StrAddr& = DataAddr& + 2

PRINT "The descriptor address is:"; DescAddr&
PRINT "      The data segment is:"; Segment&
PRINT "            The length is:"; Length%
PRINT "The string data starts at:"; StrAddr&
PRINT "   And the string data is: ";

FOR X& = StrAddr& TO StrAddr& + Length% - 1
  PRINT CHR$(PEEK(X&));
NEXT

Displayed result (the addresses may vary):

The descriptor address is: 17220
      The data segment is: 40787
            The length is: 14
The string data starts at: 106
   And the string data is: This is a test

Because two bytes are used to hold the segment, address, and length values,
we must PEEK both of them and combine the results.  This is the purpose of
the PeekWord function that is defined at the start of the program.  Note
the placement of an ampersand after the number 256, which ensures that the
multiplication will not cause an overflow error.  I will discuss such use
of numeric constants and type identifiers later in this chapter.

     +---------------------- The string length
     ¦   ¦      +----------- The string data
    +--------------------+
+-->¦0A¦00¦This is a test¦<-- Segment &H8F00
¦   +--------------------+
¦    ^
¦    +------- 8F00:0070
¦
¦   +--------------------+
+---¦70¦00¦..............¦<-- Segment &H8F00
    +--------------------+
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     ^
     +------- 8F00:002E
     ¦
     ¦
     ¦ This is the "near" segment ------+
     +-------------------+              ¦
    +----------------------------------------+
    ¦00¦8F¦.........¦2E¦00¦D4¦03¦............¦
    +----------------------------------------+
     ^               ^     +---+
     +- Address 03D4 ¦       ¦
     ¦               +-------+-- VARPTR(Work$)
     +-----------------------+

Figure 2-4: A far string descriptor holds the addresses of other addresses,
in this case addresses that hold a far string's segment and its length and
actual data.

Even in a far-string program, some of the string data will be near.  For
example, DATA items and quoted string constants are stored in the same 64K
DGROUP data segment that holds simple numeric and TYPE variables.  The same
"indirect" method is used, whereby you must look in one place to get the
address of another address.  In this case, however, the "far" segment that
is reported is simply the normal near data segment.  [DATA items in VB/DOS
programs are still kept in near memory, but quoted strings are now kept in
a separate segment.]
     One final complication worth mentioning is that strings within a FIELD
buffer (and possibly in other special situations) are handled slightly
differently.  Since all of the strings in a FIELD buffer must be
contiguous, BASIC cannot store the length word adjacent to the string data.
Therefore, a different method must be used.  This case is indicated by
setting the sign bit (the highest bit) in the length word as a flag.  Since
no string can have a negative length, that bit can safely be used for this
purpose.  When a string is stored using this alternate method, the bytes
that follow the length word are used as additional pointers to the string's
actual data segment and address.

FIXED-LENGTH STRINGS

One of the most important new features Microsoft added beginning with
QuickBASIC 4.0 was fixed-length string and TYPE variables.  Although fixed-
length strings are less flexible than conventional BASIC strings, they
offer many advantages in certain programming situations.  One advantage is
that they are static, which means their data does not move around in memory
as with conventional strings.  You can therefore obtain the address of a
fixed-length string just once using VARPTR, confident that this address
will never change.  With dynamic strings, SADD must be used each time the
address is needed, which takes time and adds code.  Another important
feature is that arrays of fixed-length strings can be stored in far memory,
outside of the normal 64K data area.  We will discuss near and far array
memory allocation momentarily.
     With every advantage, however, comes a disadvantage.  The most severe
limitation is that when a fixed-length string is used where a conventional
string is expected, BASIC must generate code to create a temporary dynamic
string, and then copy the data to it.  That is, all of BASIC's internal
routines that operate on strings expect a string descriptor.  Therefore,
when you print a fixed-length string, or use MID$ or INSTR or indeed nearly
any statement or function that accepts a string, it must be copied to a
form that BASIC's internal routines can accept.  In many cases, additional
code is created to delete the temporary string afterward.  In others, the
data remains until the next time the same BASIC statement is executed, and
a new temporary string is assigned freeing the older one.
     To illustrate, twenty bytes of assembly language code are required to
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print a fixed-length string, compared to only nine for a conventional
dynamic string.  Worse, when a fixed-length string is passed as an argument
to a subprogram or function, BASIC not only makes a copy before passing the
string, but it also copies the data back again in case the subroutine
changed it!  The extra steps the compiler performs are shown as BASIC
equivalents in the listing that follows.

'----- This is the code you write:

DIM Work AS STRING * 20
CALL TestSub(Work$)

'----- This is what BASIC actually does:

Temp$ = SPACE$(20)    'create a temporary string
LSET Temp$ = Work$    'copy Work$ to it
CALL TestSub(Temp$)   'call the subprogram
LSET Work$ = Temp$    'copy the data back again
Temp$ = ""            'erase the temporary data

As you can imagine, all of this copying creates an enormous amount of
additional code in your programs.  Where only nine bytes are required to
pass a conventional string to a subprogram, 64 are needed when a fixed-
length string is being sent.  But you cannot assume unequivocally that
conventional strings are always better or that fixed-length strings are
always better.  Rather, I can only present the facts, and let you decide
based on the knowledge of what is really happening.  In the discussion of
debugging later in Chapter 4, you will learn how to use CodeView to see the
code that BASIC generates.  You can thus explore these issues further, and
draw your own conclusions.

Arrays Within Types

As I mentioned earlier, the TYPE variable is an important and powerful
addition to modern compiled BASIC.  Its primary purpose is to let
programmers create composite data structures using any combination of
native data types.  C and Pascal have had such user-defined data types
since their inception, and they are called Structures and Records
respectively in each language.
     One immediately obvious use for being able to create a new, composite
data type is to define the structure of a random access data file.  Another
is to simulate an array comprised of varied types of data.  Obviously, no
language can support a mix of different data types within a single array.
That is, an array cannot be created where some of the elements are, say,
integer while others are double precision.  But a TYPE variable lets you do
something very close to that, and you can even create arrays of TYPE
variables.
     In the listing that follows a TYPE is defined using a mix of integer,
single precision, double precision, and fixed-length string components.
Also shown below is how a TYPE variable is dimensioned, and how each of its
components are assigned and referenced.

TYPE MyType
  I AS INTEGER
  S AS SINGLE
  D AS DOUBLE
  F AS STRING * 20
END TYPE

DIM MyData as MyType
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MyData.I = 12       'assign the integer portion
MyData.S = 100.09   'and then the single part
MyData.D = 43.2E56  'and then the double
MyData.F = "Test"   'and finally the string

PRINT MyData.F      'now print the string

Once the TYPE structure has been established, the DIM statement must be
used to create an actual variable using that arrangement.  Although DIM is
usually associated with the definition of arrays, it is also used to
identify a variable name with a particular type of data.  In this case, DIM
tells BASIC to set aside an area of memory to hold that many bytes.  You
may also use DIM with conventional variable types.  For example, DIM
LastName AS STRING or DIM PayPeriod AS DOUBLE lets you omit the dollar sign
and pound sign when you reference them later in the program.  In my
opinion, however, that style leads to programs that are difficult to
maintain, since many pages later in the source listing you may not remember
what type of data is actually being referred to.
     As you can see, a period is needed to indicate which portion of the
TYPE variable is being referenced.  The base name is that given when you
dimensioned the variable, but the portion being referenced is identified
using the name within the original TYPE definition.  You cannot print a
TYPE variable directly, but must instead print each component separately.
Likewise, assignments to a TYPE variable must also be made through its
individual components, with two exceptions.  You may assign an entire TYPE
variable from another identical TYPE directly, or from a dissimilar TYPE
variable using LSET.
     For example, if we had used DIM MyData AS MyType and then DIM HisData
AS MyType, the entire contents of HisData could be assigned to MyData using
the statement MyData = HisData.  Had HisData been dimensioned using a
different TYPE definition, then LSET would be required.  That is, LSET
MyData = HisData will copy as many characters from HisData as will fit into
MyData, and then pad the remainder, if any, with blanks.
     It is important to understand that this behavior can cause strange
results indeed.  Since CHR$(32) blanks are used to pad what remains in the
TYPE variable being assigned, numeric components may receive some unusual
values.  Therefore, you should assign differing TYPE variables only when
those overlapping portions being assigned are structured identically.

Arrays Within Types

With the introduction of BASIC PDS, programmers may also establish static
arrays within a single TYPE definition.  An array is dimensioned within a
TYPE as shown in the listing that follows.  As with a conventional DIM
statement for an array, the number of elements are indicated and a non-zero
lower bound may optionally be specified.  Please understand, though, that
you cannot use a variable for the number of elements in the array.  That
is, using PayHistory(1 TO NumDates) would be illegal.

TYPE ArrayType
  AmountDue AS SINGLE
  PayHistory(1 TO 52) AS SINGLE
  LastName AS STRING * 15
END TYPE

DIM TypeArray AS ArrayType

There are several advantages to using an array within a TYPE variable.  One
is that you can reference a portion of the TYPE by using a variable to
specify the element number.  For example, TypeArray.PayHistory(PayPeriod) =
344.95 will assign the value 344.95 to element number PayPeriod.  Without
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the ability to use an array, each of the 52 components would need to be
identified by name.  Further, arrays allows you to define a large number of
TYPE elements with a single program statement.  This can help to improve a
program's readability.

STATIC VS. DYNAMIC DATA
=======================

Preceding sections have touched only briefly on the concept of static and
dynamic memory storage.  Let's now explore this subject in depth, and learn
which methods are most appropriate in which situations.
     By definition, static data is that which never changes in size, and
never moves around in memory.  In compiled BASIC this definition is further
extended to mean all data that is stored in the 64K near memory area known
as DGROUP.  This includes all numeric variables, fixed-length strings, and
TYPE variables.  Technically speaking, the string descriptors that
accompany each conventional (not fixed-length) string are also considered
to be static, even though the string data itself is not.  The string
descriptors that comprise a dynamic string array, however, are dynamic
data, because they move around in memory (as a group) and may be resized
and erased.
     Numeric arrays that are dimensioned with constant (not variable)
subscripts are also static, unless the '$DYNAMIC metacommand has been used
in a preceding program statement.  That is, DIM Array#(0 TO 100) will
create a static array, while DIM Array#(0 TO MaxElements) creates a dynamic
array.  Likewise, arrays of fixed-length strings and TYPE variables will be
static, as long as numbers are used to specify the size.
     There are advantages and disadvantages to each storage method.  Access
to static data is always faster than access to dynamic data, because the
compiler knows the address where the data resides at the time it creates
your program.  It can therefore create assembly language instructions that
go directly to that address.  In contrast, dynamic data always requires a
pointer to hold the current address of the data.  An extra step is
therefore needed to first get the data address from that pointer, before
access to the actual data is possible.  Static data is also in the near
data segment, thus avoiding the need for additional code that switches
segments.
     The overwhelming disadvantage of static data, though, is that it may
never be erased.  Once a static variable or array has been used in a
program, the memory it occupies can never be released for other uses.
Again, it is impossible to state that static arrays are always better than
dynamic arrays or vice versa.  Which you use must be dictated by your
program's memory requirements, when compared to its execution speed.

DYNAMIC ARRAYS

You have already seen how dynamic strings operate, by using a four-byte
pointer table called a string descriptor.  Similarly, a dynamic array also
needs a table to show where the array data is located, how many elements
there are, the length of each element, and so forth.  This table is called
an array descriptor, and it is structured as shown in Table 2-2.
     There is little reason to use the information in an array descriptor
in a BASIC program, and indeed, BASIC provides no direct way to access it
anyway.  But when writing routines in assembly language for use with BASIC,
this knowledge can be quite helpful.  As with BASIC PDS far string
descriptors, none of this information is documented, and relying on it is
most certainly not endorsed by Microsoft.  Perhaps that's what makes it so
much fun to discuss!
     Technically speaking, only dynamic arrays require an array descriptor,
since static arrays do not move or change size.  But BASIC creates an array
descriptor for every array, so only one method of code generation is
necessary.  For example, when you pass an entire array to a subprogram
using empty parentheses, it is the address of the array descriptor that is
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actually sent.  The subprogram can then access the data through that
descriptor, regardless of whether the array is static or dynamic.

Offset  Size        Description
------  ----  ----------------------------------
  00     02   Address where array data begins

  00     02   Segment where that address resides

  04     02   Far heap descriptor, pointer

  06     02   Far heap descriptor, block size

  08     01   Number of dimensions in the array

  09     01   Array type and storage method:
                Bit 0 set = far array
                Bit 1 set = huge (/ah) array
                Bit 6 set = static array
                Bit 7 set = string array

  0A     02   Adjusted Offset

  0C     02   Length in bytes of each element

  0E     02   Number of elements in the last
              dimension (UBOUND - LBOUND + 1)

  10     02   First element number in that
              dimension (LBOUND)

  12     02   Number of elements in the second
              from last dimension

  14     02   First element number in that
              dimension

    .    02   Repeat number of elements and
              first element number as necessary,
    .    02   through the first dimension

Table 2-2: Every array in a BASIC program has an associated array
descriptor such as the one shown here.  This descriptor contains important
information about the array.

The first four bytes together hold the segmented address where the array
data proper begins in memory.  Following the standard convention, the
address is stored in the lower word, with the segment immediately
following.
     The next two words comprise the Far Heap Descriptor, which holds a
pointer to the next dynamic array descriptor and the current size of the
array.  For static arrays both of these entries are zero.  When multiple
dynamic arrays are used in a program, the array descriptors are created in
static DGROUP memory in the order BC encounters them.  The Far Heap Pointer
in the first array therefore points to the next array descriptor in memory.
The last descriptor in the chain can be identified because it points to a
word that holds a value of zero.
     The block size portion of the Far Heap Descriptor holds the size of
the array, using a byte count for string arrays and a "paragraph" count for
numeric, fixed-length, and TYPE arrays.  For string arrays--whether near or
far--the byte count is based on the four bytes that each descriptor
occupies.  With numeric arrays the size is instead the number of 16-byte
paragraphs that are needed to store the array.
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     The next entry is a single byte that holds the number of dimensions in
the array.  That is, DIM Array(1 TO 10) has one dimension and DIM Array(1
TO 10, 2 TO 20) has two.
     The next item is also a byte, and it is called the Feature byte
because the various bits it holds tell what type of array it is.  As shown
in the table, separate bits are used to indicate if the array is stored in
far memory, whether or not /ah was used to specify huge arrays, if the
array is static, and if it is a string array.  Multiple bits are used for
each of these array properties, since they may be active in combination.
However, BASIC never sets the far and huge bits for string arrays, even
when the PDS /fs option is used and the strings are in fact in far memory.
     Of particular interest is the Adjusted Offset entry.  Even though the
segmented address where the array data begins is the first entry in the
descriptor, it is useful only when the first element number in the array is
zero.  This would be the case with DIM Array(0 TO N), or simply DIM
Array(N).  To achieve the fastest performance possible when retrieving or
assigning a given element, the Adjusted Offset is calculated when the array
is dimensioned to compensate for an LBOUND other than 0.
     For example, if an integer array is dimensioned starting at element 1,
the Adjusted Offset is set to point two bytes before the actual starting
address of the data.  This way, the compiler can take the specified element
number, multiply that times two (each element comprises two bytes), and
then add that to the Adjusted Offset to immediately point at the correct
element in memory.  Otherwise, additional code would be needed to subtract
the LBOUND value each time the array is accessed.  Since the array's LBOUND
is simply constant information, it would be wasteful to calculate that
repeatedly at run time.  Of course, the Adjusted Offset calculation is
correspondingly more complex when dealing with multi-dimensional arrays.
     The remaining entries identify the length of each element in bytes,
and the upper and lower bounds.  String arrays always have a 4 in the
length location, because that's the length of each string descriptor.  A
separate pair of words is needed for each array subscript, to identify the
LBOUND value and the number of elements.  The UBOUND is not actually stored
in the array descriptor, since it can be calculated very easily when
needed.  Notice that for multi-dimensional arrays, the last (right-most)
subscript is identified first, followed by the second from the last, and
continuing to the first one.
     One final note worth mentioning about dynamic array storage is the
location in memory of the first array element.  For numeric arrays, the
starting address is always zero, within the specified segment.  (A new
segment can start at any 16-byte address boundary, so at most 15 bytes may
be wasted.)  However, BASIC sometimes positions fixed-length string and
TYPE arrays farther into the segment.  BASIC will not allow an array
element to span a segment boundary under any circumstances.  This could
never happen with numeric data, because each element has a length that is a
power of 2.  That is, 16,384 long integer elements will exactly fit in a
single 64K segment.  But when a fixed-length string or TYPE array is
created, nearly any element length may be specified.
     For example, if you use REDIM Array(1 TO 10) AS STRING * 13000,
130,000 bytes are needed and element 6 would straddle a segment.  To
prevent that from happening, BASIC's dynamic DIM routine fudges the first
element to instead be placed at address 536.  Thus, the last byte in
element 5 will be at the end of the 64K segment, and the first byte in
element 6 will fall exactly at the start of the second 64K code segment.
The only limitation is that arrays with odd lengths like this can never
exceed 128K in total size, because the inevitable split would occur at the
start of the third segment.  Arrays whose element lengths are a power of 2,
such as 32 or 4096 bytes, do not have this problem.  (Bear in mind that 1K
is actually 1,024 bytes, so 128K really equals 131,072 bytes).  This is
shown graphically below in Figure 2-5.

Element 10 is the last that evenly fits -+
Segment boundary ----+                   ¦
                     _                   _
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+------------------------------------------- - -
¦+---+---+---+---+--_¦_--+---+---+---+---¦¦
+------------------------------------------- - -
__ _   _             _
¦¦ ¦   ¦             +------_ Address 0
¦¦ ¦   +--------------------_ Element 2
¦¦ +------------------------_ Element 1
¦+--------------------------_ Address 536
+---------------------------_ Address 0

Figure 2-5

FAR DATA VERSUS NEAR DATA
=========================

You have already used the terms "near" and "far" to describe BASIC's data,
and now let's see exactly what they mean.  The 8086 family of
microprocessors that are used in IBM PC and compatible computers use what
is called a *segmented architecture*.  This means that while an 8086 can
access a megabyte of memory, it can do so only in 64K blocks at a time.
Before you think this is a terrible way to design a CPU, consider the
alternative.
     For example, the 68000 family used in the Apple Macintosh and Atari
computers use linear addressing, whereby any data anywhere may be accessed
without restriction.  But the problem is that with millions of possible
addresses, many bytes are needed to specify those addresses.  Because the
data segment is implied when dealing with an 80x86, a single integer can
refer to any address quickly and with very little code.  Therefore,
assembler instructions for the 68000 that reference memory tend to be long,
making those programs larger.
     Since being able to manipulate only one 64K segment is restrictive,
the 8086's designers provided four different segment registers.  One of
these, the DS (Data Segment) register, is set to specify a single segment,
which is then used by the program as much as possible.  This data segment
is also named DGROUP, and it holds all of the static data in a BASIC
program.  Again, data in DGROUP can be accessed much faster and with less
code than can data in any other segment.  In order to assign an element in
a far array, for example, BASIC requires two additional steps which
generates additional code.  The first step is to retrieve the array's
segment from the array descriptor, and the second is to assign the ES
(Extra Segment) register to access the data.
     Far data in a BASIC program therefore refers to any data that is
outside of the 64K DGROUP segment.  Technically, this could encompass the
entire 1 Megabyte that DOS recognizes, however the memory beyond 640K is
reserved for video adapters, the BIOS, expanded memory cards, and the like.
BASIC uses far memory (outside the 64K data segment but within the first
640K) for numeric, fixed-length string, and TYPE arrays, although BASIC PDS
can optionally store conventional strings there when the /fs (Far String)
option is used.  Communications buffers are also kept in far memory, and
this is where incoming characters are placed before your program actually
reads them.
     Near memory is therefore very crowded, with many varied types of data
competing for space.  Earlier I stated that all variables, static arrays,
and quoted strings are stored in near memory (DGROUP).  But other BASIC
data is also stored there as well.  This includes DATA items, string
descriptors, array descriptors, the stack, file buffers, and the internal
working variables used by BASIC's run-time library routines.
     When you open a disk file for input, an area in near memory is used as
a buffer to improve the speed of subsequent reads.  And like subprograms
and function that you write, BASIC's internal routines also need their own
variables to operate.  For example, a translation table is maintained in
DGROUP to relate the file numbers you use when opening a file to the file
handles that DOS issues.
     One final note on the items that compete for DGROUP is that in many
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cases data is stored *twice*.  When you use READ to assign a string from a
DATA item, the data itself remains at the data statement, and is also
duplicated in the string being assigned.  There is simply no way to remove
the original data.  Similarly, when you assign a string from a constant as
in Message$ = "Press any key", the original quoted string is always
present, and Message$ receives a second copy.  When string space is very
tight, the only purely BASIC solution is to instead store the data in a
disk file.
     Speaking of DATA, bear in mind that reading numeric variables is
relatively slow and often even more wasteful.  Since all DATA items are
stored as strings, each time you use READ the VAL routine is called
internally by BASIC.  VAL is not a particularly fast operation, because of
the complexity of what it must do.  Worse, by storing numbers as strings,
even more memory can be wasted than you might think.  For example, storing
an integer value such as -20556 requires six bytes as a string, even though
it will be placed ultimately into a two-byte integer.

ASSESSING MEMORY WITH FRE()

Since memory is very important to the operation of most programs, it is
often useful to know how much of it is available at any given moment.
BASIC provides the FRE function to do this, however there are a number of
variations in its use.  Let's take an inside look at the various forms of
FRE, and see how they can be put to good use.
     There are no less than six different arguments that can be used with
FRE.  The first to consider is FRE(0), which reports the amount of free
string space but without first compacting the string pool.  Therefore, the
value returned by FRE(0) may be much lower than what actually could be
available.  FRE when used with a string argument, for example FRE("") or
FRE(Temp$), also returns the amount of DGROUP memory that is available,
however it first calls the heap compaction routines.  This guarantees that
the size reported accurately reflects what is really available.
     Although FRE(0) may seem to be of little value, it is in fact much
faster than FRE when a string argument is given.  Therefore, you could
periodically examine FRE(0), and if it becomes unacceptably low use FRE("")
to determine the actual amount of memory that is available.  With BASIC PDS
far strings, FRE(0) is illegal, FRE("") reports the number of bytes
available for temporary strings, and FRE(Any$) reports the free size of the
segment in which Any$ resides.  Temporary strings were discussed earlier,
when we saw how they are used when passing fixed-length string arguments to
procedures.
     FRE(-1) was introduced beginning with QuickBASIC 1, and it reports the
total amount of memory that is currently available for use with far arrays.
Thus, you could use it in a program before dimensioning a large numeric
array, to avoid receiving an "Out of memory" error which would halt your
program.  Although there is a distinction between near and far memory in
any PC program, BASIC does an admirable job of making available as much
memory as you need for various uses.  For example, it is possible to have
plenty of near memory available, but not enough for all of the dynamic
arrays that are needed.  In this case, BASIC will reduce the amount of
memory available in DGROUP, and instead relinquish it for far arrays.
     FRE(-1) is also useful if you use SHELL within your programs, because
at least 20K or so of memory is needed to load the necessary additional
copy of COMMAND.COM.  It is interesting to observe that not having enough
memory to execute a SHELL results in an "Illegal function call" error,
rather than the expected "Out of memory".
     FRE(-2) was added to QuickBASIC beginning with version 4.0, and it
reports the amount of available stack space.  The stack is a special area
within DGROUP that is used primarily for passing the addresses of variables
and other data to subroutines.  The stack is also used to store variables
when the STATIC option is omitted from a subprogram or function definition.
I will discuss static and non-static subroutines later in Chapter 3, but
for now suffice it to say that enough stack memory is necessary when many
variables are present and STATIC is omitted.
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     FRE(-3) was added with BASIC PDS, mainly for use within the QBX
editing environment.  This newest variant reports the amount of expanded
(EMS) memory that is available, although EMS cannot be accessed by your
programs directly using BASIC statements.  However, QBX uses that memory to
store subroutines and optionally numeric, fixed-length, and TYPE arrays.
The ISAM file handler that comes with BASIC PDS can also utilize expanded
memory, as can the PDS overlay manager.

SETMEM AND STACK

Besides the various forms of the FRE function, SETMEM can be used to assess
the size of the far heap, as well as modify that size if necessary.  The
STACK function is available only with BASIC PDS, and it reports the largest
possible size the stack can be set to.  Let's see how these functions can
be useful to you.
     Although SETMEM is technically a function (because it returns
information), it is also used to re-size the far heap.  When given an
argument of zero, SETMEM returns the current size of the far heap.
However, this value is not the amount of memory that is free.  Rather, it
is the maximum heap size regardless of what currently resides there.  The
following short program shows this in context.

PRINT SETMEM(0)         'display the heap size
REDIM Array!(10000)     'allocate 40,000 bytes
PRINT SETMEM(0)         'the total size remains

Displayed result (the numbers will vary):

276256
276256

When a program starts, the far heap is set as large as possible by BASIC
and DOS, which is sensible in most cases.  But there are some situations in
which you might need to reduce that size, most notably when calling C
routines that need to allocate their own memory.  Also, BASIC moves arrays
around in the far heap as arrays are dimensioned and then erased.  This is
much like the near heap string compaction that is performed periodically.
If the far heap were not rearranged periodically, it is likely that many
small portions would be available, but not a single block sufficient for a
large array.
     In some cases a program may need to claim memory that is guaranteed
not to move.  Therefore, you could ask SETMEM to relinquish a portion of
the far heap, and then call a DOS interrupt to claim that memory for your
own use.  (DOS provides services to allocate and release memory, which C
and assembly language programs use to dimension arrays manually.)  Unlike
BASIC, DOS does not use sophisticated heap management techniques, therefore
the memory it manages does not move.  I will discuss using SETMEM this way
later on in Chapter 12.
     Finally, the STACK function will report the largest amount of memory
that can be allocated for use as a stack.  Like SETMEM, it doesn't reflect
how much of that memory is actually in use.  Rather, it simply reports how
large the stack could be if you wanted or needed to increase it.  Because
the stack resides in DGROUP, its maximum possible size is dependent on how
many variables and other data items are present.
     When run in the QBX environment, the following program fragment shows
how creating a dynamic string array reduces the amount of memory that could
be used for the stack.  Since the string descriptors are kept in DGROUP,
they impinge on the potentially available stack space.

PRINT STACK
REDIM Array$(1000)
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PRINT STACK
ERASE Array$
PRINT STACK

Displayed result:

47904
43808
47904

Since BASIC PDS does not support FRE(0), the STACK function can be used to
determine how much near memory is available.  The only real difference
between FRE(0) and STACK is that STACK includes the current stack size,
where FRE(0) does not.  The STACK function is mentioned here because it
relates to assessing how much memory is available for data.  Sizing the
stack will be covered in depth in Chapter 3, when we discuss subprograms,
functions, and recursion.

VARPTR, VARSEG, AND SADD

One of the least understood aspects of BASIC programming is undoubtedly the
use of VARPTR and its related functions, VARSEG and SADD.  Though you
probably already know that VARPTR returns the address of a variable, you
might be wondering how that information could be useful.  After all, the
whole point of a high-level language such as BASIC is to shield the
programmer from variable addresses, pointers, and other messy low-level
details.  And by and large, that is correct.  Although VARPTR is not a
particularly common function, it can be invaluable in some programming
situations.
     VARPTR is a built-in BASIC function which returns the address of any
variable.  VARSEG is similar, however it reports the memory segment in
which that address is located.  SADD is meant for use with conventional
(not fixed-length) strings only, and it tells the address where the first
character in a string begins.  In BASIC PDS, SSEG is used instead of VARSEG
for conventional strings, to identify the segment in which the string data
is kept.  Together, these functions identify the location of any variable
in memory.
     The primary use for VARPTR in purely BASIC programming is in
conjunction with BSAVE and BLOAD, as well as PEEK and POKE.  For example,
to save an entire array quickly to a disk file with BSAVE, you must specify
the address where the array is located.  In most cases VARSEG is also
needed, to identify the array's segment as well.  When used on all simple
variables, static arrays, and all string arrays, VARSEG returns the normal
DGROUP segment.  When used on a dynamic numeric array, it instead returns
the segment at the which the specified element resides.
     The short example below creates and fills an integer array, and then
uses VARSEG and VARPTR to save it very quickly to disk.

REDIM Array%(1 TO 1000)

FOR X% = 1 TO 1000
  Array%(X%) = X%
NEXT

DEF SEG = VARSEG(Array%(1))
BSAVE "ARRAY.DAT", VARPTR(Array%(1)), 2000

Here, DEF SEG indicates in which segment the data that BSAVE will be saving
is located.  VARPTR is then used to specify the address within that
segment.  The 2000 tells BSAVE how many bytes are to be written to disk,
which is determined by multiplying the number of array elements times the
size of each element.  We will come back to using VARPTR repeatedly in
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Chapter 12 when we discuss accessing DOS and BIOS services with CALL
Interrupt.  However, it is important to point out here exactly how VARPTR
and VARSEG work with each type of variable.
     When VARPTR is used with a numeric variable, as in Address =
VARPTR(Value!), the address of the first byte in memory that the variable
occupies is reported.  Value! is a single-precision variable which spans
four bytes of memory, and it is the lowest of the four addresses that is
returned.  Likewise, VARPTR when used with static fixed-length string and
TYPE variables reports the lowest address where the data begins.  But when
you ask for the VARPTR of a string variable, what is returned is the
address of the string's descriptor.
     To obtain the address of the actual data in a string requires the SADD
(String Address) function.  Internally, BASIC simply looks at the address
portion of the string descriptor to retrieve the address.  Likewise, the
LEN function also gets its information directly from the descriptor.  When
used with any string, VARSEG always reports the normal DGROUP data segment,
because that is where all strings and their descriptors are kept.
     Beginning with BASIC PDS and its support for far strings, the SSEG
function was added to return the segment where the string's data is stored.
But even when far strings are being used, VARSEG always returns the segment
for the descriptor, which is in DGROUP.
     SADD is not legal with a fixed-length string, and you must instead use
VARPTR.  Perhaps in a future version BASIC will allow either to be used
interchangeably.  SADD is likewise illegal for use with the fixed-length
string portion of a TYPE variable or array.  Again, VARPTR will return the
address of any component in a TYPE, within the segment reported by VARSEG.
     Another important use for VARPTR is to assist passing arrays to
assembly language routines.  When a single array element is specified using
early versions of Microsoft compiled BASIC, the starting address of the
element is sent as expected.  Beginning with QuickBASIC 4.0 and its support
for far data residing in multiple segments, a more complicated arrangement
was devised.  Here's how that works.
     When an element in a dynamic array is passed as a parameter, BASIC
makes a copy of the element into a temporary variable in near memory, and
then sends the address of the copy.  When the routine returns, the data in
the temporary variable is copied back to the original array element, in
case the called routine changed the data.  In many cases this behavior is
quite sensible, since the called routine can assume that the variable is in
near memory and thus operate that much faster.
     Further, BASIC subroutines *require* a non-array parameter (not passed
with empty parentheses) to be in DGROUP.  That is, any time a single
element in an integer array is passed to a routine, that routine would be
designed to expect a single integer variable.  This is shown in the brief
example below, where a single element in an array is passed, as opposed to
the entire array.

REDIM Array%(1 TO 100)
Array%(25) = -14
CALL MyProc(Array%(25))      'pass one element
.
.
.
SUB MyProc(IntVar%) STATIC   'this sub expects a
  PRINT IntVar%              '  single variable
END SUB

Displayed result:

-14

Unfortunately, this copying not only generates a lot of extra code to
implement, it also takes memory from DGROUP to hold the copy, and that
memory is taken permanently.  Worse still, *each* occurrence of an array
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element passed in a CALL statement reserves however many bytes are needed
to store the element.  For a large TYPE structure this can be a lot of
memory indeed!
     So you won't think that I'm being an alarmist about this issue, here
are some facts based on programs compiled using BASIC 7.1 PDS.  These
examples document the amount of additional code that is generated to pass a
near string array element as an argument to a subprogram or function.
     Passing a string array element requires 56 bytes when a copy is made,
compared to only 17 when it is not.  The same operations in QuickBASIC 4.5
create 47 and 18 bytes respectively, so QB 4.5 is actually better when
making the copy, but a tad worse when not.  The code used in these examples
is shown below, and Array$ is a dynamic near string array.  (I will explain
the purpose of BYVAL in just a moment.)  Again, the difference in byte
counts reflects the additional code that BC creates to assign and then
delete the temporary copies.

CALL Routine(Array$(2))
CALL Routine(BYVAL VARPTR(Array$(2)))

Worse still, with either compiler 73 bytes of code are created to pass an
element in a TYPE array the usual way, compared to 18 when the copying is
avoided.  And this byte count does not include the DGROUP memory required
to hold the copy.  Is that reduction in code size worth working for?  You
bet it is!  And best of all, hardly any extra effort is needed to avoid
having BASIC make these copies--just the appropriate knowledge.
     The key, as you can see, is VARPTR.  If you are calling an assembly
language routine that expects a string and you want to pass an element from
a string array, you must use BYVAL along with VARPTR.  CALL Routine(BYVAL
VARPTR(Array$(Element))) is functionally identical to CALL
Routine(Array$(Element)), although they sure do look different!  In either
case, the integer address of a string is passed to the routine.
     Unlike the usual way that BASIC passes a variable by sending its
address, BYVAL instead sends the actual data.  In this case, the value of
an address is what we wanted to begin with anyway.  (Without the BYVAL,
BASIC would make a temporary copy of the integer value that VARPTR returns,
and send the address of that copy.)  Best of all, asking for the address
directly defeats the built-in copying mechanism.  Although creating a copy
of a far numeric array element is sensible as we saw earlier, it is not
clear to me why BC does this with string array data that is in DGROUP
already.
     Although you can't normally send an integer--which is what VARPTR
actually returns--to a BASIC subprogram that expects a string, you can if
that subprogram is in a different file and the files are compiled
separately.  This will also work if the BASIC code has been pre-compiled
and placed in a Quick Library.
     But there is another, equally important reason to use VARPTR with
array elements.  If you are calling an assembler routine that will sort an
array, it must have access to the array element's address, and not the
address of a copy.  All of the elements in any array are contiguous, and a
sort routine would need to know where in memory the first element is
located.  From that it can then access all of the successive elements.
With VARPTR we are telling BASIC that what is needed is the actual address
of the specified element.
     Bear in mind that this relates primarily to passing arrays to assembly
language (and possibly C) routines only.  After all, if you are designing a
sort routine using purely BASIC commands, you would pass and receive the
array using empty parentheses.  Indeed, this is yet another important
advantage that BASIC holds over C and Pascal, since neither of those
languages have array descriptors.  Writing a sort routine in C requires
that *you* do all of the work to locate and compare each element in turn,
based on some base starting address.
     There is one final issue that we must discuss, and that is passing far
array data to external assembly language routines.  I already explained
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that by making a copy of a far array element, the called routine does not
have to be written to deal with far (two-word segmented) addresses.  But in
some cases, writing a routine that way will be more efficient.  Further,
like C, assembly language routines thrive on manipulating pointers to data.
Although an assembler routine could be written to read the segment and
address from the array descriptor, this is not a common method.  One reason
is that if Microsoft changes the format of the descriptor, the routine will
no longer work.  Another is that it is frankly easier to have the caller
simply pass the full segmented address of the first element.
     This brings us to the SEG directive, which is a combination of BYVAL
and VARPTR and also BYVAL and VARSEG. As with BYVAL VARPTR, using SEG
before a variable or array element in a call tells BASIC that the value of
the array's full address is needed.  A typical example would be CALL
Routine(SEG Array#(1)), and in this case, BASIC sends not one address word
but two to the routine.
     You could also pass the full address of an array element by value
using VARSEG and VARPTR, and this next example produces the identical
result: CALL Routine(BYVAL VARSEG(Array#(1)), BYVAL VARPTR(Array#(1))).
Using SEG results in somewhat less code, though, because BASIC will obtain
the segment and address in a single operation.  In fact, this is one area
where the compiler does a poor job of optimizing, because using VARSEG and
VARPTR in a single program statement generates a similar sequence of code
twice.
     There is one unfortunate complication here, which arises when SEG is
used with a fixed-length string array.  What SEG *should* do in that case
is pass the segmented address of the specified element.  But it doesn't.
Instead, BASIC creates a temporary copy of the specified element in a
conventional dynamic string, and then passes the segmented address of the
copy's descriptor.  Of course, this is useless in most programming
situations.
     There are two possible solutions to this problem.  The first is to use
the slightly less efficient BYVAL VARSEG and BYVAL VARPTR combination as
shown above.  The second solution is to create an equivalent fixed-length
string array by using a dummy TYPE that is comprised solely of a single
string component.  Since TYPE variables are passed correctly when SEG is
used, using a TYPE eliminates the problem.  Both of these methods are shown
in the listing that follows.

'----- this creates more code and looks clumsy

REDIM Array(1 TO 1000) AS STRING * 50
CALL Routine(BYVAL VARSEG(Array(1)), BYVAL VARPTR(Array(1)))

'----- this creates less code and reads clearly

TYPE FLen
  S AS STRING * 100
END TYPE
REDIM Array(1 TO 1000) AS FLen
CALL Routine(SEG Array(1))

Although SEG looks like a single parameter is being passed, in fact two
integers are sent to the called routine--a segment and an address.  This is
why a single SEG can replace both a VARSEG and a VARPTR in one call.
Chapter 13 will return to BYVAL, VARPTR, and SEG, though the purpose there
will be to learn how to write routines that accept such parameters.

CONSTANTS
=========

The final data type to examine is constants.  By definition, a constant is
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simply any value that does not change, as opposed to a variable that can.
For example, in the statement I% = 10, the value 10 is a constant.
Similarly, the quoted string "Hello" is a constant when you write PRINT
"Hello".
     There are two types of constants that can appear in a BASIC program.
One is simple numbers and quoted strings as described above, and the other
is the named constant which is defined using a CONST statement.  For
example, you can write CONST MaxRows = 25 as well as CONST Message$ =
"Insert disk in drive", and so forth.  It is even possible to define one
CONST value based on a previous one, as in CONST NumRows = 25, ScrnSize =
NumRows * 80.  Then, you could use these meaningful names later in the
program, instead of the values they represent.
     It is important to understand that using named constants is identical
to using the numbers themselves.  The value of this will become apparent
when you see the relative advantages and disadvantages of using numbers as
opposed to variables.  Let's begin this discussion of numbers with how they
are stored by the compiler.  Or rather, how they are sometimes stored.
     When a CONST statement is used in a BASIC program, BASIC does
absolutely nothing with the value, other than to remember that you defined
it.  Therefore, you could have a hundred CONST statements which are never
used, and the final .EXE program will be no larger than if none had been
defined.  If a CONST value is used as an argument to, say, LOCATE or
perhaps as a parameter to a subroutine, BASIC simply substitutes the value
you originally gave it.  When a variable is assigned as in Value% = 100,
BASIC sets aside memory to hold the variable.  With a constant definition
such as CONST Value% = 100, no memory is set aside and BASIC merely
remembers that any use of Value% is to be replaced by the number 100.  But
how are these numbers represented internally.
     When you create an integer assignment such as Count% = 5, the BASIC
compiler generates code to move the value 5 into the integer variable, as
you saw in Chapter 1.  Therefore, the actual value 5 is never stored as
data anywhere.  Rather, it is placed into the code as part of an assembly
language instruction.
     Now, if you instead assign a single or double precision variable from
a number--and again it doesn't matter whether that number is a literal or a
CONST--the appropriate floating point representation of that number is
placed in DGROUP at compile time, and then used as the source for a normal
floating point assignment.  That is, it is assigned as if it were a
variable.
     There is no reasonable way to imbed a floating point value into an
assembly language instruction, because the CPU cannot deal with such values
directly.   Therefore, assigning X% = 3 treats the number 3 as an integer
value, while assigning Y# = 3 treats it as a double precision value.
Again, it doesn't matter whether the 3 is a literal number as shown here,
or a CONST that has been defined.  In fact, if you use CONST Three! = 3, a
subsequent assignment such as Value% = Three! treats Three! as an integer
resulting in less resultant code.  As you can see, the compiler is
extremely smart in how it handles these constants, and it understands the
context in which they are being used.
     In general, BASIC uses the minimum precision possible when
representing a number.  However, you can coerce a number to a different
precision with an explicit type identifier.  For example, if you are
calling a routine in a separate module that expects a double precision
value, you could add a pound sign (#) to the number like this: CALL
Something(45#).  Without the double precision identifier, BASIC would treat
the 45 as an integer, which is of course incorrect.
     Likewise, BASIC can be forced to evaluate a numeric expression that
might otherwise overflow by placing a type identifier after it.  One
typical situation is when constructing a value from two byte portions.  The
usual way to do this would be Value& = LoByte% + 256 * HiByte%.  Although
the result of this expression can clearly fit into the long integer no
matter what the values of LoByte% and HiByte% might be, an overflow error
can still occur.  (But as we saw earlier, this will happen only in the QB
environment, or if you have compiled to disk with the /d debugging option.)
     The problem arises when HiByte% is greater than 127, because the
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result of multiplying HiByte% times 256 exceeds the capacity of a regular
integer.  Normally, BASIC is to be commended for the way it minimizes
overhead by reducing calculations to the smallest possible data type.  But
in this case it creates a problem, because the result cannot be expressed
as an integer.
     The solution, then, is to add an ampersand after the 256, as in Value&
= LoByte% + 256& * HiByte%.  By establishing the value 256 as a long
integer, you are telling BASIC to perform the calculation to the full
precision of a long integer.  And since the result of the multiplication is
treated as a long integer, so is the addition of that result to LoByte%.  A
single precision exclamation point could also be used, but that would
require a floating point multiplication.  Since a long integer multiply is
much faster and needs less code, this is the preferred solution.
     One final item worth noting is the way the QB and QBX editing
environments sometimes modify constants.  For example, if you attempt to
enter a statement such as Value! = 1.0, you will see the constant changed
to read 1! instead.  This happens when you press Enter to terminate the
line.  Similarly, if you write D# = 1234567.8901234, BASIC will add a
trailing pound sign to the number.  This behavior is your clue that these
numbers are being stored internally as single and double precision values
respectively.

PASSING NUMERIC CONSTANTS TO A PROCEDURE

Normally, any constant that could be an integer is passed to a subprogram
or function as an integer.  That is, calling an external procedure as in
CALL External(100) passes the 100 as an integer value.  If the called
routine has been designed to expect a variable of a different type, you
must add the appropriate type identifier.  If a long integer is expected,
for example, you must use CALL External(100&).  If, on the other hand, the
called routine is in the same module (that is, the same physical source
file), QB will create a suitable DECLARE statement automatically.  This
lets QB and BC know what is expected so they can pass the value in the
correct format.  Thus, BASIC is doing you a favor by interpreting the
constant's type in a manner that is relevant to your program.
     This "favor" has a nasty quirk, though.  If you are developing a
multi-module program in the QuickBASIC editor, the automatic type
conversion is done for you automatically, even when the call is to a
different module.  Your program uses, say, CALL Routine(25), and QB or QBX
send the value in the correct format automatically.  But when the modules
are compiled and linked, the same program that had worked correctly in the
environment will now fail.
     Since each module in a multi-module program is compiled separately, BC
has no way to know what the called routine actually expects.  In fact, this
is one of the primary purposes of the DECLARE statement--to advise BASIC as
to how arguments are to be passed.  For example, DECLARE SUB
Marine(Trident!) tells BASIC that any constant passed to Marine is to be
sent as a single precision value.  You could optionally use the AS SINGLE
directive, thus: DECLARE SUB Marine(Trident AS SINGLE).  In general, I
prefer the more compact form since it conveys the necessary information
with less clutter.
     Another important use for adding a type identifier to a numeric
constant is to improve a program's accuracy.  Running the short program
below will illustrate this in context.  Although neither answer is entirely
accurate, the calculation that uses the double precision constant is much
closer.  In this case, a decimal number that does not have an explicit type
identifier is assumed to have only single precision accuracy.  That is, the
value is stored in only four bytes instead of eight.

FOR X% = 1 TO 10000
  Y# = Y# + 1.1
  Z# = Z# + 1.1#
NEXT
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PRINT Y#, Z#

Displayed result:
11000.00023841858     11000.00000000204

You have already learned that BASIC often makes a temporary copy of a
variable when calling a subprogram or function.  But you should know that
this also happens whenever a constant is passed as an argument.  For
example, in a function call such as Result = Calculate!(Value!, 100), where
Calculate! has been declared as a function, the integer value 100 is copied
to a temporary location.  Since BASIC procedures require the address of a
parameter, a temporary variable must be created and the address of that
variable passed.  The important point to remember is that for each
occurrence of a constant in a CALL or function invocation, a new area of
DGROUP is taken.
     You might think that BASIC should simply store a 100 somewhere in
DGROUP once, and then pass the address of that value.  Indeed, this would
save an awful lot of memory when many constants are being used.  The reason
this isn't done, however, is that subroutines can change incoming
parameters.  Therefore, if a single integer 100 was stored and its address
passed to a routine that changed it, subsequent calls using 100 would
receive an incorrect value.
     The ideal solution to this problem is to create a variable with the
required value.  For example, if you are now passing the value 2 as a
literal many times in a program, instead assign a variable, perhaps named
Two%, early in your program.  That is, Two% = 2.  Then, each time you need
that value, instead pass the variable.  For the record, six bytes are
needed to assign an integer such as Two%, and four bytes are generated each
time that variable is passed in a call.
     Contrast that to the 10 bytes generated to create and store a
temporary copy and pass its address, not including the two bytes the copy
permanently takes from near memory.  Even if you use the value only twice,
the savings will be worthwhile (24 vs. 30 bytes).  Because a value of zero
is very common, it is also an ideal candidate for being replaced with a
variable.  Even better, you don't even have to assign it!  That is, CALL
SomeProc(Zero%) will send a zero, without requiring a previous Zero% = 0
assignment.

STRING CONSTANTS
================

Like numeric constants, string constants that are defined in a CONST
statement but never referenced will not be added to the final .EXE file.
Constants that are used--whether as literals or as CONST statements--are
always stored in DGROUP.  If your program has the statement PRINT "I like
BASIC", then the twelve characters in the string are placed into DGROUP.
But since the PRINT statement requires a string descriptor in order to
locate the string and determine its length, an additional four bytes are
allocated by BASIC just for that purpose.  Variables are always stored at
an even-numbered address, so odd-length strings also waste one extra byte.
     Because string constants have a ferocious appetite for near memory, BC
has been designed to be particularly intelligent in the way they are
handled.  Although there is no way to avoid the storage of a descriptor for
each constant, there is another, even better trick that can be employed.
For each string constant you reference in a program that is longer than
four characters, BC stores it only once.  Even if you have the statement
PRINT "Press any key to continue" twenty-five times in your program, BC
will store the characters just once, and each PRINT statement will refer to
the same string.
     In order to do this, the compiler must remember each string constant
it encounters as it processes your program, and save it in an internal
working array.  When many string constants are being used, this can cause
the compiler to run out of memory.  Remember, BC has an enormous amount of
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information it must deal with as it processes your BASIC source file, and
keeping track of string constants is but one part of the job.
     To solve this problem Microsoft has provided the /s (String) option,
which tells BC not to combine like data.  Although this may have the net
effect of making the final .EXE file larger and also taking more string
space, it may be the only solution with some large programs.  Contrary to
the BASIC documentation, however, using /s in reality often makes a program
*smaller*.  This issue will be described in detail in Chapter 5, where all
of the various BC command line options are discussed.

PASSING STRING CONSTANTS TO A PROCEDURE

As you have repeatedly seen, BASIC often generates additional code to
create copies of variables and constants.  It should come as no surprise,
therefore, to learn that this happens with string constants as well.  When
you print the same string more than once in a program, BASIC knows that its
own PRINT routine will never change the data.  But as with numeric
constants, if you send a string constant to a subprogram or function, there
is no such guarantee.
     For example, if you have a statement such as CALL PrintIt(Work$) in
your program, it is very possible--even likely--that the PrintIt routine
may change or reassign its incoming parameter.  Even if *you* know that
PrintIt will not change the string, BASIC has no way to know this.  To
avoid any possibility of that happening, BASIC generates code to create a
temporary copy of every string constant that is used as an argument.  And
this is done for every call.  If the statement CALL PrintMessage("Press a
key") appears in your program ten times, then code to copy that message is
generated ten times!
     Beginning with BASIC 7.1 PDS, you can now specify that variables are
to be sent by value to BASIC procedures.  This lets you avoid the creation
of temporary copies, and this subject will also be explored in more detail
in Chapter 3.
     With either QuickBASIC 4.5 or BASIC PDS, calling a routine with a
single quoted string as an argument generates 31 bytes of code.  Passing a
string variable instead requires only nine bytes.  Both of these byte
counts includes the five bytes to process the call itself.  The real
difference is therefore 4 bytes vs. 26--for a net ratio of 6.5 to 1.  (Part
of those 31 bytes is code that erases the temporary string.)  So as with
numeric constants that are used more than once, your programs will be
smaller if a variable is assigned once, and that variable is passed as an
argument.
     While we are on the topic of temporary variables, there is yet another
situation that causes BASIC to create them.  When the result of an
expression is passed as an argument, BASIC must evaluate that expression,
and store the result somewhere.  Again, since nearly all procedures require
the address of a parameter rather than its value, an address of that result
is needed.  And without storing the result, there can of course be no
address.
     When you use a statement such as CALL Home(Elli + Lou), BASIC
calculates the sum of Elli plus Lou, and stores that in a reserved place in
DGROUP which is not used for any other purpose.  That address is then sent
to the Home routine as if it were a single variable, and Home is none the
wiser.  Likewise, a string concatenation creates a temporary string, for
the same reason.  Although the requisite descriptor permanently steals four
bytes of DGROUP memory, the temporary string itself is erased by BASIC
automatically after the call.  Thus, the first example in the listing below
is similar in efficiency to the second.  The four-byte difference is due to
BASIC calling a special routine that deletes the temporary copy it created,
as opposed to the slightly more involved code that assigns Temp$ from the
null string ("") to erase it.

CALL DoIt(First$ + Last$)  'this makes 41 bytes
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Temp$ = First$ + Last$     'this makes 45 bytes
CALL DoIt(Temp$)
Temp$ = ""

UNUSUAL STRING CONSTANTS

One final topic worth mentioning is that QuickBASIC also lets you imbed
control and extended characters into a string constant.  Consider the
program shown below.  Here, several of the IBM extended characters are used
to define a box, but without requiring CHR$ to be used repeatedly.
Characters with ASCII values greater than 127 can be entered easily by
simply pressing and holding the Alt key, typing the desired ASCII value on
the PC's numeric key-pad, and then releasing the Alt key.  This will not
work using the number keys along the top row of the keyboard.

DIM Box$(1 TO 4)          'define a box

Box$(1) = "+------------------+"
Box$(2) = "¦                  ¦"
Box$(3) = "¦                  ¦"
Box$(4) = "+------------------+"

FOR X = 1 TO 4            'now display the box
  PRINT Box$(X)
NEXT

To enter control characters (those with ASCII values less than 32) requires
a different trick.  Although the Alt-keypad method is in fact built into
the BIOS of all PCs, this next one is specific to QuickBASIC, QBX, and some
word processor programs.  To do this, first press Ctrl-P, observing the ^P
symbol that QB displays at the bottom right of the screen.  This lets you
know that the next control character you press will be accepted literally.
For example, Ctrl-P followed by Ctrl-L will display the female symbol, and
Ctrl-P followed by Ctrl-[ will enter the Escape character.
     Bear in mind that some control codes will cause unusual behavior if
your program is listed on a printer.  For example, an embedded CHR$(7) will
sound the buzzer if your printer has one, a CHR$(8) will back up the print
head one column, and a CHR$(12) will issue a form feed and skip to the next
page.  Indeed, you can use this to advantage to intentionally force a form
feed, perhaps with a statement such as REM followed by the Ctrl-L female
symbol.
     I should mention that different versions of the QB editor respond
differently to the Ctrl-P command.  QuickBASIC 4.0 requires Ctrl-[ to enter
the Escape code, while QBX takes either Ctrl-[ or the Escape key itself.  I
should also mention that you must never imbed a CHR$(26) into a BASIC
source file.  That character is recognized by DOS to indicate the end of a
file, and BC will stop dead at that point when compiling your program.  QB,
however, will load the file correctly.

WOULDN'T IT BE NICE IF DEPT.
============================

No discussion of constants would be complete without a mention of
initialized data.  Unfortunately, as of this writing BASIC does not support
that feature!  The concept is simple, and it would be trivial for BASIC's
designers to implement.  Here's how initialized data works.
     Whenever a variable requires a certain value, the only way to give it
that value is to assign it.  Some languages let you declare a variable's
initial value in the source code, saving the few bytes it takes to assign
it later.  Since space for every variable is in the .EXE file anyway, there
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would be no additional penalty imposed by adding this capability.  I
envision a syntax such as DIM X = 3.9 AS SINGLE, or perhaps simply DIM Y% =
3, or even DIM PassWord$ = "GuessThis".  Where Y% = 3 creates a six-byte
code sequence to put the value 3 into Y%, what I am proposing would have
the compiler place that value there at the time it creates the program.
     Equally desireable would be allowing string constants to be defined
using CHR$ arguments.  For example, CONST EOF$ = CHR$(26) would be a
terrific enhancement to the language, and allowing code such as CONST CRLF$
= CHR$(13) + CHR$(10) would be even more powerful.  Again, we can only hope
that this feature will be added in a future version.
     Yet another constant optimization that BASIC could do but doesn't is
constant string function evaluation.  In many programming situations the
programmer is faced with deciding between program efficiency and
readability.  A perfect example of this is testing an integer value to see
whether it represents a legal character.  For instance, IF Char < 65 is not
nearly as meaningful as IF Char < ASC("A").
     Clearly, BC could and should resolve the expression ASC("A") while it
is compiling your program, and generate simple code that compares two
integers.  Instead, it stores the "A" as a one-byte string (which with its
descriptor takes five bytes), and generates code to call the internal ASC
function before performing the comparison.  The point here is that no
matter how intelligent BC is, folks like us will always find some reason to
complain!

BIT OPERATIONS
==============

The last important subject this chapter will cover is bit manipulation
using AND, OR, XOR, and NOT.  These logical operators have two similar, but
very different, uses in a BASIC program.  The first use--the one I will
discuss here--is to manipulate the individual bits in an integer or long
integer variable.  The second use is for directing a program's flow, and
that will be covered in Chapter 3.
     Each of the bit manipulation operators performs a very simple Binary
function.  Most of these functions operate on the contents of two integers,
using those bits that are in an equivalent position.  The examples shown in
Figure 2-6 use a single byte only, solely for clarity.  In practice, the
same operations would be extended to either the sixteen bits in an integer,
or the 32 bits in a long integer.

13 = 0000 1101
25 = 0001 1001
     ---------
     0000 1001  result when AND is used
          ^  ^
          +----------- both of the bits are set
                       in each column

13 = 0000 1101
25 = 0001 1001
     ---------
     0001 1101  result when OR is used
        ^ ^^ ^
        +------------- one or both bits are set
                       in each column

13 = 0000 1101
25 = 0001 1001
     ---------
     0001 0100  result when XOR is used
        ^  ^
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        +------------- the bits are different
                       in each column

13 = 0000 0000 0000 1101
     -------------------
     1111 1111 1111 0010  result after using NOT

Figure 2-6

The examples given here use the same decimal values 13 and 25, and these
are also shown in their Binary equivalents.  What is important when viewing
Binary numbers is to consider the two bits in each vertical column.  In the
first example, the result in a given column is 1 (or True) only when that
bit is set in the first number AND the same bit is also set in the second.
This condition is true for only two of the bits in these particular
numbers.  The result bits therefore represent the answer in Binary, which
in this case is 13 AND 25 = 9.  What is important here is not that 13 AND
25 equals 9, but how the bits interact with each other.
     The second example shows OR at work, and it sets the result bits for
any position where a given bit is set in one byte OR that bit is set in the
other.  Of course, if both are set the OR result is also true.  In this
case, four of the columns have one bit or the other (or both) set to 1.  By
the way, these results can be proven easily in BASIC by simply typing the
expression.  That is, PRINT 13 OR 25 will display the answer 29.
     The third example is for XOR, which stands for Exclusive Or.  XOR sets
a result bit only when the two bits being compared are different.  Here,
two of the bits are different, thus 13 XOR 25 = 20.  Again, it is not the
decimal result we are after, but how the bits in one variable can be used
to set or clear the bits in another.
     The NOT operator uses only one value, and it simply reverses all of
the bits.  Any bit that was a 1 is changed to 0, and any bit that had been
0 is now 1.  A full word is used in this example, to illustrate the fact
that NOT on any positive number makes it negative, and vice versa.  As you
learned earlier in this chapter, the highest, or left-most bit is used to
store the sign of a number.  Therefore, toggling this bit also switches the
number between positive and negative.  In this case, NOT 13 = -14.
     All of the logical operators can be very useful in some situations,
although admittedly those situations are generally when accessing DOS or
interfacing with assembly language routines.  For example, many DOS
services indicate a failure such as "File not found" by setting the Carry
flag.  You would thus use AND after a CALL Interrupt to test that bit.
Another good application for bit manipulation is to store True or False
information in each of the sixteen bits in an integer, thus preserving
memory.  That is, instead of sixteen separate Yes/No variables, you could
use just one integer.
     Bit operations can also be used to replace calculations in certain
situations.  One common practice is to use division and MOD to break an
integer word into its component byte portions.  The usual way to obtain the
lower byte is LoByte% = Word% MOD 256, where MOD provides the remainder
after dividing.  While there is nothing wrong with doing it that way, Word%
= LoByte% AND 255 operates slightly faster.  Division is simply a slower
operation than AND, especially on the 8088.  Newer chips such as the 80286
and 80386 have improved algorithms, and division is not nearly as slow as
with the older CPU.  Chapter 3 will look at some other purely BASIC uses of
AND and OR.

SUMMARY
=======

As you have seen in this chapter, there is much more to variables and data
than the BASIC manuals indicate.  You have learned how data is constructed
and stored, how the compiler manipulates that data, and how to determine
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for yourself the amount of memory that is needed and is available.  In
particular, you have seen how data is copied frequently but with no
indication that this is happening.  Because such copying requires
additional memory, it is a frequent cause of "Out of memory" errors that on
the surface appear to be unfounded.
     You have also learned about BASIC's near and far heaps, and how they
are managed using string and array descriptors.  With its dynamic
allocation methods and periodic rearrangement of the data in your program,
BASIC is able to prevent memory from becoming fragmented.  Although such
sophisticated memory management techniques require additional code to
implement, they provide an important service that programmers would
otherwise have to devise for themselves.
     Finally, you have learned how the various bit manipulation operations
in BASIC work.  This chapter will prove to be an important foundation for
the information presented in upcoming chapters.  Indeed, a thorough
understanding of data and memory issues will be invaluable when you learn
about accessing DOS and BIOS services in Chapter 12.

                                CHAPTER 3

                           PROGRAMMING METHODS

In Chapters 1 and 2 you learned how the BASIC compiler translates a source
file into the equivalent assembly language statements, and how it allocates
memory to store variables and constants.  In particular, you saw that the
BC compiler generates assembly language code directly for some statements,
while for others it creates calls to routines in the BASIC libraries.  Most
of the code examples presented in that chapter dealt with simple variable
assignments and calculations.
   Of course, the compiler must do much more than merely assign and
manipulate variables and other data.  Equally important is controlling how
your program operates, and determining which paths are to be taken as it
progresses.  In this chapter we will delve into the inner workings of
control flow structures, with an eye toward writing programs that are as
efficient as possible.  As with the earlier chapters, this discussion
includes numerous disassemblies of compiled BASIC code.  Thus, you will see
exactly what the compiler does, and how each control flow statement is
handled.
   This chapter also discusses the design of both static and non-static
subprograms and functions, and compares the relative merits of each method.
Many programmers do not fully understand the term Static, and find the
related subject of recursive subroutines especially difficult to grasp.
   BASIC supports four types of subroutines, and each will be described in
this chapter: GOSUB routines, subprograms, DEF FN functions, and what I
call "formal functions".  YOu will notice that I use the terms subroutine
and procedure interchangeably, to indicate a single block of code that may
be executed more than once.  You will also learn how parameters are passed
to these procedures.
   Finally, in this chapter I will discuss programming style. Programming
in any language is arguably as much of an art as it is a science.  But
unlike, say, music, where a composer can write any sequence of notes and
proclaim them acceptable, a computer program must at least work correctly.
There are an infinite number of ways to accomplish any programming task,
and I can make recommendations only.  Which approach you choose will
reflect both your own personal taste and style, as well as your current
level of competence and understanding of programming in general.

CONTROL FLOW
============

All programs--regardless of the language in which they are written--require
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a mechanism for testing certain conditions and then performing different
actions based on those conditions.  Although there are many ways to perform
tests and branches in a BASIC program, all of them do essentially the same
thing.  The BASIC control flow statements are GOTO, DO/LOOP, WHILE/WEND,
IF/THEN/ELSE, FOR/NEXT, SELECT CASE, ON GOTO, and ON GOSUB.  Because the
capabilities of WHILE/WEND are also available with a DO/LOOP construct, the
two will be discussed together.
   In almost all cases, the BASIC compiler directly generates the code that
controls a program's flow.  One exception is when floating point values are
used as a FOR counter, or as a WHILE or UNTIL condition.  In those
situations, calls are made to the floating point comparison routines in the
BASIC runtime library.  Another place is when you have a statement such as
CASE ASC(X$), or IF LEFT$(X$, 10) = Y$.  ASC and LEFT$ are also subroutines
in the BASIC language library, and they too are invoked by calls.
   It is important to reiterate that when dealing with integer test
conditions, BC will in many cases create assembly language code that is as
good as a human programmer would write.  In the short program fragment that
follows, all of the BASIC source code is shown translated to the equivalent
assembly language statements.  This listing was derived by compiling and
linking the BASIC program for Microsoft CodeView, and then using CodeView
to display the resultant code.

This is what you write:

DO
  X% = X% + 1
LOOP WHILE X% < 100

This is the result after compilation:

30:
  INC  WORD PTR [X%]        ;X% = X% + 1
  CMP  WORD PTR [X%],64     ;compare X% to 100
  JL   30                   ;jump if less to 30

Here the variable X% is incremented, and then compared to the value 100.
(64 is the Hex equivalent to 100, which is how CodeView displays values.)
If X% is indeed less than 100, the program jumps back to address 30 and
continues processing the loop.  Notice that while this example does not use
a named label in the BASIC source code as the target for a GOTO, the
equivalent assembly language code does.  In this case, the label is the
code at address 30.  Do not confuse the addresses that assembly language
must use as jump targets with the numbered labels that in BASIC are
optional.

THE DREADED GOTO

Modern programming philosophy dictates that GOTO and GOSUB statements
should be avoided at all cost, in favor of DO and WHILE loops.  However,
all of these methods result in nearly identical code.  Indeed, there is
nothing inherently wrong with using GOTO when circumstances warrant it.
By examining the program listing below, you will see that BASIC generates
code that is identical for a GOTO as for a DO loop.

This is what you write:

Label:
  X% = X% + 1
  IF X% < 100 THEN GOTO Label
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This is the result after compilation:

30:
  INC  WORD PTR [X%]        ;X% = X% + 1
  CMP  WORD PTR [X%],64     ;compare X% to 100
  JL   30                   ;jump if less to 30

Since GOTO and DO/LOOP produce the same results, which one is better, and
why?  In general, a DO/LOOP is preferable for two reasons.  First, it is
a nuisance to have to create a new and unique label name for every location
that a program may need to branch to.  Admittedly, in a short program this
will not be a problem.  But in a large application with many small loops
that test for keyboard input, you end up creating many labels with names
such as GetKey1, GetKey2, and so forth.  And if you inadvertently use the
wrong label name, your program will not work correctly.
   More important, however, is that for each label you define in a program,
the BC compiler must remember its name and the equivalent address in the
object code that the label identifies.  Since label names can be as long
as 40 characters and memory addresses require 2 bytes each to identify, a
finite number of label names can be accommodated.  By avoiding unnecessary
labels, you are giving BC that much more memory to use for compiling your
program.
   There are several situations in which GOTO is preferable to a DO or
WHILE loop.  Indeed, one of my personal pet peeves is when a programmer
tries to shoehorn structure into a program no matter what the cost.
Consider the three different code fragments below; each waits for a key
press and then assigns it to the variable Ky$.

This approach is the worst:

Ky$ = ""
WHILE Ky$ = ""
  Ky$ = INKEY$
WEND

This method is better:

Label:
  Ky$ = INKEY$
  IF Ky$ = "" GOTO Label

And this is better still:

DO
  Ky$ = INKEY$
LOOP WHILE Ky$ = ""

In the first example, an extra step is needed solely to clear Ky$ to a null
string, so the initial WHILE will be true and execute at least once.  Every
string assignment adds 13 bytes to a program, and those 13 bytes can add
up quickly in a large application.
   The second example avoids the unnecessary assignment, but adds a label
for GOTO to jump to.  Although this label does require a small amount of
additional memory while the program is being compiled, it does not increase
the size of the final executable program file.
   The last example is better still, because it avoids the need for a line
label and also avoids an extra string assignment.  Since a DO loop allows
the test to be placed at either the top or bottom of the loop, you can
force the loop to be executed at least once by putting the test at the
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bottom as shown here.
   However, even this can be improved upon by eliminating the string
comparison that checks if Ky$ is equal to a null string.  If we replace
LOOP WHILE Ky$ = "" with LOOP UNTIL LEN(Ky$), only 13 bytes of code are
generated instead of 15.  When two strings are compared (Ky$ and ""), each
must be passed to the string comparison routine.  Since LEN requires only
one argument, the code to pass the second parameter is avoided.
   There are some situations for which the GOTO is ideally suited.  In the
first two examples below, a complex expression is used as the condition for
executing a DO WHILE loop, and the same expression is then used again
within the loop.

DO WHILE (X% + Y%) * Z% > 13
  IF (X% + Y%) * Z% = 100 THEN PRINT
  ...
  ...
LOOP

DO WHILE ASC(MID$(S$, A%, B%)) > 13
  IF ASC(MID$(S$, A%, B%)) > 100 THEN PRINT
  ...
  ...
LOOP

Label:
  Temp% = ASC(MID$(S$, A%, B%))
  IF Temp% > 13 THEN
    IF Temp% > 100 THEN PRINT
    ...
    ...
  GOTO Label
  END IF

In the first example, BASIC remembers the results of its test that checks
if a (X% + Y%) * Z% is greater than 13, and it uses the result it just
calculated in the next test that compares the same expression to 100.  This
is one more example of the kinds of optimizations BC performs as it
compiles your programs.  String expressions such as those used in the
second example are of necessity more complex, and require calls to library
routines.  With this added complexity, BASIC unfortunately cannot retain
the result of the earlier comparison, and it generates identical code a
second time.
   A more elegant solution in this case is therefore the GOTO as shown in
the last example.  Because the result of evaluating the expression is saved
manually, it may be reused within the loop.  As proof, the second DO WHILE
example above requires 73 bytes to implement, as opposed to only 53 when
Temp% and GOTO are used.
   I should also point out that the most common and valuable use for GOTO
is to get out of a deeply nested series of IF or other blocks of code.  It
is not uncommon to have a FOR/NEXT loop that contains a SELECT CASE block,
and within that a series of IF/ELSE tests.  The only way to jump out of all
three levels at once is with a GOTO.

FOR/NEXT LOOPS

Unlike WHILE and DO loops that can test for nearly any condition and at
either the top or bottom of the loop, a FOR/NEXT loop is intended to
perform a block of statements a fixed number of times.  A FOR/NEXT loop
could also be replaced with code that compares a value and uses GOTO to
reenter the loop if needed, but that is hardly necessary.  My point is to
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yet again illustrate that all of BASIC's seemingly fancy constructs are no
more than tests and GOTOs deep down at the assembly language level.
   A FOR/NEXT loop determines the number of iterations that will be
executed once ahead of time, before the loop begins.  For example, the
listing below shows a loop that changes the upper limit inside the loop.
However the loop still executes 10 times.

Limit% = 10
FOR X% = 1 TO Limit%
  Limit% = 5
  PRINT Limit%
NEXT

The code that BASIC produces for the FOR/NEXT loop in the previous example
is translated to the following equivalent during the compilation process.

  Limit% = 10
  Temp% = Limit%
  X% = 1
  GOTO Next:
For:
  Limit% = 5
  PRINT Limit%
  X% = X% + 1
Next:
  IF X% <= Temp% THEN GOTO For

Please understand that changing a loop condition inside the loop is
considered bad practice, because the program becomes difficult to
understand.  If you really need to alter the limit inside a loop, the loop
should be recoded to use WHILE or DO instead.  Another good reason for
avoiding such code is because it is possible that future versions of BASIC
will behave differently than the one you are using now.  If Microsoft were
to modify BASIC such that the limit condition were reevaluated at the NEXT
statement, your code would no longer work.  It is also considered bad
practice to modify the loop counter variable itself (X% in the previous
examples).  However, this causes no real harm, and you should not be afraid
to do that if the situation warrants it.  Of course, changing the loop
counter will affect the number of times the loop is executed.

IF/THEN/ELSE AND SELECT CASE

BASIC provides two methods for testing conditions in a program, and
executing different blocks of code based on the result.  The most common
method is the IF test, which can be used on a single variable, the result
of an expression, the returned value from a function, or any combination
of these.  I won't belabor the most common uses for IF here, but I do want
to point out some of its less obvious properties.  Also, there are some
situations where IF and ELSEIF are appropriate, and others where their
counterpart, SELECT CASE, is better.
   As you have already learned, a simple IF test will in most cases be
translated into the equivalent assembler instructions directly.  In some
cases, however, the condition you specify is tested, while in others the
*opposite* condition is tested.  If you say IF X > 10 THEN GOTO Label,
BASIC may change that to IF X <= 10 GOTO [next statement].  Which BASIC
uses depends on what you will do if the condition is true, and how far away
in the generated code the statements that will be executed are located.
When a GOTO is to be performed if the test passes, then the relative
position of the target label is also a factor.
   A jump to a location either ahead in the code or more than 128 bytes
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backwards requires BASIC to generate more code.  The 128 byte displacement
is significant, because the 80x86 can perform a *conditional jump* to an
address only a limited distance away.  That is, after a comparison is made,
the target address for a conditional jump such as "Jump if Greater" must
be no more than that many bytes distant.  However, an unconditional jump
can be to any address within the same 64K code segment.  (Bear with me for
a moment, because the significance of this will soon become apparent.)
This is shown in the next listing following.

IF X% = 100 THEN
  CMP  Word Ptr [X%],64   ;compare X% to 100
  JE   003A               ;jump ahead if equal
  JMP  Label              ;else, skip ahead
003A:                     ;BASIC made this label
Y% = 2
  MOV  Word Ptr [Y%],2
END IF

Label:
IF X > 8 GOTO Label
  CMP  Word Ptr [X%],8    ;compare X% to 8
  JG   Label              ;jump back if greater

In the first example above, BASIC compares the value of X% to 100 (64 Hex),
and if equal jumps ahead to a label it created at address 003A Hex.
Otherwise, a jump is made to the next statement in the program, which in
this case is a named label.  Although using two jumps may seem
unnecessarily convoluted, it is necessary because BASIC has no way of
knowing how many statements will follow at the time it compiles the IF
test.  Thus, it also cannot know whether the statement following the END
IF will end up being 128 or more bytes ahead.
   By jumping to another, unconditional jump, BC is assured that the
generated code will be legal.  (When BC finally encounters the END IF, it
goes back to the code it created earlier, and completes the portion of the
unconditional jump instruction that tells how far to go.)  Some compilers
avoid this situation and create the longer, two-jump code on a trial basis,
but then go back and change it to the shorter form if possible.  These are
called two-pass compilers, because they process your source code in two
phases.  Unfortunately, current versions of Microsoft BASIC do not use more
than one pass.
   In the second example Label has already been encountered, and BC knows
that the label is within 128 bytes.  Therefore, it can translate the IF
statement directly, without having to conditionally jump to yet another
jump.  Had the earlier label been farther away, though, an extra jump would
have been needed.  It is important to understand that forward jumps are
always handled with more code than is likely necessary, because BASIC does
not know how far ahead the jump must go.  In fact, this same issue must be
dealt with when writing in assembly language, since the conditional jump
distance limitation is inherent in the 80x86 microprocessor.
   The bottom line, therefore, is that you can in many cases reduce the
size of your programs by controlling in which direction a conditional jump
will be performed.  For example, almost all programs must at some point sit
in a loop waiting until a key is pressed.  The next listing shows two
common ways to do this, with one testing for a key press at the top of the
loop, and the other doing the test at the bottom.

DO UNTIL LEN(INKEY$)    ;this comprises 18 bytes
0030:
  CALL B$INKY           ;call INKEY$
  PUSH AX               ;pass the result to LEN
  CALL B$FLEN           ;AX now holds the length
  AND  AX,AX            ;see if it's zero
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  JZ   0042             ;yes, jump to LOOP
  JMP  0044             ;no, jump out of loop
0042:
LOOP
  JMP  0030             ;jump back to DO

0044:
DO                      ;this is only 15 bytes
LOOP UNTIL LEN(INKEY$)
  CALL      B$INKY      ;call INKEY$
  PUSH      AX          ;as above
  CALL      B$FLEN
  AND       AX,AX
  JZ        0044        ;jump back if zero

Viewed from a purely BASIC perspective, these two examples operate
identically.  But as you can see, the code that BASIC creates is more
efficient for the second example.  When BASIC encounters the first DO
statement, it has no idea how many more statements there will be until the
terminating LOOP.  Therefore, it has no recourse but to create an extra
jump.  In the second example, the location of the DO is already known to
be within 128 bytes, so the LOOP test can branch back using the shorter and
more direct method.
   An ELSEIF statement block is handled in a similar fashion, with code
that directly compares each condition and branches accordingly.  Because
the code to be executed if the IF is true is always after the IF test
itself, the less efficient two-jump code must be generated.  A simple
IF/ELSEIF follows, shown as a mix of BASIC and assembly language
statements.

IF X% > 9 THEN
  CMP  Word Ptr [X%],9  ;compare X% to 9
  JG   003A             ;assign Y% if greater
  JMP  0043             ;else jump to next test
003A:
Y% = 1
  MOV  Word Ptr [Y%],1  ;assign Y%
  JMP  0066             ;jump out of the block
ELSEIF X% > 5 THEN
0043:
  CMP  Word Ptr [X%],5  ;as above
  JG   004D
  JMP  0066
004D:
Y% = 2
  MOV  Word Ptr [Y%],2
END IF
0066:
  ...
  ...

Aside from the additional jumping over jumps that are added to all forward
address references, this code is translated quite efficiently.  In this
situation, the compiled output is identical to that produced had SELECT
CASE been used.  However, there is one important situation in which SELECT
CASE is more efficient than IF and ELSEIF.
   For each ELSEIF test condition, code is generated to create a separate
comparison.  When a simple comparison such as X% > 9 is being made, only
one assembly language statement is needed.  But when an expression is
tested--for example, ABS((X% + Y%) * Z%)) > 9--identical code is generated
repeatedly.  This is illustrated in the listing that follows.
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IF ABS((X% + Y%) * Z%) = 5 THEN
  A% = 1
ELSEIF ABS((X% + Y%) * Z%) = 6 THEN
  A% = 2
ELSEIF ABS((X% + Y%) * Z%) = 7 THEN
  A% = 3
END IF

Each time BC encounters the expression ABS((X% + Y%) * Z%), it duplicates
the same assembly language statements.  But when SELECT CASE is used, the
expression is evaluated once, and used for each subsequent test.  The first
example in the next listing shows how SELECT CASE could be used to provide
the same functionality as the preceding IF/ELSEIF block, but with much less
code.  The second example then shows what SELECT CASE really does, using
an IF/ELSEIF equivalent.

You write it this way:

SELECT CASE ABS((X% + Y%) * Z%)
  CASE 5: A% = 1
  CASE 6: A% = 2
  CASE 7: A% = 3
  CASE ELSE
END SELECT

BASIC really does this:

Temp% = ABS((X% + Y%) * Z%)
IF Temp% = 5 THEN
  A% = 1
ELSEIF Temp% = 6 THEN
  A% = 2
ELSEIF Temp% = 7
  A% = 3
END IF

As you can see, SELECT CASE evaluates the expression once, stores the
result in a temporary variable, and then uses that variable repeatedly for
all subsequent comparisons.  Therefore, when the same expression is to be
tested multiple times, SELECT CASE will be more efficient than IF and
ELSEIF.  This is also true for string expressions and other functions.  For
example, SELECT CASE LEFT$(Work$, 10) will result in less code and faster
performance than using IF and ELSEIF with that same expression more than
once.
   Another important feature of SELECT CASE is its ability to use either
variable or constant test conditions, and to operate on a range of values.
For example, the C language Switch statement which is the equivalent of
BASIC's SELECT CASE can use only constant numbers for each test.  BASIC is
particularly powerful in this regard, and allows any legal expression for
each CASE condition.  For example, CASE IS > (Y AND Z) is valid, and so is
CASE 0 TO Max.  CASE also accepts multiple conditions separated by commas
such as CASE 1, 3, 4 TO 100, -10 TO -1.  In this case, the statements that
follow will be executed if the selected expression equals 1, 3, any value
between 4 and 100 inclusive, or any value between -10 and -1 inclusive.
   It is also worth mentioning here that QuickBASIC version 4.0 contains
an interesting and irritating quirk that requires a CASE ELSE in the event
that none of the tests match.  Had the CASE ELSE been omitted from the
previous example and the value of the expression was not between 5 and 7,
QuickBASIC 4.0 would issue a "CASE ELSE expected" error at run time.
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Fortunately, this has been repaired in QuickBASIC 4.5 and later versions.
   Notice that this is not a bug in QuickBASIC.  Rather, it is the behavior
described in the ANSI (American National Standards Institute) specification
for BASIC.  At the time QuickBASIC 4.0 was introduced, Microsoft mistakenly
believed the then-proposed ANSI standard for BASIC would be significant.
As that standard approached fruition, it became clear to Microsoft that the
only standard most programmers really cared about was Microsoft's.
   One final point I cannot make often enough is the inherent efficiency
of integer operations and comparisons.  This is especially true in the
comparisons that are made in both IF and CASE tests.  In the first example
below, each of the characters in a string is tested in turn.  The second
example shows a much better way to write such a test, by obtaining the
ASCII value once and using that for subsequent integer comparisons.

Not recommended:

FOR X = 1 TO LEN(Work$)
  SELECT CASE MID$(Work$, X, 1)
    CASE CHR$(9): PRINT "Tab key"
    CASE CHR$(13): PRINT "Enter key"
    CASE CHR$(27): PRINT "Escape key"
    CASE "A" TO "Z", "a" TO "z": PRINT "Letter"
    CASE "0" TO "9": PRINT "Number"
  END SELECT
NEXT

Much more efficient:

FOR X = 1 TO LEN(Work$)
  SELECT CASE ASC(MID$(Work$, X, 1))
    CASE 9: PRINT "Tab key"
    CASE 13: PRINT "Enter key"
    CASE 27: PRINT "Escape key"
    CASE 65 TO 90, 97 TO 122: PRINT "Letter"
    CASE 48 TO 57: PRINT "Number"
  END SELECT
NEXT

In the first program the SELECT itself generates 27 bytes, which is
comprised of a call to the MID$ function and then a call to the string
assign routine.  A string assignment is needed to save the MID$ result in
a temporary variable for the subsequent tests that follow.  Each CASE test
that uses CHR$ adds 27 bytes, and this includes the call to CHR$ as well
as an additional call to the string comparison routine.  Testing for the
letters adds 75 bytes, and testing for the numbers adds 39 more.  This
results in a total code size of 222 bytes, not counting the FOR/NEXT loop.
   Contrast that with only 131 bytes for the second example, in which the
SELECT portion requires only 26 bytes.  Although an extra call is needed
to obtain the ASCII value of the extracted character, the lack of a
subsequent string assignment more than makes up for that.  Further, the
tests for 9, 13, and 27 require only 13 bytes each, compared to 27 when
CHR$ values were used.  The letters test requires 43 bytes, and the numbers
test only 23.
   Clearly this is a significant improvement, especially in light of the
small number of tests that are being performed here.  In a real program
that performs hundreds of string comparisons, replacing those with integer
comparisons where appropriate will yield a substantial size reduction.

AND, OR, EQV, and XOR

When you use AND or OR in an IF test, what is really being compared is
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either 0 or -1.  That is, BASIC evaluates the *truth* of each expression
being tested on both sides of the AND or OR, and a truth in BASIC always
results in one or the other of these values.  Once each expression has been
evaluated, the results are combined using an assembly language AND or OR
instruction, and a branch is then made accordingly.  Remember that when
integers are treated as unsigned, setting all of the bits to 1 results in
a value of -1.
   In chapter 2 I showed how the various logical operators are used to
manipulate bits in an integer or long integer variable.  The concept is
identical when these operators are used for decision-making in a BASIC
program.  The difference is really more a matter of semantics than
definition.  That is, the same bit manipulation is performed, only in this
case on the result of the truth of a BASIC expression.  This is shown in
context below, where two test expressions are combined using AND.

IF X > 1 AND Y < 2 THEN
  CMP  Word Ptr [X%],1   ;compare X% to 1
  MOV  AX,0              ;assume False
  JLE  003B              ;we assumed correctly
  DEC  AX                ;wrong, decrement to -1
003B:
  CMP  Word Ptr [Y%],2   ;now compare Y% to 2
  MOV  CX,0000           ;assume False
  JGE  0046              ;we assumed correctly
  DEC  CX                ;wrong, decrement to -1
0046:
  AND  CX,AX             ;combine the results
  AND  CX,CX             ;(this is redundant)
  JNZ  004F              ;if not 0 assign Z%
  JMP  0055              ;else jump past END IF
Z = 3
004F:
  MOV  Word Ptr [Z%],3   ;assign Z%
END IF
0055:
  ...
  ...

The result of the first comparison is saved in the AX register as either
0 or -1, and the second is saved in CX using similar code.  Once both tests
have been performed and AX and CX are holding the appropriate values, the
registers are then tested against each other using AND.  The instruction
AND CX,AX not only combines the results, but it also sets the CPU's Zero
Flag to indicate if the result was zero or not.  Therefore, the second test
that uses AND to compare CX against itself to check for a zero result is
redundant.  At only 2 additional bytes, the impact on a program's size is
not terribly significant.  However, this shows first-hand the difference
between code written by a compiler and code written by a person.
   OR conditions are handled similarly, except the assembly language OR
instruction is used instead of AND.  When multiple conditions are being
tested using combinations of AND and OR and perhaps nested parentheses as
well, additional similar code is employed.
   There are many situations where all that is really necessary is to test
for a zero or non-zero condition.  For example, it is common to use an
integer variable as a True/False "flag" which can be set in one part of a
program, and tested in another.  By understanding the underlying code that
BASIC creates, you can help BASIC to reduce the size of your programs
enormously.  In particular, avoiding a comparison with an explicit value
lets BASIC generate fewer comparison instructions.  The listing below shows
how you can test multiple flags using AND, but with much less resulting
code than using an explicit comparison.
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IF Flag1% AND Flag2% THEN
  MOV  AX,[Flag2%]       ;move Flag2% into AX
  AND  AX,[Flag1%]       ;AND that with Flag1%
  AND  AX,AX             ;(this is redundant)
  JNZ  0063              ;if not zero assign Z%
  JMP  0069              ;else skip past END IF
Z% = 3
0063:
  MOV  Word Ptr [Z%],3
END IF
0069:
  ...
  ...

The key here is that zero is always used to represent False, and -1 to
represent a True condition.  That is, instead of writing IF Flag1% = -1 AND
Flag2% = -1, using IF Flag1% AND Flag2% provides the same results.  At only
20 bytes of generated code, this method is far superior to tests for an
explicit -1 which require 37 bytes.  If you recall, in Chapter 2 I showed
how the various bits in a variable can be turned on or off with AND.  Thus,
1111 AND 1111 equals 1111, while 1111 AND 0000 equals 0.
   Notice that using 0 and -1 has many other benefits as well.  For
example, the NOT operator which was also described in Chapter 2 can toggle
a variable between those values.  If all of the bits in a variable are
presently zero, then NOT Variable% results in all ones (-1).  This property
can also be used to enhance a program's readability, by using NOT much like
you would in an English sentence.  For example, the code following the line
IF NOT Flag% THEN will be executed if Flag% is 0 (False), but it will not
be executed if Flag% is -1 (True).
   In fact, an explicit comparison is optional if you need to test only for
a non-zero value.  IF Variable <> 0 THEN can be reduced to IF Variable
THEN, and the statements that follow will be executed as long as Variable
is not 0.  Notice that the only saving here is in the BASIC source, since
either comparison creates ten bytes of assembler code.  But when using long
integers, the short form saves five bytes--14 bytes versus 19 for an
explicit comparison to zero.
   NOT is equally valuable when toggling a flag variable between two
values.  If you have, say, an input routine that keeps track of the Insert
key status, then you could use Insert% = NOT Insert% each time you detect
that the Insert key was pressed.  The first time the operator presses that
Key, the Insert flag will be switched from the default start-up value of
0 to -1.  Then using Insert% = NOT Insert% a second time will revert the
bits back to all zeros.  In fact, it is a common technique to define True
and False variables (or constants) in a program using this:

   False% = 0
   True% = NOT False%

Most programmers understand how to use parentheses to force a particular
order of evaluation.  By default, BASIC performs multiplication and
division before it does addition and substraction.  When operators of the
same precedence are being used, then BASIC simply works from left to right.
However, the order in which logical comparisons are made is not always
obvious.  This can become particularly tricky if you are using some of the
shorthand methods I described earlier.
   For example, consider the statements IF X AND Y > 12, IF NOT X OR Y, and
IF X AND Y OR Z.  In the first example, the truth of the expression Y > 12
is evaluated first, with a result of either 0 or -1.  Then, that result is
combined logically with the value of X using AND.  The resulting order of
evaluation is performed as if you had used IF X AND (Y > 12).  The other
expressions are evaluated as IF (NOT X) OR Y and IF (X AND Y) OR Z.
   The last logical operators we will consider are EQV and XOR. These are
used rarely by most BASIC programmers, probably because they are not well
understood.  However, EQV can dramatically reduce the size of a program in
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certain circumstances.  It is not uncommon to test if two conditions are
the same, whether True or False.  EQV stands for Equivalent, meaning it
tests if the expressions are the same--either both true or both false.  All
three program fragments below serve the same purpose, however the first
generates 57 bytes, while the second and third create only 16 bytes.

IF (X = -1 AND Y = -1) OR (X = 0 AND Y = 0) THEN
  ...
END IF

IF X EQV Y THEN
  ...
END IF

IF NOT (X XOR Y) THEN
  ...
END IF

Although these examples could be replaced with a simple comparison that
tests if X equals Y, EQV can reduce other, more elaborate AND and OR tests.
For example, you could replace this:

   IF (X = 10 AND Y = 100) OR (X <> 10 AND Y <> 100)

with this:

   IF X = 10 EQV Y = 100

and gain a handsome reduction in code size.  Notice that because of the way
EQV works, the third example in the listing above results in identical
assembly language code as the second.  XOR is true only when the two
conditions are different, thus NOT XOR is true when they are the same.
   One final point worth mentioning is that you can assign a variable based
on the truth of one or more expressions.  As you saw earlier, every IF test
that is used in a BASIC program adds a minimum of 3 extra bytes for a
second, unconditional jump.  That additional code can be avoided in many
cases by assigning a variable based on whether a particular condition is
true or not.  In the code examples that follow, both program fragments do
the same thing, except the first requires 25 bytes compared to only 14 for
the second.

IF Variable = 20 THEN
  Flag = -1
ELSE
  Flag = 0
END IF

Flag = (Variable = 20)

In either case, the truth of the expression Variable = 20 must be
evaluated.  However, the IF method adds code to jump around to different
addresses that assign either -1 or 0 to Flag.  The second example simply
assigns Flag directly from the 0 or -1 result of the truth test.  Other
variants on this type of programming are statements such as A = (B = C),
and Flag = (LEN(Temp$) <> 0 AND Variable < 50).  Note that the surrounding
parentheses are shown here for clarity only, and BASIC produces the same
results without them.

Short Circuits
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There is one important point regarding AND testing you should be aware of.
Although the code that BASIC creates to implement these logical tests is
very efficient, in some cases a different approach can yield even better
results.  When many conditions are tested, QuickBASIC creates assembly
language code to evaluate all of them before making a decision.  This can
be wasteful, because often one of the conditions will be false, negating
a need to test the remaining conditions.  For example, this statement:

   IF Any$ = "Quit" AND IntVar% > 100 AND Float! <> 0 THEN PRINT "True"

requires that all three conditions be tested before the program can
proceed.  But if Any$ is not equal to "Quit", there is no need reason to
spend time evaluating the other tests.
   The solution is to instead use nested IF tests, preferably placing the
most likely (or simplest) tests first, as shown below.

IF Any$ = "Quit" THEN
  IF IntVar% > 100 THEN
    IF Float! <> 0 THEN
      PRINT "True"
    END IF
  END IF
END IF

Here, if the first test fails, no additional time is wasted testing the
remaining conditions.  Further, using the nested IF tests with QuickBASIC
also results in less code: 50 bytes versus 64.  Note, however, that BASIC
PDS [and VB/DOS] incorporate a technique known as *short circuit expression
evaluation*, which generates slightly more efficient code when AND is used.
With the newer compilers, each condition is tested in sequence, and the
first one that fails causes the program to skip over the code that prints
"True".  But even with this improved code generation, you should still
place the most likely tests first.

ON GOTO AND ON GOSUB STATEMENTS

The last non-procedural control flow statements I will discuss here--ON
GOTO and ON GOSUB--are used infrequently by many BASIC programmers.  But
when you need to test many different values *and* those values are
sequential, ON GOTO and ON GOSUB can reduce substantially the amount of
code that BASIC generates.  For clarity, I will use ON GOTO for most of the
examples that follow.  Both work in a similar fashion except with ON GOSUB,
execution resumes at the next BASIC statement when the subroutine returns.
   You have already seen that IF/ELSEIF and SELECT CASE blocks are not as
efficient as they could be, because the compiler does not know how far
ahead the END IF or END SELECT statements are located.  Therefore, no
matter how trivial the IF or CASE tests being performed are, a pair of
jumps is always created even when a single jump would be sufficient.
Further, when many tests are necessary, there is no avoiding at least some
amount of code for each comparison.  This is where ON GOTO can help.
   Rather than perform a series of separate tests for each value being
compared, ON GOTO uses a lookup table which is imbedded in the code
segment.  This table is merely a list of addresses to branch to, based on
the value of the variable or expression being evaluated.  If the value
being tested is 1, then a branch is taken to the first label in the list.
If it is 2, the code at the second label is executed, and so forth.
   As many as 60 labels can be listed in an ON GOTO statement, although the
number being tested can range from 0 to 255.  If the value is 0 or higher
than the number of items in the list, the ON GOTO command is ignored, and
execution resumes with the statement following the ON GOTO.  Negative
values or values higher than 255 cause an "Illegal function call" error.
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A simple example showing the basic syntax for ON GOTO is shown below.

INPUT "Enter a value between 1 and 3: ", X
ON X GOTO Label1, Label2, Label3
PRINT "Illegal entry!"
END

Label1:
  PRINT "You pressed 1"
  END

Label2:
  PRINT "You pressed 2"
  END

Label3:
  PRINT "You pressed 3"
  END

Notice that the more labels there are, the bigger the savings in code size.
ON GOTO adds a fixed overhead of 70 bytes, 61 of which is the size of the
library routine that evaluates the value and actually jumps to the code at
the appropriate label.  The remaining 9 bytes are needed to load the value
being tested and pass that on to the ON GOTO routine.  However, for each
label in the list, only 2 bytes are required in the lookup table to hold
the address.
   Compare that to SELECT CASE which requires 6 bytes of set-up code (when
an integer is being tested), and 13 bytes more to process each CASE.  Thus,
the crossover point at which ON GOTO is more efficient is when there are
6 or more comparisons.  Notice that if ON GOTO is used in more than one
place in a program, the savings are even greater because the 61-byte
library routine is added only once.
   Again, ON GOTO has the important restriction that all of the values must
be sequential.  However, this limitation can also be turned into a feature
by taking advantage of the inherent efficiency of lookup tables.
   Using a lookup table is a very powerful technique, because you can
determine a result using an index rather than actually calculating the
answer.  A lookup table is commonly used to determine log and factorial
functions, since those calculations are particularly tedious and time
consuming.  With a lookup table you would calculate all of the values once
ahead of time, and fill an array with the answers.  Then, to determine the
factorial for, say, the number 14, you would simply read the answer from
the fourteenth element in the array.
   You can apply this same technique in BASIC using a combination of INSTR
and ON GOTO or ON GOSUB.  Although INSTR is intended to find the position
of one string within another, it is also ideal for looking up characters
in a table.  Imagine you have written an input routine that must handle a
number of different keys, and branch according to which one was pressed.
One way would be to use an IF/ELSEIF or SELECT CASE block, with one section
devoted to each possible key.  But as you saw earlier, once there are more
than 5 keys to be recognized, either of those constructs are less efficient
than ON GOTO.
   The approach I often use is to combine INSTR and ON GOSUB to branch
according to which function key was pressed.  The beauty of this method is
that a value of zero (or one that is out of range) causes control to fall
through to the next statement.  Therefore any keys that are not explicitly
being tested for are simply ignored.  This is shown in context below.

DO

  DO                      'wait for a key press
    K$ = INKEY$
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    Length% = LEN(K$)
  LOOP UNTIL Length%

  IF Length% = 2 THEN     'it's an extended key
    Code$ = RIGHT$(K$, 1) 'isolate the key code and branch accordingly
    ON INSTR(";<=>?@ABCD", Code$) GOSUB ...
  END IF

LOOP UNTIL K$ = CHR$(27)  'until they press Esc

Here, extended keys are identified by a length of 2, and the key code is
then isolated with RIGHT$.  The punctuation and letters within the quotes
are characters 59 through 68, which correspond to the extended codes for
F1 through F10.  (A list of all the extended key codes is in your BASIC
owner's manual.)  Of course, any arbitrary list of key codes could be used.
Further, the key codes do not need to be contiguous.  For example, to
branch on the Up arrow, Down arrow, Ins, Del, PgUp, and PgDn keys you would
use "HPRSIQ" as the source string.  Any other mix of characters could also
be used, including Alt keys.
   Another interesting and clever trick that combines INSTR and ON GOTO
lets you test multiple keys regardless of capitalization. The short program
below accepts a character, and uses INSTR to look it up in a table of upper
and lower case character pairs.

PRINT "Yes/No/Load/Save/Retry/Quit? ";

DO
  K$ = INKEY$
LOOP UNTIL LEN(K$) = 1

ON (INSTR("YyNnLlSsRrQq", K$) + 1) \ 2 GOTO ...

After adding 1 and dividing that by 2, the result will indicate in which
character pair the choice was found.  This technique could also be extended
to include 3- or 4-character groups, or any other combination of
characters.  Since any value between 0 and 255 is legal for an ASCII
character, INSTR can be used in other, more general lookup situations as
well.

A COMPARISON OF SUBROUTINE METHODS
==================================

There are four primary subroutine types that BASIC supports: GOSUB
subroutines, DEF FN functions, called subprograms, and what I refer to as
"formal functions".  Each has its own advantages and disadvantages, which
I will describe momentarily.  But I would first like to introduce several
terms that will be used throughout the discussion that follows.
   The first is *module*, which is a series of BASIC program statements
kept in their own separate source file.  All modules have a main portion,
and some also have procedures within a SUB or FUNCTION block.  The main
portion of a program is that which receives control when the program is
first run.  When a program is comprised of multiple modules, each
additional module has a main portion, although code within that portion is
rarely executed.  In fact, there are only two ways to access code in the
main portion of an ancillary module:  One is to create a line label and use
that as the target for ON ERROR or another "ON" event.  The other is to
define a DEF FN function and invoke the function.
   The second term is *variable scope*, which indicates where in a program
a variable may be accessed.  Variables that are used in the main portion
of a program are accessible anywhere else in the main, but not within a SUB
or FUNCTION block.  Likewise, a variable that is defined within a SUB or
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FUNCTION is by default private to that procedure.  The overwhelming
advantage of private variables is that you do not have to worry about
errors caused by inadvertently using the same variable name twice.
   The third term is *SHARED*, and it overrides the default private scope
of a variable used in a procedure.  SHARED may be used in either of two
ways.  If it is specified with a DIM statement in the main body of a
program--that is, DIM SHARED Variable--the variable is established as being
shared throughout the entire source file.  Even though DIM is usually
associated with arrays, it can be used this way to extend a variable's
scope.
   SHARED may also be used within a subroutine to share one or more
variables with the main portion.  Notice that the statement SHARED Variable
inside a procedure defines the variable as being shared with the main
portion of the program only.  SHARED used within a procedure does not share
the named variable with any other procedures.  The only exception is when
other procedures also use SHARED with the same variable name.  In that case
they are shared between procedures, as well as with the main program.



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 66   -

       +-----------------------------+
       ¦   DEFINT A-Z                ¦
       ¦   DIM SHARED Var1           ¦
       ¦                             ¦
    +--+-->Var1 = 100                ¦
 +--¦--+-->Var2 = 200                ¦
 ¦  ¦  ¦   CALL Sub1(Var2)           ¦
 ¦  ¦  ¦   CALL Sub2(Var2)           ¦
 ¦  ¦  ¦   END                       ¦
 ¦  ¦  ¦                             ¦
 ¦  ¦  ¦   SUB Sub1 (Param) STATIC   ¦
 ¦  +--+---->Var1 = Param            ¦
 ¦  ¦  ¦     Var2 = Var1             ¦
 ¦  ¦  ¦   END SUB                   ¦
 ¦  ¦  ¦                             ¦
 ¦  ¦  ¦   SUB Sub2 (Param) STATIC   ¦
 ¦  ¦  ¦     SHARED Var2             ¦
 ¦  +--+---->Var1 = Param            ¦
 +-----+---->Var2 = Var1             ¦
       ¦   END SUB                   ¦
       +-----------------------------+

Figure 3-1: How SHARED and DIM SHARED affect variable scope.  Variables
that share the same identity are shown connected.

The fourth term is *COMMON*, which is related to SHARED in that it also
lets you share variables among procedures.  However, COMMON has the
additional property of allowing variables to be shared by procedures that
are not in the same physical source file.  When BC compiles your program,
it translates your variable names to memory addresses.  Thus, those names
are not available when the program is linked to other object files.
Variables that are listed in a COMMON statement are placed in a separate
portion of the data segment which is reserved just for that purpose.
Therefore, other program modules using COMMON can also access those
variables in that portion of DGROUP.
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                 MODULE1.BAS
       +-----------------------------+
       ¦   DEFINT A-Z                ¦
       ¦   COMMON SHARED Var1        ¦
       ¦                             ¦
 +-----+-->Var1 = 100                ¦
 ¦  +--+-->Var2 = 200                ¦
 ¦  ¦  ¦   CALL Sub1(Var2)           ¦
 ¦  ¦  ¦   CALL Sub2(Var2)           ¦
 ¦  ¦  ¦   END                       ¦
 ¦  ¦  ¦                             ¦
 ¦  ¦  ¦   SUB Sub1 (Param) STATIC   ¦
 +--¦--+---->Var1 = Param            ¦
 ¦  ¦  ¦     Var2 = Var1             ¦
 ¦  ¦  ¦   END SUB                   ¦
 ¦  ¦  ¦                             ¦
 ¦  ¦  ¦   SUB Sub2 (Param) STATIC   ¦
 ¦  ¦  ¦     SHARED Var2             ¦
 +--¦--+---->Var1 = Param            ¦
 ¦  +--+---->Var2 = Var1             ¦
 ¦     ¦   END SUB                   ¦
 ¦     +-----------------------------+
 ¦
 ¦               MODULE2.BAS
 ¦     +-----------------------------+
 ¦     ¦   DEFINT A-Z                ¦
 ¦     ¦   COMMON Var1               ¦
 ¦     ¦                             ¦
 +-----+-->Var1 = 100                ¦
    +--+-->Var2 = 200                ¦
    ¦  ¦   CALL Sub1(Var2)           ¦
    ¦  ¦   CALL Sub2(Var2)           ¦
    ¦  ¦   END                       ¦
    ¦  ¦                             ¦
    ¦  ¦   SUB Sub1 (Param) STATIC   ¦
    ¦  ¦     Var1 = Param            ¦
    ¦  ¦     Var2 = Var1             ¦
    ¦  ¦   END SUB                   ¦
    ¦  ¦                             ¦
    ¦  ¦   SUB Sub2 (Param) STATIC   ¦
    ¦  ¦     SHARED Var2             ¦
    ¦  ¦     Var1 = Param            ¦
    +--+---->Var2 = Var1             ¦
       ¦   END SUB                   ¦
       +-----------------------------+

Figure 3-2: How COMMON and COMMON SHARED affect variable scope.  Variables
that share the same identity are shown connected.
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COMMON can also be combined with SHARED, to specify that one or more
variables be shared throughout the main program as well as with other
modules.  That is, the statement COMMON SHARED Variable tells BASIC that
Variable is to be both DIM SHARED and COMMON.  To establish a TYPE variable
as COMMON, you must state the type name as well: COMMON TypeVar AS MyType.
In all cases, COMMON statements must precede the executable statements in
a program.  The only statements that may appear before COMMON are other
non-executable statements such as DECLARE, CONST, and '$STATIC.
   Because the variable names listed in a COMMON statement are not stored
in the final program, the names used in one module do not need to be the
same as the corresponding names in another module.  You could, for example,
have COMMON X%, Y$, Z# in one file, and COMMON A%, B$, C# in another.
Here, X% refers to the same memory location as A%; Y$ is the same variable
as B$, and so forth.  It is imperative, however, that the order and type
of variables match.  If one file has an integer followed by a string
followed by a double precision variable, then all other files containing
a COMMON statement must have their COMMON variables in that same order.
This is one good reason for storing all COMMON statements in a single
include file, which is included by each module that needs access to the
COMMON variables.
   One or more arrays may also be listed as COMMON; however, the rules are
different for static and dynamic arrays.  When a dynamic array is to made
COMMON, it should be dimensioned in the main program only, following the
COMMON statement.  (But you may use REDIM in another module if necessary,
to change the array's size.)  Static arrays must be dimensioned in each
module, before the associated COMMON declaration.  Of course, all array
types must match across modules--you may not list a static array as the
first COMMON item in one file, and then list a dynamic array in that same
position in another file.
   There are actually two forms of COMMON statement: the blank COMMON and
the named COMMON.  The examples shown thus far are blank COMMON statements.
A named COMMON block lets you specify selected variable groups as COMMON,
to avoid having to list many variables when all of them are not needed in
a given module.  A COMMON block is named by preceding the variable list
with a name surrounded by slash characters.  For instance, this line:

   COMMON /IntVars/ X%, Y%, Z%

establishes a named COMMON black called IntVars.  By creating several such
named blocks you may share only those that are actually needed in a given
module.
   In this case, the block name is stored in the object file, and LINK
ensures that the COMMON variables in each module share the same addresses.
One important limitation of a named COMMON block is that it cannot be used
to pass information between programs that use CHAIN.
   The fifth term is *STATIC*, which I described in a slightly different
context in the section about data in Chapter 2.  When you add the STATIC
option to a SUB or FUNCTION definition, BASIC treats the variables within
that procedure very differently than when STATIC is omitted.  With STATIC,
memory in DGROUP is allocated by the compiler for each variable, and that
memory is permanently reserved for use by those variables.
   When STATIC is not specified, the variables in the routine are by
default placed onto the system stack.  This means that sufficient stack
memory must be available, although that memory can then be used again later
for variables in other procedures.  An important side effect of using the
stack for variable storage is that the memory is cleared each time the
subprogram or function is entered.  Therefore, all numeric variables are
initialized to zero, and strings are initialized to null.  Any arrays
within a non-static procedure are by default dynamic, which means they are
created upon entry to the routine and erased when the routine exits.
   STATIC also has an additional meaning in subprograms and functions; it
can establish variables as being private to a procedure.  If a variable has
been declared as shared throughout a module by using DIM SHARED in the main
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portion of the program, using the statement STATIC Variable inside the
subroutine will override that property.  Thus, Variable will be local to
the procedure, and will not conflict with a global shared variable of the
same name.  STATIC within a subprogram or function also lets you use the
same name for a variable that was already given to a named constant.
   Many programmers find the use of the term STATIC for two very different
purposes confusing, and rightly so.  It would have made more sense to use
a different keyword, perhaps LOCAL, to limit a variable's scope.  And to
further confuse the issue, the '$STATIC metacommand is used to establish
the memory storage method for arrays.  None the less, STATIC always
indicates that memory for a variable is permanently allocated, and it may
also specify that a variable is private to a procedure.
   The final term I want to introduce now is *recursion*.  The classic
definition of a recursive procedure is that it may call itself.  While this
is certainly true, that doesn't really explain what recursion is all about,
or how it could be useful.  I will cover recursion in depth momentarily,
but for now suffice it to say that recursion is often helpful when
manipulating tree-structured information.
   For example, a program that lists all of the files on a hard disk would
most likely be based on a recursive subroutine.  Such a program would first
change to the root directory, and then call the routine to read and display
all of the file names it finds there.  Then for each directory under the
current one, the routine would change to that directory and call itself
again to read and display the files in that directory.  And if more
directories were found at the next level down, the routine would call
itself yet again to process all of those files too.  This continues until
all of the files in all directories on the hard disk have been processed.
   Another application for recursion is a subroutine that sorts an array
on more than one key.  For example, consider a TYPE array in which each
element has components for a first name, a last name, and address fields.
You might want to be able to sort that array first by last name, then by
first name, and then by zip code.  That is, all of the Smiths would be
grouped together, and within that group Adam would be listed before John.
All of the John Smiths would in turn be sorted in zip code order.
   By employing recursion, the routine would first sort the entire array
based on the last name only.  Next, it would identify each range of
elements that contain identical last names.  The routine would then call
itself to sort that subgroup, and call itself again to sort the subgroup
within that group based on zip code.

SUBROUTINES VERSUS FUNCTIONS

There is a fundamental difference between subroutines and functions.  A
subroutine is accessed with either a CALL or GOSUB statement, and a
function is invoked by referencing its name.  In general, a subroutine is
used to perform an action such as opening a group of files, or perhaps
updating a screen-full of information.  A function, on the other hand,
returns a value such as the result of a calculation.  A string function
also returns information, although in this case that information is a
string.
   Notice that the type of information returned by a function is
independent of the type of parameters, if any, that are passed to it.  For
example, BASIC's native STR$ function accepts a numeric argument but
returns a string.  Likewise, a numeric function such as INSTR accepts two
strings and returns a single integer.  This is also true for functions that
you design using either DEF FN or FUNCTION.
   Although a function is primarily used for calculations and a subroutine
for performing one or more actions, there is no hard and fast distinction
between the two.  You could easily design a subroutine that multiplies
three numbers and returns the answer in one of the parameters.  Similarly,
a function could be written to clear the screen and then open a file.
Which you use and when will depend on your own programming style.  However,
there are definite advantages to using functions where appropriate.
   One immediately obvious benefit of a function is that a value can be



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 70   -

returned without requiring an additional passed parameter.  Each variable
that is passed as a parameter requires 4 bytes of code for setup, plus an
additional 5 bytes within the subroutine each time it is accessed.
   Another important advantage of using a function is BASIC's automatic
type conversion.  If you assign a single precision variable from the result
of an integer function, BASIC will convert the data from one format to the
other transparently.  In fact, a simple assignment from a variable of one
type to that of another type is also handled for you by the compiler.  But
if a routine is written to pass the value back as a parameter, then you
must use whatever type of data the subprogram expects.
   Although most high-level languages require the programmer to match
explicitly the types of data being assigned, Microsoft BASIC has done this
automatically since its inception.  When you write Var1! = Var2%, BASIC
treats that as Var1! = CSNG(Var2%).  Object oriented programming languages
use the term *polymorphism* to describe such automatic type conversion.

GOSUB ROUTINES

The primary advantage a GOSUB routine holds over all of the other
subroutine types is that it can be accessed very quickly.  Translated to
assembly language a GOSUB statement is but three bytes in length, and its
speed is surpassed only by a GOTO.  When the only thing that matters is how
fast a subroutine can be called, GOSUB has the clear advantage.  However,
there are many limitations inherent in a GOSUB.
   The most important restriction is that arguments cannot be passed using
GOSUB.  Therefore, any variables must be assigned before invoking the
routine, and possibly reassigned when it returns.  For example, if a
subroutine requires two parameters--perhaps a row and column at which to
print a message--those variables must be assigned before the GOSUB can be
used.  And if a value is being returned, your program must know the name
of the variable that was assigned within the GOSUB routine.
   Another important limitation is that the target line label must be in
the same block of code as the GOSUB.  Although a GOSUB is legal within a
SUB or FUNCTION, both the GOSUB and the routine it calls must be located
in the same procedure.  Likewise, a GOSUB in the main body of a program
cannot access a subroutine inside a procedure, or vice versa.  [And of
course you cannot invoke a GOSUB routine that is located in a different
source module.]
   Both of these problems restrict your ability to reuse a subroutine in
more than one program.  One of the goals of modern structured programming
is the ability to design a routine for one application, and also use it
again later in other programs.  The only way to do that using GOSUB
routines is to establish a variable naming convention, and always use
variables and line labels with those unique names.

SUBPROGRAMS

Subprograms were introduced with QuickBASIC version 2.0, and they improve
greatly on GOSUB routines in many respects.  The most important advantages
of a subprogram are that it accepts passed parameters, and that variables
used within the subprogram are local by default.  Besides the obvious
benefit of not having to worry about variable naming conflicts, these
properties allow you to create your own toolbox of useful subroutines, and
use them repeatedly in different programming projects.  I will discuss this
use of subprograms in detail later in this chapter.
   A subprogram is accessed using the CALL statement, and any number of
arguments may optionally be passed to the routine.  A subprogram is defined
with a statement of the form SUB SubName (Param1, Param2, ...) STATIC.  The
parameters and surrounding parentheses are optional, as is the STATIC
directive.  Of course, the number of arguments passed to a subprogram must
match the number of parameters it expects.
   As you can see, subprograms have many advantages over GOSUB routines.
However, they are not a magical panacea for every programming problem.
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Each subprogram includes a fixed amount of overhead just to enter and exit
it.  Because of the complexities of accessing incoming parameters, a *stack
frame* must be created by the compiler upon entry.  A stack frame is simply
a fancy name for an area of memory that holds the addresses of the incoming
parameter.  However, this requirement adds a fair amount of code to each
subprogram.
   Eight bytes of code are needed to set up and call the internal BASIC
routine that creates the stack frame, and the routine itself comprises
another 35 bytes.  Eight more bytes are needed to call the routine that
exits a subprogram, and that routine adds contains 26 bytes.  Finally, all
but the last subprogram in a source file needs a 3-byte jump to skip over
the other subprograms that follow.  Therefore, a total of 80 bytes are
added to any program that uses a subprogram rather than a GOSUB routine.
It is important to point out, however, that the 61 bytes used by the
library routines to enter and exit a subprogram are added to the final .EXE
file only once.
   It is also worth mentioning that BASIC PDS provides the /Ot switch,
which eliminates the usual overhead incurred from calling the routines
needed to enter and exit a subprogram.  Although using /Ot avoids the code
that is otherwise added, there is one important restriction:  You may not
use a GOSUB within the subprogram.  When a program performs a GOSUB, the
address to return to is placed onto the stack, for retrieval later when the
subroutine returns.  Likewise, when a subprogram is called, both a segment
and address to return to are put on the stack.
   If a GOSUB were used inside the subprogram and an EXIT SUB was then
encountered within the GOSUBed subroutine, the return addresses on the
stack would be out of order.  Thus, the subprogram would return to the
wrong place, with undoubtedly disastrous consequences.  To avoid this,
BASIC by default saves the address to return to when the subprogram is
first entered, and uses that when it is exited.  Therefore, when the
compiler sees that a GOSUB is being used, it does not use the abbreviated
method even if /Ot has been specified.
   Although using /Ot makes a subprogram (and function) much faster by
eliminating the overhead to call the entry and exit routines, there is no
actual savings in code size.  A series of assembler NOP (No Operation)
instructions are placed where the entry and exit code would have been.
However, those empty instructions are never executed.  We can only hope
that in future releases of BASIC PDS Microsoft will improve BC's code
generation to eliminate these unnecessary instructions.  [Yeah, right.]
   Another problem with subprograms is that programmers tend to use them
to excess.  For example, I have seen people create subprograms to increment
and decrement integer variables even though it is far more efficient to do
that with in-line code.  The statement X% = X% + 1 creates only 4 bytes of
code, compared to 9 for a single call to a subprogram to do the same thing!
However, incrementing long integer or floating point variables does take
more code than invoking a subprogram with a single parameter, so a
subprogram could be useful in that case.  Only by counting the number of
times a subprogram will be used and comparing that to the overhead incurred
can you determine whether there will be any savings.

DEF FN FUNCTIONS

Although a DEF FN function is designed to return a result, it is more
closely related to a GOSUB subroutine in actual operation.  Like a GOSUB
routine it is invoked with a 3-byte assembly language "near" call, as
opposed to the 5-byte "far" call that subprograms and formal functions
require.  And while a DEF FN function can accept incoming parameters,
variables within the function definition are by default shared with the
main portion of the program.
   As I already explained, variables used in a DEF FN function can be made
private to the function only by explicitly declaring them as STATIC.
However, at least it is possible to employ local variables.  Further, a DEF
FN function can return a result, which makes it an ideal replacement for
GOSUB when speed is paramount.
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   Internally, parameters are passed to a DEF FN function very differently
than to a called subprogram or formal function.  Arguments are passed to
a subprogram by placing their addresses on the stack.  With a DEF FN
function, however, a copy of each parameter is created, and the function
directly manipulates those copies.  Therefore, it is impossible for a DEF
FN function to modify an incoming parameter directly.  This behavior is
neither good nor bad.  Rather, it is simply different and thus important
to understand.  It is also important to understand that a DEF FN function
can be used only in the module in which it is defined.  If the same
function is needed in different modules, the same code must be duplicated
again and again.
   In the manuals that come with QuickBASIC and BASIC PDS, Microsoft
advises against using DEF FN functions, in favor of the newer, more
powerful formal functions.  Because of this favoritism, Microsoft will
probably never correct one disturbing anomaly that is present in all DEF
FN functions.  When a string is passed as an argument to a DEF FN function,
a copy is made for the function to manipulate.  Unfortunately, the copy is
never deleted!  Therefore, if you pass, say, a 10,000 byte string to a DEF
FN function, that amount of memory is permanently taken until the function
is invoked again later.  The short listing below proves this behavior.

DEF FnWaste (A$)
  FnWaste = ASC(A$)
END DEF

Big$ = SPACE$(10000)
PRINT FRE(Big$)
X = FnWaste(Big$)
PRINT FRE(Big$)

Notice that running this program in the QuickBASIC editing environment will
not give the expected (memory-wasting) result.  However, in a separately
compiled program the 10000 byte loss will be evident.
   As with subprograms, there is a fixed amount of overhead required to
enter and exit a DEF FN function.  For each function that has been defined,
5 bytes are needed to call the Enter and Exit routines.  Further, these
routines are 14 and 24 bytes in length respectively.  But again, the
routines themselves are added to a program only once when it is linked.
   There are two final limitations of DEF FN functions worth mentioning
here.  The first is that arrays and TYPE variables may not be passed as
parameters to them.  Since by design a copy is made of every incoming
parameter, there is no reasonable way to do that with an entire array.  The
second limitation is that the function definition must be physically
positioned in the source file before any references are made to it.

FORMAL FUNCTIONS

A formal function is nearly identical to a called subprogram, and it
requires the exact same amount of overhead to enter and exit.  Also like
subprograms, nearly any type of data may be passed to a function, including
TYPE variables and arrays.  The only limitation is that a fixed-length
string may not be used directly as a parameter.  If a fixed-length string
is passed to a subprogram or function that expects a string, a copy is made
and assigned to a conventional string.  This copying was described in
detail in Chapter 2.
   Because a formal function is invoked by referencing its name in an
assignment or PRINT statement, it is essential that it be declared.  After
all, how else could BASIC know that the statement PRINT MyFunc means to
call a function and display the result, as opposed to printing the variable
named MyFunc?  When a BASIC function is created in the BASIC editing
environment, a corresponding DECLARE statement is generated automatically.
But when a function is written in another language or kept in a Quick
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Library, an explicit declaration is mandatory.
   Like subprograms, formal functions are ideally suited to modular,
reusable programming methods.  Furthermore, a function may be accessed from
any module in an entire application, even those in other source files.
Indeed, the only difference between a subprogram and a function is that a
function returns a result.  The assembly language code that BASIC generates
is in all other respects identical.

STATIC VERSUS NON-STATIC PROCEDURES

As I stated earlier, when the STATIC keyword is appended to a SUB or
FUNCTION declaration, all of the variables within the routine are assigned
a permanent address in DGROUP.  And when STATIC is omitted, the variables
are instead stored on the stack and cleared to zeros or null strings each
time the routine is entered.  There are several important ramifications of
this behavior.  Non-static procedures allocate new stack memory each time
they are invoked, and then release that memory when they exit.  It is
therefore possible to exhaust the available stack space when the subroutine
calls are deeply nested.
   For example, if you call one subprogram that then calls another which
in turns calls yet another, sufficient stack memory must be available for
all of the variables in all of the subprograms.  Besides the memory needed
for each variable in a subprogram or function, other data is also placed
onto the stack as part of the call.  For each parameter that is passed, 2
bytes are taken to hold its address.  Add to that 4 bytes to store the
segment and address to return to in the calling program.  Finally,
temporary variables that BASIC creates for its own purposes are also stored
on the stack in a non-static subprogram or function.
   Another important consideration when STATIC is omitted is that every
string variable must be deleted before the subprogram exits.  Because of
the way BASIC's string management routines operate, memory that holds
string descriptors and string data cannot simply be abandoned.  Every
string must be released explicitly by a called routine, at a cost of 9
bytes per string.  Please understand that you do not have to delete these
strings.  Rather, this is another case where BASIC creates additional code
without telling you.
   Again, I would love to be able to tell you that using STATIC is always
desirable, or that never using it always makes sense.  But unfortunately,
it just isn't that simple.  When a program becomes very large and complex,
only by counting variables can you be absolutely certain how much stack
space is really needed.  Although the FRE(-2) function may be used to
determine how much stack memory is currently available, it does not tell
how much memory is actually needed by each routine.
   To summarize the trade-offs between static and non-static variables:
Static variables are allocated permanently by the compiler, and the memory
they occupy can never be used for any other purpose.  Non-static variables
are placed onto the stack, and exist only while the subprogram or function
is in use.  Remember that you can also have a mix of static and non-static
variables in the same procedure.  By omitting STATIC after the subroutine
name, all variables will by default be non-static.  You can then override
that property for selected variables by using the STATIC keyword.  In the
section on debugging in Chapter 4, you will learn how to use CodeView to
determine the stack requirements for a procedure's variables.

Controlling the Stack Size

There are several ways to control the amount of memory that is dedicated
for use by the stack.  All versions of BASIC support the CLEAR command,
which takes an optional argument that sets the stack size.  The statement
CLEAR , , StackSize sets aside StackSize bytes for the stack.
Unfortunately, CLEAR also clears all of the data in a program, closes any
open files, and erases all arrays.  If you know ahead of time how much
stack memory will be needed, then using CLEAR as the first statement in a



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 74   -

program will not cause a problem.
   Even when CLEAR is used as the first statement in a program, there is
still one situation where that will not be acceptable.  When you use CHAIN
to execute a subsequent program, a CLEAR statement in that program will
clear all of the variables that have been declared COMMON.  Fortunately,
there are two solutions to this problem: BASIC PDS offers the STACK
statement, which lets you establish the size of the stack but without the
side effects of CLEAR.  For example, the statement STACK 5000 sets aside
5000 bytes for the stack.  The other solution is to use the /STACK: link
switch, which reserves a specified number of bytes.  All of the options
that LINK supports are described in Chapter 5.

RECURSION

I have already illustrated some of the situations in which a recursive
subprogram or function could be useful.  Now lets look at some actual
programming examples.  The Evaluate function in the listing below uses
recursion to reinvoke itself for each new level of parentheses it
encounters.

DECLARE FUNCTION Evaluate# (Formula$)

INPUT "Enter an expression: ", Expr$
PRINT "That evaluates to"; Evaluate#(Expr$)

FUNCTION Evaluate# (Formula$)

  'Search for an operator using INSTR as a table lookup.  If found,
  'remember which one and its position in the string.
  FOR Position% = 1 TO LEN(Formula$)
    Operation% = INSTR("+-*/", MID$(Formula$, Position%, 1))
    IF Operation% THEN EXIT FOR
  NEXT

  'Get the value of the left part, and a tentative value for the
  'right part.
  LeftVal# = VAL(Formula$)
  RightVal# = VAL(MID$(Formula$, Position% + 1))

  'See if there's another level to evaluate.
  Paren% = INSTR(Position%, Formula$, "(")

  'There is, call ourselves for a new RightVal#.
  IF Paren% THEN RightVal# = Evaluate#(MID$(Formula$, Paren% + 1))

  'No more to evaluate, do the appropriate operation and exit.
  SELECT CASE Operation%
    CASE 1                      'addition
      Evaluate# = LeftVal# + RightVal#
    CASE 2                      'subtraction
      Evaluate# = LeftVal# - RightVal#
    CASE 3                      'multiplication
      Evaluate# = LeftVal# * RightVal#
    CASE 4                      'division
      Evaluate# = LeftVal# / RightVal#
   END SELECT

END FUNCTION

When you run this program, enter an expression like 15 * (12 + (100 / 8)).
To keep the code to a minimum, Evaluate accepts only simple, two-number
expressions.  That is, it will not work with more than one math operator
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within each pair of parentheses as in 10 * (3 + 4 + 5).  However, the
parentheses may be nested to nearly any level.
   This function begins by examining each character in the incoming formula
string for a math operator.  If it finds one the operator number (1 through
4) is remembered, as well as its position in the formula string.  Next, VAL
is used to obtain the value of the digits to the left of the operator, as
well as the digits to the right.  Notice that it was not necessary to use
LEFT$ to isolate the left-most portion of the string, because VAL stops
examining the string when it encounters any non-digit character such as the
"+" or "(".
   Once these values have been saved, the next test determines if any more
parentheses follow in the formula.  If so, Evaluate calls itself, passing
only those characters that are beyond the next parenthesis.  Thus, the same
routine evaluates each new level, returning to the level above only after
all levels have been examined.  I encourage you to run this program in the
QuickBASIC editing environment, and step through each statement one by one
with the F8 Trace command.  In particular, use the Watch Variable feature
to view the value of Position% and LeftVal# as the function recurses into
subsequent invocations.
   It is important to understand the need for stack variables in this
program, and why STATIC must not be used in the function definition.  When
Evaluate walks through the incoming string and determines which math
operator is specified, that operator must be remembered throughout the
course of the function.  If a static variable were used for Operation%,
then its previous value would be destroyed when Evaluate calls itself.
Likewise, LeftVal# cannot be overwritten either, or it would not hold the
correct value when Evaluate returns to itself from the level below.
Therefore, as you step through this program you will observe that each new
invocation of Evaluate creates a new set of variables.
   As you can see, stack variables are necessary for the proper functioning
of a subprogram or function that calls itself.  They are also necessary
when one procedure calls another procedure which in turn calls the first
one again.  The key point is that each time a non-static routine is
invoked, new and unique variables must be created.  Otherwise, the variable
contents from a previous level above will be overwritten.
   Although recursion is a powerful and necessary technique, it should be
used only when necessary.  There is a substantial amount of overhead needed
to allocate stack memory and clear it to zeros, so invoking a non-static
routine is relatively slow.  And as I described earlier, every non-static
string variable must be deleted when the routine exits, at a cost of 9
bytes apiece.
   Some programmers use recursion even when there are other, more efficient
ways to solve a problem.  For example, the QuickBASIC manual shows a
recursive function that calculates a factorial.  (A factorial is derived
by multiplying a number by all of the whole numbers less than itself.  That
is, the factorial of 4 equals 4 * 3 * 2 * 1.)   However, a factorial can
be calculated faster and with less code using a simple FOR/NEXT loop as
shown below.  This version of Factorial is 20 percent faster than the
example given in the QuickBASIC manual.

FUNCTION Factorial#(Number%) STATIC
  Seed# = 1
  FOR X% = 1 TO Number%
    Seed# = Seed# * X%
  NEXT
  Factorial# = Seed#
END FUNCTION

PASSING PARAMETERS TO PROCEDURES

As you have already learned, BASIC normally passes data to a subprogram or
function by placing its address on the stack.  And when an entire array is
specified, the address of the array descriptor is sent instead.  But there
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are some cases where BASIC imposes restrictions on how variables and arrays
may be passed to a procedure.  Let's look now at some of the ways to get
around those restrictions.
   When using versions of BASIC earlier than PDS 7.1, it is not legal to
pass an array of fixed-length strings.  In fact, it is also impossible to
pass a single fixed-length string directly.  As you saw in Chapter 2, BASIC
copies every fixed-length string argument to a regular string, which adds
a lot of code and also wastes string memory.
   The simplest solution for fixed-length strings is to define an
equivalent TYPE that is comprised of a single string component.  Since a
TYPE variable or array can legally be passed, this is the easiest and most
direct approach, as shown here.

TYPE FLen
  S AS STRING * 100
END TYPE
DIM MyString AS Flen
CALL Subprogram(MyString)

SUB Subprogram(FLString AS FLen)
  ...
  ...
END SUB

If the subprogram being called is in a separate module, then the TYPE
definition must also be present in that file.  However, the DIM statement
is needed only in the program that passes the string.  This also works with
fixed-length string arrays, except that the DIM would have to be changed
to DIM MyArray(1 TO NumElements) AS FLen, and the subprogram's definition
would be changed to SUB Subprogram(FLString() AS FLen).
   BASIC PDS 7.1 supports passing a fixed-length string array directly, so
this work-around is not needed with that version.  Curiously, a single
fixed-length string may not be passed as a parameter in BASIC 7.1.  Since
a fixed-length string is closely related to a TYPE variable, this
limitation seems arbitrary at best.
   BASIC 7.1 also supports the use of BYVAL when passing numeric arguments
to procedures.  This is a particularly powerful feature, because it can
greatly reduce the amount of code needed to access those values within the
routine.  It also eliminates the need to make copies when a constant is
passed as an argument.  To take advantage of this feature, you simply
specify BYVAL in both the calling and receiving argument list, as shown
below.

DECLARE SUB Subroutine(BYVAL Arg1%, BYVAL Arg2%)
CALL Subroutine(Var1%, Var2%)

SUB Subroutine(BYVAL X%, BYVAL Y%)
  ...
  ...
END SUB

Because the actual value of the argument is being passed, there is no way
to return information back to the caller.  But in those situations where
an assignment to the original variable from within the routine is not
needed, BYVAL can eliminate a lot of compiler-generated code when dealing
with integers.  Of course, you may use a mix of BYVAL and non-BYVAL
parameters if you need the benefits of both methods in a single call.
   As proof of this savings, disassemblies of a one-statement subprogram
designed both ways is presented below, to show how an integer parameter is
accessed when it is passed by address and by value.
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SUB ByAddress(Param%) STATIC
LocVar% = Param%
  MOV  SI,[Param%]   ;get the address of Param%
  MOV  AX,[SI]       ;then read the value there
  MOV  LocVar%,AX    ;assign that to LocVar%
END SUB

SUB ByValue(BYVAL Param%) STATIC
LocVar% = Param%
  MOV  AX,Param%     ;read Param% directly
  MOV  LocVar%,AX    ;and assign it to LocVar%
END SUB

Note that the savings are only within the subroutine, and not when it is
called.  That is, 4 bytes are needed to pass an integer variable whether
by address or by value.  In fact, passing larger data types requires more
code to pass by value.  Any variable can be passed by address with 4 bytes
of compiler-generated code, because what is sent is a single address.  But
to pass a double precision number by value requires 16 bytes, since 4 bytes
of code are needed for each 2-byte portion of the number.
   In general, passing variables as parameters to a subprogram or function
is preferable to sharing them.  When many variables are shared throughout
a program, you run the risk of introducing bugs caused by accidentally
using the same variable name more than once.  However, sharing has some
definite advantages in at least two situations.
   The first is when a procedure must be accessed as quickly as possible.
Since a finite amount of code is needed to pass each parameter, some amount
of time is also required to execute that code.  Therefore, sharing a few,
carefully selected variables can improve the speed of your programs and
reduce their size as well.  Another important use for SHARED is to conserve
data memory.  Nearly all programs use at least a few temporary scratch
variables, perhaps as FOR/NEXT loop counters.  By dimensioning several such
variables as being shared throughout a program, the same variables can be
used repeatedly.  I often begin programs with a DIM SHARED statement such
as DIM SHARED X, Y, Z, and then use those variables as often as possible.
   One final trick I want to share is how to pass a large number of
parameters using less code than would normally be necessary.  Each argument
that is passed to a procedure requires 4 bytes of code.  In a complicated
routine that needs many parameters, this can quickly add up.  Worse, these
bytes are added for every call.  Therefore, a subprogram that accepts 10
parameters and is called 20 times will add 800 bytes to the final
executable file just to handle the parameters!
   One solution is to use an array, which is ideal when all of the
parameters are the same type of data.  An entire array can be passed as a
single parameter since only the array descriptor's address is needed.  Even
better, however, is to create a TYPE variable, and then assign all of the
parameters to it.  A TYPE variable can hold nearly any amount and type of
data, and it too can be passed using only 4 bytes.  Although this does
require a separate assignment for each TYPE component, you simply use the
TYPE where the regular variables would have been assigned.  By eliminating
the added code to pass many parameters, programs that use a TYPE this way
will also be much faster.

MODULAR PROGRAMMING

QuickBASIC versions 4.0 and later let you load subprograms and functions
from multiple files into the editing environment at the same time.  This
further enhances their reusability, since the different modules can be
treated as "black boxes" whose purpose is already known.  Once a routine
has been developed and debugged, it can be used again and again, without
further regard for the names of the variables within the routines.  Indeed,
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many of the utility routines included with this book are provided as
separate modules, intended to be loaded along with your programs.
   Any variable name can be passed as an argument to a procedure, even if
a different name is used to represent the same variable within the
procedure.  If you have defined a subprogram such as SUB MySub(X%, Y!, Z$),
then you could call it using CALL MySub(A%, B!, C$).  Of course, the
variables you pass must be of the same data type as the subroutine expects.
   Because reusability is an important consideration in the design of any
procedure, it generally makes sense to store it in its own source file.
This lets you combine the same module repeatedly with any number of
programs.  The alternative would be to merge the file into each program
that needs it.  But maintaining multiple copies of the same code wastes
disk space.  Further, if a bug is found in the routine, you will have to
identify all of the programs that contain it, and manually correct each
one of them.
   Another important advantage of using separate files is that you can
exceed the usual 64K code size barrier.  Unlike the data segment which is
comprised of the sum of all data in all modules, an .EXE file can contain
multiple code segments.  Each BASIC module has a single code segment, and
each of these can be as large as 64K.  In fact, dividing a program into
separate files is the *only* way to exceed the usual 64K code size
limitation.
   Although using a separate source file for each subprogram makes sense
in many situations, there is one slight disadvantage.  When all of the
various program modules are linked together, each separate module adds
approximately 100 bytes of overhead.  None the less, for all but the
smallest programming projects, the advantages of using separate modules
will probably outweigh the slight increase in code size.

INCLUDE FILES

Another useful BASIC feature that can help you to create modular programs
is the Include file.  An Include file is a separate file that is read and
processed by BASIC at a specified place in your program.  The statement
'$INCLUDE: 'filename' tells QB or BC to add the statements in the named
file to your source code, as if that code had been entered manually.  If
a file extension is not given, then .BAS is assumed.  Many of the files
that Microsoft provides with QuickBASIC use a .BI extension, which stands
for "BASIC Include".  Some programmers use .INC, and you may use whatever
seems appropriate to the contents of the file.
   Include files are ideal for storing DECLARE, CONST, TYPE, and COMMON
statements.  Except for COMMON, none of these statements add to the size
of your program, and none of them create any executable code.  Therefore,
you could create a single include file that is used for an entire project,
and add an appropriate '$INCLUDE directive to the beginning of each program
source file.  Unused DECLARE and CONST statements and TYPE definitions are
ignored by BASIC if they are not referenced.  However, they do impinge
slightly on available memory within the QuickBASIC editor, since BASIC has
no way to know that they are not being used.  Similarly, BC must keep track
of the information in these statements as it compiles your program.  But
again, there is no impact on the size of your final executable program.
   In general, I recommend that you avoid placing any executable statements
into an include file.  Because the code in an include file is normally
hidden from your view, it is easy to miss a key statement that is causing
a bug.  Likewise, a '$DYNAMIC or '$STATIC command hidden within an include
file will obscure the true type of any arrays that are subsequently
dimensioned.  Perhaps worst of all is placing a DEFINT or other DEFtype
statement there, for the same reason.

QUICK LIBRARIES

Quick Libraries contribute to modular programming in two important ways.
Perhaps the most important use for a Quick Library is to allow access to
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subprograms and functions that are not written in BASIC.  All DOS programs
and subroutines--regardless of the language they were originally written
in--end up as .OBJ files suitable for LINK to join together.  But the QB
and QBX editing environments manipulate BASIC source code, and interpret
the commands rather than truly compile them.  Therefore, the only way you
can access a routine written in assembly language or C within QuickBASIC
is by placing the routine into a Quick Library.
   Quick Libraries also let you store completed BASIC subprograms and
functions out of the way from the rest of your program.  If you have a
large number of subroutines in one program, the list of names displayed
when F2 is pressed can be very long and confusing.  Since QuickBASIC does
not display the routines in a Quick Library, there will be that many fewer
names to deal with.  Another advantage of placing pre-compiled BASIC
routines into a Quick Library is that they can take less memory than when
the BASIC source code is loaded as a module.  This is true especially when
you have many comments in the program, since comments are of course not
compiled.
   Be aware that there are a few disadvantages to placing BASIC code into
a Quick Library.  One is that you cannot step and trace through the code,
since it is not in its original BASIC source form.  Another is that Quick
Libraries are always stored in normal DOS memory, as opposed to expanded
memory which QBX [and VB/DOS] can use.  When a BASIC subprogram or function
is less than 16K in size and EMS is present, QBX [and VB/DOS] will place
its source code in expanded memory to free up as much conventional memory
as possible.

ERROR AND EVENT HANDLING
========================

As a BASIC programmer, there are several types of errors that you must deal
with in a program.  These errors fall into two general categories: compile
errors and runtime errors.  Compile errors are those that QB or BC issue,
such as "Syntax error" or "Include file not found".  Generally, these are
easy to understand and correct, because the QuickBASIC editor places the
cursor beneath the offending statement.  In some cases, however, the error
that is reported is incorrect.  For example, if your program uses a
function in a Quick Library that expects a string parameter and you forgot
to declare it, BASIC reports a "Type mismatch" error.  After all, with a
statement such as X = FuncName%(Some$), how could BASIC know that FuncName%
is not simply an integer array?  Assuming that it is an array, BASIC
rejects Some$ as being illegal for an element number.
   Runtime errors are those such as "File not found" which are issued when
your program tries to open a file that doesn't exist, or is not in the
specified directory.  Other common runtime errors are "Illegal function
call", "Out of string space", and "Input past end".  Many of these errors
can be avoided by an explicit test.  If you are concerned that string space
might be limited you can query the FRE("") function before dimensioning a
dynamic string array.  However, some errors are more difficult to
anticipate.  For example, to determine if a particular directory exists you
must use CALL Interrupt to query a DOS service.
   The conventional way to handle errors is to use ON ERROR, and design an
error handling subroutine.  There are a number of problems with using ON
ERROR, and most professional programmers try to avoid using it whenever
possible.  But ON ERROR does work, and it is often the simplest and most
direct solution in many programs.  The short listing below shows the
minimum steps necessary to implement an error handler using ON ERROR.

ON ERROR GOTO HandleErr
FILES "*.XYZ"
END

HandleErr:
SELECT CASE ERR
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  CASE 53: PRINT "File not found"
  CASE 68: PRINT "Device unavailable"
  CASE 71: PRINT "Disk not ready"
  CASE 76: PRINT "Path not found"
  CASE ELSE: PRINT "Error number"; ERR
END SELECT
RESUME NEXT

The statement ON ERROR GOTO HandleErr tells BASIC that if an error occurs,
the program should jump to the HandleErr label.  Without ON ERROR, the
program would display an error message and then end.  Since it is unlikely
that you have any files with an .XYZ extension, BASIC will go to the error
handler when this program is run.  Within the error handling routine, the
program uses the ERR function to determine the number of the error that
occurred.  Had line numbers been used in the program, the line number in
which the error occurred would also be available with the ERL function.
   In this brief program fragment, the most likely error numbers are
filtered through a SELECT CASE block, and any others will be reported by
number.  Regardless of which error occurred, a RESUME NEXT statement is
used to resume execution at the next program statement.  RESUME can also
be used with an explicit line label or number to resume there; if no
argument is given BASIC resumes execution at the line that caused the
error.  In many cases a plain RESUME will cause the program to enter an
endless loop, because the error will keep happening repeatedly.
   In this case, the file will not exist no matter how many times BASIC
tries to find it.  Therefore, a plain RESUME is not appropriate following
a "File not found" or similar error.  Had the error been "Disk not ready",
you could prompt the user to check the drive and then press a key to try
again.  In that case, then, RESUME would make sense.  Although BASIC's ON
ERROR can be useful, it does have a number of inherent limitations.
   Perhaps the worst problem with ON ERROR is that it often increases the
program's size.  When you use RESUME NEXT, you must also use the /x compile
switch.  Unfortunately, /x adds internal address labels to show where each
statement begins, so the RESUME statement can find the line that caused the
error.  These labels are included within the compiled code and therefore
increases its size.
   Another problem with ON ERROR is that it can hide what is really
happening in a program.  I recommend strongly that you REM out all ON ERROR
statements while working in the QuickBASIC editing environment.  Otherwise,
an Illegal function call or other error may cause QuickBASIC to go to your
error handler, and that handler might ignore it if the error is not one you
were expecting and testing for.  If that happens and your program uses
RESUME NEXT, you might never even know that an error occurred!
   Yet another problem with ON ERROR is that it's frankly a clumsy way to
program.  Most languages let you test for the success or failure of the
most recent operation, and act on or ignore the results at your discretion.
Pascal, for example, uses the IOResult function to indicate if an error
occurred during the last input or output operation.
   Finally, BASIC generates errors for many otherwise proper circumstances,
such as the FILES statement above.  You might think that if no files were
found that matched the .XYZ extension given, then BASIC would simply not
display anything.  Indeed, an important part of toolbox products such as
Crescent Software's QuickPak Professional are the routines that replace
BASIC's file handling statements.  By providing replacement routines that
let you test for errors without an explicit ON ERROR statement, an add-on
library can help to improve the organization of your programs.
   As I mentioned earlier, some errors can be avoided by using CALL
Interrupt to access DOS directly.  (One important DOS service lets you see
if a file exists before attempting to open it.)  But critical errors such
as those caused by an open drive door require assembly language.  In
Chapter 12 you will learn how to bypass BASIC and access DOS directly using
CALL Interrupt.
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EVENT HANDLING

BASIC includes several forms of event handling, and like ON ERROR, these
too are avoided when possible by many professional programmers.  Event
handling lets your programs perform a GOSUB automatically and without any
action on your part, based on one or more conditions.  Some of the more
commonly used event statements are ON KEY, ON TIMER, and ON COM.  With ON
KEY, you can specify that a particular key or combination of keys will
temporarily halt the program, and branch to a GOSUB routine designated as
the ON KEY handler.  ON TIMER is similar, except it performs a GOSUB at
regular intervals based on BASIC's TIMER function.  Likewise, ON COM
performs a GOSUB whenever a character is received at the specified
communications port.
   The concept of event handling is very powerful indeed.  For example, ON
COM allows your program to go about its business, and also handle
characters as they arrive at the communications port. ON TIMER lets you
simulate a crude form of multi-tasking, where control is transferred to a
separate subroutine at one second intervals.  Unfortunately, BASIC's event
handling is not truly interrupt driven, and the resulting code to implement
it adds considerably to a program's size.
   When any of the event handling methods are used, BASIC calls an interval
event dispatcher periodically in your program.  These calls add five bytes
apiece, and one is added at either every statement, or at every labeled
statement [depending on whether you compiled using /v or /w respectively].
This can increase your program's size considerably.  Even worse, the
repeated calls have an adverse effect on the speed of most programs.  Like
ON ERROR, BASIC's event handling statements provide a simple solution that
is effective in many programming situations.  And also like ON ERROR, they
are best avoided in important programming projects.
   Using purely BASIC techniques, the only alternative to event trapping
is polling.  Polling simply means that your program manually checks for
events, instead of letting BASIC do it automatically.  The primary
advantage of polling is that you can control when and where this checking
occurs.  The disadvantage is that it requires more effort by you.
   To see if any characters have been received from a communications port
but are still waiting to be read you would use the LOF function.  And to
see if a given amount of time has elapsed you must query the TIMER function
periodically.  If true interrupt driven event handling were available in
BASIC, that would clearly be preferable to either of the two available
methods.  However, only with Crescent's P.D.Q. product can such capability
be added to a BASIC program.

PROGRAMMING STYLE

Programming style is a personal issue, and every programmer develops his
or her own particular methods over time.  Some aspects of programming style
have little or no impact on the quality of the final result.  For example,
the number of columns you indent a FOR/NEXT loop will not affect how
quickly a sort routine operates.  But there are style factors that can help
or harm your programs.  One is that clearly commenting your code will help
you to understand and improve it later.  Another is when more than one
programmer is working on a large project simultaneously.  If neither
programmer can figure out what the other is doing, the program's quality
will no doubt suffer.
   Clearly, no one can or even should try to force a particular style or
ideology upon you.  However, I would like to share some of the decisions
that I have made over the years, and explain why they make sense to me.
Of course, you are free to use or not use these opinions as you see fit.
Programmers are as unique and varied as any other discipline, and no one
set of rules could possibly serve everyone equally.  Whatever conventions
you settle upon, be consistent above all else.
   The most important convention that I follow is to use DEFINT A-Z as the
first statement in every program.  For me, using integers verges on
religion, and my fingers could type DEFINT even if I were asleep.  As I
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have stated repeatedly, integers should be used whenever possible, unless
you have a compelling reason not to.  Integers are much faster and smaller
than any other variable type BASIC offers.  Nearly all of the available
third party add-on products use integers parameters wherever possible, and
so should the routines you write.  The only reasonable exception to this
is when writing financial or scientific programs, or other math-intensive
applications.
   Equally important is adding sufficient and appropriate comments.  Some
programmers like to use comment headers that identify each related block
of code; others prefer to comment every line.  I recommend doing both,
especially if other people will be reading your programs.  I also prefer
using an apostrophe as a comment delimiter, rather than the more formal
REM.  There are only so many columns available for each comment line, and
it seems a shame to waste the space REM requires.
   When writing a subprogram or function that you plan to use again in
other projects, include a complete heading comment that shows the purpose
of the routine and the parameters it expects.  If each parameter is listed
neatly at the beginning of the file, you can create a hardcopy index of
routines by printing that section of each file.
   Avoid comments that are obvious or redundant, such as this:

   Count = Count + 1 'increment Count

If Count is keeping track of the number of lines read from a file, a more
appropriate comment would be 'show that another line was read.  Also avoid
comments that are too cute or flip.  Simply state clearly what is happening
so you will know what you had in mind when you come back to the program
next month or next year.
   Selecting meaningful variable names is equally valuable in the overall
design of a program.  If you are keeping track of the current line in a
file, use a variable name such as CurLine.  Although BASIC in some cases
lets you use a reserved word as a variable name, I recommend against that.
Over the years, different versions of BASIC have allowed or disallowed
different keywords for variables.  While QuickBASIC 4.5 lets you use Name$
as a variable, there is no guarantee that the next version will.  Also, be
aware that variables names which begin with the letters Fn are illegal,
because BASIC reserves that for user-defined functions.  Using the variable
FName$ to hold a file name may look legal, but it isn't.
   Don't be ashamed to use GOTO when it is appropriate.  There are many
places where GOTO is the most direct way to accomplish something.  As I
showed earlier in this chapter, GOTO when used correctly can sometimes
produce smaller and faster code than any other method.
   Use line labels instead of line numbers.  The statement GOSUB 1020
doesn't provide any indication as to what happens at line 1020.  GOSUB
OpenFile, on the other hand, reads like plain English.  The only exception
to this is when you are debugging a program that crashes with the message
"Illegal function call at line no line number".  In that case, you should
*add* line numbers to your program and run it again.  A program that reads
a source file and prints each line to another file with sequential numbers
is trivial to write.  I will also discuss debugging in depth in Chapter 4.
   Even though using DEFINT is supposed to force all subsequent CONST, DEF
FN, and FUNCTION declarations to be integer, a bug in QuickBASIC causes
untyped names to occasionally assume the single precision default.
Therefore, I always use an explicit percent sign (%) to establish each
function's type.  In fact, I use whatever type identifier is appropriate
for functions and CONST statements, to make them easily distinguishable in
the program listing.  For example, in the statement IF CurRow > MaxRows%
THEN CurRow = MaxRows%, I know that MaxRows% has been defined as a
constant.  Some people prefer to use all upper-case letters for constants,
though I prefer to reserve upper case for BASIC keywords.
   Although BASIC supports the optional AS INTEGER and AS SINGLE directives
when defining a subprogram or function, that wastes a lot of screen space.
I greatly prefer using the variable type identifiers.  That is, I will use
SUB MySub(A%, B!) rather than SUB MySub(A AS INTEGER, B AS SINGLE).  The
same information is conveyed but with a lot less effort and screen clutter.
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   A well-behaved subroutine will restore the PC to the state it was when
called.  If you have subprogram that prints a string centered on the bottom
line of the screen, use CSRLIN and POS(0) to read the current cursor
location before you change it.  Then restore the cursor before you exit.
   I like to indent two spaces within FOR/NEXT and IF/THEN blocks.
Although some people prefer indenting four or even eight columns for each
level, that can quickly get out of hand when the blocks are deeply nested.
Nothing is harder to read than code that extends beyond the edge of the
screen.  But whatever you do, please *do not* change the tab stop settings
in the QuickBASIC editor, unless you are the only one who will ever have
to look at your code.  Even though the program may look fine on your
screen, the indentation will be completely wrong on everyone else's PC.
   When creating a dynamic array I prefer REDIM to a previous '$DYNAMIC
statement.  REDIM is clearer because it shows at the point in the source
where the array is dimensioned that this is a dynamic array.  Otherwise you
have to scan backwards through your source code looking for the most recent
'$DYNAMIC or '$STATIC, to see what type of array it really is.  By the same
token, using ever-changing DEFtype statements throughout your code is poor
practice.  Further, if a variable is a string, always include the dollar
sign ($) suffix when you reference it.  If you use DEFSTR S or even worse,
DIM xxx AS STRING and then omit the dollar sign, nobody else will
understand your program.
   I also prefer to explicitly dimension all arrays, and not let BC create
them with the 11-element default (including element zero).  If you need
less than 11 elements, the memory is wasted.  And if you need more, then
your program will behave unpredictably.  Not dimensioning every array is
sloppy programming.  Period.
   Avoid repeated calls to BASIC's internal functions if possible.  In the
listing below, the first example creates 61 bytes of code, while the second
generates only 46 bytes.

Not recommended:

IF CSRLIN = 1 OR CSRLIN = 6 OR CSRLIN = 12 THEN
  ...
END IF

Much better:

Temp = CSRLIN
IF Temp = 1 OR Temp = 6 OR Temp = 12 THEN
  ...
END IF

As I stated earlier in this chapter, using SELECT CASE instead of IF will
also eliminate this problem.  Many BASIC statements are translated into
calls, and each call takes a minimum of five bytes.
   Your programs will be easier to read if you evaluate temporary
expressions separately.  Even though BASIC lets you nest parentheses to
nearly any level, nothing is gained by packing many expressions into a
single statement.  In the examples below that strip the extension from a
file name, the first creates only a few bytes less code.  Although this may
seem counter to the other advice I have given, a slight code increase is
often more than offset by a commensurate improvement in clarity.

File$ = LEFT$(File$, INSTR(File$, ".") - 1)

Dot = INSTR(File$, ".")
File$ = LEFT$(File$, Dot - 1)
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The last issue I want to discuss is how to pronounce BASIC keywords and
variable names.  Don't laugh, but many programmers have no idea how to
communicate the words LEFT$ or VARSEG over the telephone.  Some people say
"X dollar" for X$ even though "X string" is so much easier to say.  Another
keyword that's hard to verbalize is VARPTR.  I prefer "var pointer" since
it is, after all, a pointer function.  CHR$(13) is pronounced "character
string thirteen", again because that's the clearest and most straight
forward interpretation.  Likewise, INSTR is pronounced "in string" and
LEFT$ would be said as "left string".  If you're not sure how to pronounce
something, use the closest equivalent English wording you can think of.

SUMMARY

In this chapter you have learned how BASIC's control flow statements are
constructed, and how the compiler-generated code is similar regardless of
which statements are used.  You also learned where GOSUB and GOTO should
be used, and when subprograms and functions are more appropriate.  The
discussion on logical operations showed how AND, OR, EQV, and XOR operate,
and how they can be used to advantage in your programs.
   I have explained in detail exactly what recursion is, and how recursive
subroutines can perform services that are not possible using any other
technique.  You have also learned about the importance of the stack in
recursive and other non-static subroutines.  Passing parameters to
subprograms and functions has also been described in detail, along with
some of the principles of modular program and event handling.
   Finally, I have shared with you some of my own personal preferences
regarding programming style, and when and how such conventions can make a
difference.  Although this is a personal issue, I firmly believe it is
important to develop a consistent style and stick with it.
   In Chapter 4 you will learn debugging methods using both the QuickBASIC
editing environment and Microsoft's CodeView debugger.  The successful
design of a program is but one part of its development.  Once it has been
written, it must also be made to work correctly and reliably.  As you will
learn, there are many techniques that can be used to identify and correct
common programming errors.

                                 CHAPTER 4

                           DEBUGGING STRATEGIES

There are many individual components which contribute to a completed
application.  The logical flow of the program must be determined, the user
interface must be designed, and appropriate algorithms must be selected.
But no matter how much effort you devote to the design and implementation
of a program, the bottom line is it must also work correctly.
     In an ideal scenario, you would begin writing a program by first
jotting down some notes that describe its operation.  Next, you would
create an outline listing each of the program's major components.  You
would then determine all of the subroutines and functions that are needed,
and perhaps even create a flow chart showing each of the paths that could
be taken.  Properly prepared for any situation that might arise, you
finally write the actual code and find that it works perfectly.  Now,
what's wrong with this picture?  Few people actually program that way!
     In practice, many programmers simply start coding with little
forethought and no detailed plan.  They begin with the first statement and
continue to the last, occasionally reworking portions into subroutines as
necessary.  After all, planning is not nearly as much fun as programming,
and everyone knows that fun is the most important part.  Believe it or not,
I agree.  There's nothing really wrong with plodding through a program,
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stabbing here and there until it works.  Indeed, some great algorithms
developed out of aimless doodling.  I have personally never drawn a flow
chart, and I have no plans to start now.
     What I will address here is how to find and correct problems when they
do occur.  There are more things that can go wrong with a program than can
go right, and tracking down an elusive "Illegal function call" error that
appears only occasionally is definitely not much fun.  How quickly you can
solve these problems is directly related to your understanding of
programming in general, and to your familiarity with the tools available.
     In this chapter you will learn how to identify problems in your
programs, and also how to solve them.  Programming errors, or bugs, can be
as simple as a misspelled variable name, and as complex and ornery as an
internal flaw in BASIC itself.  The BASIC editing environment provides a
wealth of powerful debugging features, and understanding how to use them
will help you produce programs that are reliable and error free.

COMMON PROGRAMMING ERRORS
=========================

There are three distinct types of programming errors: simple misspellings
and other naming or syntax errors, incorrect logic such as misunderstanding
or incorrectly coding an algorithm, and failing to understand some of the
finer points of the BASIC language.  No matter how carefully you type, no
matter how much forethought you apply to a particular problem, and no
matter how often you read the BASIC manuals, it is impossible to completely
avoid making mistakes.
     The first category includes those errors caused by simple mistakes
such as misspelling a variable or procedure name.  Trying to call a
subprogram that doesn't exist will be immediately obvious, because BASIC
gives you an error message before the program can be run.  But an incorrect
variable name will return the wrong results with no warning.
     Passing the wrong number of arguments to a procedure may or may not be
reported, depending on whether the routine has been declared.  Assembly
language routines in a Quick Library can be particularly pesky in this
regard.  Although BASIC automatically generates a DECLARE statement for
BASIC subprograms and functions you have loaded in source form, it does not
do this for routines in a Quick Library.  If you call an assembly language
routine incorrectly, you will probably crash the PC.  However, it is also
possible to corrupt string memory and not know it.  Worse, a "String space
corrupt" error is often not reported until much later in the program.  If
you run the short program below in the QuickBASIC 4.5 editor, it will
appear to operate correctly.

X$ = SPACE$(1000)       'create a string
POKE SADD(X$) - 2, 100  'corrupt string memory
PRINT "Testing"
X% = 1
PRINT "More testing"
X% = 2
PRINT "Yet more testing"
X% = 3

Here, the POKE statement is overwriting the back pointer that belongs to
X$, which is one type of string corruption that can occur.  But QuickBASIC
doesn't know that this has happened, because it has no reason to check the
integrity of its string memory until another string assignment is made.
However, adding the statement PRINT FRE("") anywhere after the POKE command
causes BASIC to check string memory, and report the error.  Even if your
program does not use POKE, calling a procedure incorrectly can cause it to
overwrite memory in this fashion.
     Another simple error is inadvertently using the same variable name
twice, or omitting a type declaration character from a variable name.  For
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example, if you are using a variable named Bytes& to track how many bytes
of a file have been read, accidentally using Bytes later on will give the
wrong results.  If a DEFINT statement is in effect, then Bytes will be an
integer variable.  Otherwise, it will be single precision which is also
incorrect.  Unless you use the DIM...AS statement to declare a variable
explicitly, BASIC lets you have different variables with the same name.
That is, Var%, Var!, and Var# can all coexist in the same program, and each
is a unique variable.
     Similarly, using the wrong variable entirely will cause your program
to operate incorrectly, and again with no error message displayed.  More
than once I have had a program with one FOR loop nested within another, and
used the outer loop counter variable when I meant to use the inner one.
     Another common situation is caused by changing the name of a variable
during the course of writing a program.  For example, you may have a
variable named BPtr that tracks where you are reading within a buffer.  If
you later decide to change that name to BufPointer because it is more
meaningful, you must also remember to change all occurrences of the name.
Of course, BASIC's search and replace feature minimizes that problem.  More
important, though, you must make a mental note to use the new name as you
continue to develop the program.
     Forgetting to declare a function can also lead to incorrect results
that produce no warning.  If an integer function is not declared, then
BASIC will dimension an array with that name if the function expects a
numeric argument.  When BASIC encounters the statement X = FuncName%(Y%) it
assumes that FuncName% is an integer array, and create an array containing
the default 11 elements.  In this case X will be assigned a value of zero,
or you will receive a "Subscript out of range" error if Y% is not between 0
and 11.  I once observed an unexplainable "Out of string space" error that
was caused by the statement Size = ScreenSize%(ULRow, ULCol, LRRow, LRCol).
ScreenSize% was a function present in a Quick Library, but without a
DECLARE statement BASIC created a 4-dimensional integer array.

LOGIC ERRORS
============

The second cause of bugs is logic errors, and these include adding when you
meant to subtract, or using the wrong variable altogether.  Programs that
manipulate pointers (variables that hold the addresses of other variables)
are particularly prone to errors in logic.  Another common logic error is
forgetting to trim the leading or trailing blanks from a file or directory
name before using it.  If the operator enters "  c:\thisfile.dat" and you
try to open that file, BASIC will report a "Bad file name" error.
     Another cause of logic errors is failing to consider all of the things
a user may enter.  An inexperienced operator is likely to enter data that
you as the programmer would never consider, or select menu items in an
order that makes no sense.  Indeed, never underestimate the value of beta
testers.  After you have exhausted all of the possibilities you can think
of, give the program to a 4 year old child, and ask him or her to try it
while you watch.  Your uncle Ernie would be a good beta tester too, and the
less he knows about your program, the more valuable his contribution will
be.  People who know absolutely nothing about computers have an uncanny
knack for creating "Illegal function call" errors in a program that you
just know is perfect.
     Similarly, you must consider all of the possible error conditions that
could happen in a program.  In an error handler that has a CASE statement
for each possibility you anticipate, also include a CASE ELSE clause for
those you haven't thought of.  The short listing that follows shows a
typical error handler that incorporates this added safety measure.

ON ERROR GOTO HandleErr
  ...
  ...
HandleErr:
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  SELECT CASE ERR
    CASE 7, 14
      PRINT "Out of memory"
    CASE 24, 25, 27
      PRINT "Fix the printer"
    CASE 53
      PRINT "File not found"
    CASE ELSE
      PRINT "Error number"; ERR
  END SELECT
  ...
  ...

The CASE ELSE clause lets you accommodate any possibility, and your user
can then at least report to you what the error number was.  This simple
example doesn't include all of the possibilities, but you can certainly see
the general concept.
     Another common logic error is using the same file number twice.  When
a file has been opened as #1, that number remains in use until the file is
closed.  This can be problematical when writing reusable modules, since
there is no way to know which files may be in use by the main program.
Some programmers use #99 or another unlikely number in a routine that will
be reused in many programs.  But even that approach is flawed, because you
have to remember which numbers are used by which routines.
     BASIC's FREEFILE function is intended to solve this problem, and it
returns the next available file number.  Be sure to save the results
FREEFILE returns, however, since the value will change as soon as the next
file is opened.  The code below shows both the wrong and right ways to use
FREEFILE.

Wrong:

  OPEN "accounts.dat" FOR INPUT AS #FREEFILE
  INPUT #FREEFILE, X$    'FREEFILE has changed!
  CLOSE #FREEFILE

Right:

  FileNum = FREEFILE    'get and save the number
  OPEN "accounts.dat" FOR INPUT AS #FileNum
  INPUT #FileNum, X$
  CLOSE #FileNum

In the first example if FREEFILE returns, say, a value of 2, then it will
return 3 at the INPUT statement which is of course incorrect.  Therefore,
you must save the value FREEFILE returns, and use that for all subsequent
file accesses.  This situation also occurs with INKEY$, because once a
character has been returned it is no longer available unless you saved it.
     Two other frequent problems are attempting to use LSET to assign
characters into a string that does not exist, and failing to clear a
counter variable within a static subprogram or function.  The second
problem can be especially frustrating, because the routine will work
correctly the first time it is invoked.  In the function below, a counter
returns the number of embedded control characters it finds in a string.

FUNCTION CtrlCount%(Work$) STATIC

  FOR X% = 1 TO LEN(Work$)
    IF ASC(MID$(Work$, X%, 1)) < 32 THEN
      Count% = Count% + 1
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    END IF
  NEXT

  CtrlCount% = Count%    'return the count

END FUNCTION

The problem here is that Count% retains its value between function
invocations.  Therefore, each time CtrlCount% is used it will return ever
higher values.  One solution is to add the statement Count% = 0 at the
beginning of the function.  Another is to omit the STATIC option from the
function definition.

UNDERSTANDING BASIC'S QUIRKS

The third type of error is caused by not understanding some of BASIC's
finer points and quirks.  For example, some people do not realize that
omitting the third argument from MID$ causes it to return all of the
remaining characters in a string.  To see if a drive letter was given as
part of a file name and if so extract it, you might use a statement such as
IF MID$(FileName$, 2) = ":" THEN Drive$ = LEFT$(FileName$, 1).  But since
the number of characters was not specified to MID$, it returned all but the
first character in the string.  Unless the string was a drive letter and
colon only ("C:"), the test for a colon could never work.  The solution, of
course, is to use MID$(FileName$, 2, 1).
     Another instance in which an intimate knowledge of BASIC's
idiosyncracies comes into play can affect the earlier example of a file
name that contains leading blanks.  Most programmers do not use INPUT to
accept information, unless the program is very simple and it will be used
only occasionally.  However, asking for a file name with INPUT is one way
to avoid that problem, because INPUT strips all leading and trailing blank
spaces, as well as CHR$(9) tab characters.  The more useful LINE INPUT, on
the other hand, does not strip leading blanks and tabs.  Most programmers
would never be so foolish as to enter a file name with leading blanks.  So
this is yet another situation where it is important to consider all of the
possibilities.
     It is also possible to crash a program by using the ASC function when
the string might be null.  Again, *you* would never press Enter alone in
response to a prompt for a file name or other mandatory information, but
someone else might.
     Another BASIC quirk is caused by rounding errors.  As you saw in
Chapter 2, adding or multiplying many numbers in succession can produce
results that are not precisely correct.  Instead of checking to see if a
value is zero, it is often better to compare it to a very small number.
That is, instead of IF Value# = 0 you would use IF Value# < .000001 or IF
Value# < .000001 AND Value# > -.000001 or something similar.  Also, some
numbers simply cannot be represented at all.  If you try to enter the
statement X# = .00000000001 in the QuickBASIC 4.5 editor, the value will be
converted to 9.999999999999999D-12 as soon as you press Enter.
     Although not technically a BASIC quirk, many programmers forget that
variables within a DEF FN function are by default global.  Unless you
include an explicit STATIC statement listing each variable that is to be
local to the function, it is likely that an unexpected change will be made
to a variable in the main program.
     Some programming situations require that you obtain the address of a
string variable using SADD.  However, SADD is not legal for use with a
fixed-length string or the string portion of a TYPE variable.  More
important, when using BASIC PDS far strings you must also remember to use
SSEG to get the string's data segment.  Using VARSEG will not create an
error; however, the program will not work correctly.
     Related to that, it is important to remember that strings and dynamic
arrays move around in memory--often at unexpected times.  The program below
appends a zero character to one string for each zero that is found in
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another string.  Since BASIC may move Work$ during the course of assigning
Zero$, this code will fail eventually:

Address = SADD(Work$)
FOR Y = Address TO Address + LEN(Work$) - 1
  IF PEEK(Y) = 48 THEN Zero$ = Zero$ + "0"
NEXT

Another particularly insidious bug can result if you inadvertently add
parentheses around a variable that is passed to a subprogram or function.
In the example below, a subprogram that intentionally modifies a parameter
has been declared and is then called without the CALL keyword.

DECLARE SUB Square(Param%)
Square (Value%)

SUB Square(Value%) STATIC
  Value% = Value% * Value%
END SUB

Because of the unnecessary and incorrect use of parentheses, a copy of the
argument is sent to Square instead of the argument itself, with the result
that Value% is never actually changed.  The fix is to either remove the
parentheses, or add the word CALL.  Another, related issue is placing a
DEFINT after DECLARE statements.  In the example below, the parameters X,
Y, and Z are assumed by BASIC to be single precision, even though this is
clearly not what was intended.

DECLARE SUB (X, Y, Z)  'X, Y, and Z are singles!
DEFINT A-Z
 .
 .

The final issue I want to address here is potential overflow errors.  The
statement IF IntVar% * 14 > 1000000 can never be true, because BASIC
performs integer math assuming an integer range only.  Unless you compile
your program using the /d debug option, the error will be unreported in a
compiled program.  If this statement is executed within the QB environment,
BASIC will report an overflow error, even though the instruction certainly
appears to be legal.  But since integer math assumes an integer result, the
product of IntVar% times 14 will overflow the range of integer values if
IntVar% is greater than 2,340.
     One solution is to use a long integer for IntVar, and BASIC will then
use the range of long integers for the comparison.  Using a long integer
wastes memory, however, and calculations on long integers are slower and
require more code to implement.  A much better solution is to use CLNG
(Convert to Long), which tells BASIC to assume a long integer result.
     The statement IF CLNG(IntVar%) * 14 > 1000000 will create a long
integer version of IntVar%, and then multiply the result times 14 and use
that for the subsequent comparison.  Unlike the copies that BASIC makes
which steal DGROUP memory, the long integer conversion in this instance is
handled within the CPU's registers.  CLNG when used this way is really just
a compiler directive, as opposed to a called library routine.  Another
solution is to add an ampersand after the constant 14, thus: IF IntVar% *
14& > 1000000.  Again, no additional DGROUP memory is used to handle 14 as
a long integer value.
     Another interesting use of CLNG and CINT--unrelated to debugging but
worth mentioning none the less--is to reduce the size of comparison code.
When you use a statement such as IF X% > VAL(Some$), a floating point
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comparison is performed even if Some$ holds an integer value.  By replacing
that example with IF X% > CINT(VAL(Some$)) 6 bytes of code can be saved.
The CINT tells BASIC that it will not have to perform any floating point
rounding when it compares the two values.

DEBUGGING AND TESTING TECHNIQUES
================================

When you are developing a large application that is comprised of many
individual modules, there are several useful debugging techniques you can
employ.  One is to create short test-bed programs that exercise each
subprogram and function.  Finding an error in a complex program with many
interdependencies between subroutines can be a tedious prospect at best.
If you instead create a small program whose sole purpose is to test a
particular subprogram, you will be better able to focus on just that
routine.
     Another useful technique for detecting and preventing sporadic errors
is to test your code on "boundary conditions".  If you have a routine that
reads and process a file in 4K (4096 byte) increments, test it with a file
that is exactly 4096 bytes long, as well as with other test files that are
4095 and 4097 bytes long.
     Perhaps nothing is more frustrating than having a program fail with
the message "xxx at line No line number".  This message is a throw-back to
the days when all BASIC programs had to use line numbers.  Now that line
numbers are not required in modern compiled BASIC, most programmers do not
use them, opting instead for more descriptive line labels when labels are
needed at all.  When an error does occur and the program has been compiled
with /d, BASIC reports the number of the nearest numbered line preceding
the line in which the error occurred.
     A good solution to track down the cause of such errors is to use a
variant on a hardware debugging technique known as the "cut in half"
method.  In a complex electronic circuit that does not work, using this
technique means that the circuit is first checked at its mid-point for the
correct signal.  If the circuit tests correctly at that point, then the
error is in the second half.  Therefore, the test engineer would "cut in
half" again, and test at a point halfway between the middle and the end.
If the test fails there, then the problem must lie between the middle of
the circuit and that point.
     In a purely software situation, you would add a line number to a line
that falls approximately half-way through the program.  If that number is
reported, then the problem is occurring in the second half of the program.
An enhancement to this technique that I recommend is to add, say, ten line
numbers in evenly spaced increments throughout the program.  This will let
you quickly isolate the problem to a much smaller portion of the program.
     Besides the line number (or lack of line number) that BASIC reports,
the segment and address at which the error occurred is also reported.  This
is information is frankly useless in a purely BASIC environment.  You must
either use CodeView to identify the line that is associated with the error,
or view the assembly language output that BC can optionally generate.
These will be described in the section on advanced debugging later in this
chapter.
     Finally, it is important to point out that you should never use ON
ERROR while a program is being developed.  ON ERROR can hide programming
errors that you need to know about.  As an example, a LOCATE statement with
incorrect values will generate an "Illegal function call" error.  But if ON
ERROR is in effect and your program uses RESUME NEXT for errors it is not
expecting, you may never even know that an error occurred.  If you run the
complete program below you can see that there is no indication that an
error occurred at the obviously illegal LOCATE statement.

CLS
ON ERROR GOTO HandleErr
LOCATE 100, -90
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PRINT "My program seems to work fine."
END

HandleErr:
RESUME NEXT

USING THE QB AND QBX EDITING ENVIRONMENTS

The single most powerful debugging feature that is available to you is the
BASIC editing environment.  More than just an editor that you can use to
enter program statements, the QB environment is exactly that: a complete
editing environment for developing and testing BASIC programs.  The BASIC
editor lets you enter program statements, single-step through a program,
examine variable values, and much more.  Besides being able to execute
commands singly and in sequence, you can also trace into subroutines and
functions, and even run your program in reverse.
     The primary advantage of using the QB environment instead of a
separate editor is the enhanced debugging capabilities.  In most high-level
languages, you first write a program using an editor, and then compile and
run it to see if it works correctly.  If an error occurs, you must start
the editor again, load your program, and study the code to see what went
wrong.  In contrast, QB lets you run your program at the same time it is
being edited.  You can even modify the program while it is running and then
resume execution, view and change variable values, and change the order in
which statements are executed.
     Further, BASIC can be instructed to stop and return to the edit mode
when the program reaches a certain statement, or when a particular logical
condition becomes true.  For example, you can tell BASIC to halt the
program when a variable takes on a specified value.  These are extremely
powerful debugging tools which have no equal in any other language.  In the
sections that follow, I will describe each of these capabilities in detail.

STEP AND TRACE DEBUGGING

Early versions of Microsoft BASIC offered a very primitive trace capability
that displayed the line numbers of the currently executing statements.
Although this was better than nothing, interpreting a blur of line numbers
flashing by on the screen required a lot of mental effort.  When Microsoft
introduced QuickBASIC version 3.0 they added greatly improved debugging in
the form of a step and trace feature.  To activate step and trace you would
enter a STOP statement at a selected point in the source code.  When the
program reached that point you could then execute each statement in
sequence by pressing a function key.  QuickBASIC 3 also provided the
ability to display continuously the value of a single variable in a window
at the top of the screen.
     QuickBASIC 4.0 offered an improved version of this feature, using
additional function keys to control how a program proceeds.  This method
has been continued with little change through current versions of
QuickBASIC and BASIC PDS.  Of course, the primary reason you would want to
step through a program one statement at a time is to determine why it is
not working.  For example, if you have code that opens a file for output
but the file is never created, you would step through that portion of the
code to see which statements are being executed and which are not.  In
particular, stepping through a program lets you see which path an IF or
CASE test is taking.
     Two function keys are used to single-step through a program, and four
additional options are available to assist program debugging.  Each time
the F10 key is pressed, the current statement is executed and the program
advances to the next statement.  If you have just loaded the program being
tested, you will press F10 once to get to the first instruction.  Pressing
F10 again executes that statement, and continues to the next one.  If the
current statement is related to screen activity, the screen is switched
momentarily to display the program's output rather than the source code.
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The screen is also switched during a CALL statement or function invocation,
in case that routine performs screen output.  You can optionally toggle
between viewing the output and edit screens manually by pressing F4.
     In some cases you may want to treat a subroutine as a single
statement, which is what F10 does.  That is, CALL MySub is handled as
single statement, and all of the statements within the routine are executed
as one operation.  In other cases, however, you may need to trace into a
subprogram, GOSUB routine, DEF FN, or function, to step through its
statements as well.  This is what F8 is for.  When F8 is pressed at a CALL
or GOSUB statement or function invocation, BASIC traces into the procedure
and lets you watch as it executes each statement individually.
     Two additional capabilities let you navigate a program more quickly.
Pressing F7 tells BASIC to execute all of the statements up to the current
cursor location.  This way, you are spared from having to watch a long
sequences of commands that you know are working correctly.  For example,
stepping through a FOR/NEXT loop that initializes 1000 elements in an array
is usually pointless.  Therefore, when you reach that spot in the program
you would manually move the cursor to the statement following the NEXT, and
press F7.
     It is also possible to force execution to a particular point in the
program using the "Set next statement" option of the Debug menu.  Unlike
F7, though, the statements that precede the selected line will not be
executed.  Therefore, this option is equivalent to adding a temporary GOTO
to the program, causing it to jump to the specified line.
     One of the most powerful features of the BASIC editor is that you can
actually modify your program, then resume execution.  In earlier versions
of QuickBASIC, making even the slightest change to a program--even if only
to a single comment--the entire program would have to be recompiled.  BASIC
can now preserve variable values and indeed the entire program state during
most types of editing operations.
     The last important step operation I want to mention now is the History
feature.  This too must be selected from a menu, and using it will slow
your program's operation considerably.  When the History option is selected
from the Debug menu, BASIC remembers the last 25 program statements, and
lets you step through your program in reverse.  For example, if a variable
has taken on an incorrect value, you can walk backwards through the program
to see what statements caused that to happen.  Where F8 steps forward
through your program, Shift-F8 instead steps backward.

WATCH VARIABLES AND BREAK POINTS

As powerful as BASIC's single-step feature is, it is only half of the
story.  Equally important is the Watch capability that lets you view a
program's variables in real time.  One or more variables may be placed into
a special Watch window at the top of the editing screen, and their values
will be displayed and updated after each statement is executed.  Between
the Step and Watch features, you can observe all aspects of your program's
operation as it is executing.
     Besides watching variable values, you can also monitor complex
expressions and function results.  For example, you could watch the value
of X% * Y% + Z%, ASC(Work$), or the result of a function such as
StrFunction$(Array$(), Count%).  Because each variable or expression is
updated after every program statement, your program will run more slowly
when many items are displayed in the watch window.  However, this is seldom
a problem in a debugging situation, and the ability to see precisely what
is happening far outweighs the minor speed penalty.
     Being able to watch the results of expressions as well as simple
variables offers some useful and interesting techniques.  As an example,
suppose you are watching a string variable named Buffer$.  If Buffer$ is
very long, you can use LEFT$ or MID$ to watch just a portion of the string:
MID$(Buffer$, CurPointer%, 70).  This expression displays the 70-character
portion of Buffer$ that is currently pointed to by CurPointer% (assuming,
of course, you are using variables with those names).
     Likewise, if you are observing a string but nothing is showing in the
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watch window, you could watch "{" + Work$ + "}".  This displays "{}" if the
string is null, and shows if there are leading or trailing blanks or
CHR$(0) bytes.  Adding braces also lets you see if the string contains
characters that begin past the edge of the visible window.
     One particularly powerful use of BASIC's Watch capability is related
to the fact that all of the expressions are evaluated anew at each
statement.  Earlier I mentioned how insidious "String space corrupt" errors
can be, because BASIC checks the integrity of its string memory only when a
string is being assigned.  Therefore, watching the expression FRE(Any$)
tells BASIC to evaluate string memory after every source line.  Thus, as
soon as string memory is corrupted it will be immediately reported.  This
technique can be extended to identify a "Far heap corrupt" error as well,
by watching the expression FRE(-1).
     Besides the Step and Watch capabilities, there are two additional
features you should understand: Break Points and Watch Points.  When a
program is very large and complex, it becomes impractical to step and trace
through every statement.  Also, in some cases you may not know at which
statement an error is occurring.
     Pressing F9 sets up a Break Point which tells BASIC to halt when it
reaches that point in the program, regardless of how it arrived there.  You
can have multiple break points, and the program will run normally until the
specified statement is about to be executed.  Simply place the cursor on
the line at which the program is to stop, and press F9.  That line will be
highlighted to show that it is currently a Break Point.  Pressing F9 again
removes the Break Point.
     A Watch Point tells BASIC to execute the program, until a certain
condition becomes true.  Some examples of Watch Points are X% = 100,
ABS(Total#) > 1000, and FRE("") < 1000.  In the first example you are
telling BASIC to stop the program and return to the editor when X% equals
100.  The second example will stop the program when the absolute value of
Total# exceeds 1000, and the third halts it when there are less than 1000
bytes of string space remaining.
     Considered together, these debugging features are extremely powerful.
You can tell BASIC, in effect, "Run until the value of Count% hits 14; then
stop the program, and let me walk backwards through the program to see how
that happened."

USING /D TO DETECT ERRORS

Another very powerful debugging solution at your disposal is to compile
your program with the /d debug option.  When creating an .EXE file in the
BASIC environment from the Run menu, you would select the "Produce debug
code" option.  Compiling with /d tells BC to add three important safeguards
to the code it generates.  Some of these debugging issues were described in
Chapter 1, but they deserve elaboration here.
     The first code addition is a call to a central event handler prior to
every BASIC program statement, to detect if Ctrl-Break was pressed.
Normally, a compiled BASIC program is immune from pressing Ctrl-Break and
Ctrl-C, unless the program is processing an INPUT statement.  BASIC adds
break checking to let you get out of an endless loop or other similar
situation, without having to reboot your computer.
     The second addition is an overflow test following each integer and
long integer addition, subtraction, and multiplication, to detect results
that exceed the range of legal values.  If you have a statement such as X%
= Y% * Z% and the result after multiplying is greater than 32767, the
overflow test will detect that and produce an error message.  Otherwise, X%
would be assigned an erroneous value and your program would have no way to
detect it.  Floating point operations do not need any additional testing,
because overflows are detected and reported whether or not /d is used.
     The last additional code that BASIC adds when /d is used is array
element bounds checking.  If you have dimensioned an array and attempt to
assign an element that doesn't exist, a compiled BASIC program will
normally ignore the error.  For example, if an array has been dimensioned
using DIM Array%(1 TO 100) and you then have the statement Array%(200) =
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12, BASIC will store the value 12 at what would have been the 200th
element.  This can lead to disastrous consequences such as overwriting an
element in another array, or corrupting string memory.  When /d is used
BASIC adds additional code to check every array element referenced, and
reports an error if that element does not exist.
     Because of the added checking for overflow errors and illegal element
numbers, a program compiled with /d will be larger and run more slowly than
one in which /d is not used.  Therefore, you should not release a program
for general use that has been compiled with the debug option.  One
exception worth noting is that QuickBASIC versions 4.0 and 4.5 contain a
bug that generates incorrect code for certain long integer array
operations.  The only solution when that happens is to use /d.  This way,
the routine that calculates element addresses and checks for illegal
element numbers is used, rather than the incorrect in-line code that BC
produces directly.
     You could also compile with the /ah (huge array) switch, which uses
the same routine to calculate and check array element addresses.  Using /ah
has an advantage over /d in this case, because your program will not be
halted if Ctrl-Break is pressed. Using /ah also avoids the extra code and
time to check for overflow errors.  However, /ah affects dynamic arrays
only, and errors with static arrays will not be prevented.
     When a program is run in the BASIC editor, the same protection that /d
provides is employed.  This added debug testing within the editor is one
more contributor to its slowness when compared to a fully compiled program.

ADVANCED DEBUGGING

Although being able to step through your program and watch its variables in
the BASIC editing environment is very powerful, there are still some
limitations inherent in that process.  For example, it is possible that a
program will work perfectly in the editor, but not when it has been
compiled to an .EXE program.  Microsoft has tried to make the BASIC editor
as compatible with BC as possible, but the editor is an interpreter and not
a true compiler.  There are bound to be some differences in how the program
runs.  Another limitation is that some programs are just too large to be
run within the editor.  Finally, if you receive an error message from an
executable program that lists only a segment and address, there is no way
to determine where the error occurred using the editor.
     In these cases you will need to work with the actual compiled program.
To relate an error address to the original BASIC source statement you must
be able to see the assembly language code that BC generates, along with the
original BASIC source.  One way to do this is with the Microsoft CodeView
debugger.  CodeView comes with BASIC PDS [and VB/DOS Professional Edition]
as well as with Microsoft's Macro Assembler.  CodeView provides a debugging
environment that is similar to the QB editor, except it is intended for
tracing through a program that has already been compiled.
     Another way is to instruct BC to generate an assembly language source
listing as it compiles your program.  This listing shows a mix of BASIC
source statements and the resultant assembly language code and addresses.
However, the listing is not as clear or easy to follow as the display that
CodeView presents.  But if you do not have CodeView, this is your only
choice.  I will describe this method first.

CREATING AN ASSEMBLY LANGUAGE SOURCE LISTING

To create an assembly language list file you use the compiler's /a switch,
and then specify a list file name.  The syntax is shown below, followed by
a sample list file that is generated.
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You enter this:

bc program /a [/other options] , , listfile;

LISTFILE.LST contains this:
                                       PAGE   1
                                       25 June 91
                                       14:28:08
  Microsoft (R) QuickBASIC Compiler Version 4.50

Offset Data  Source Line

 0030  0006  CLS
 0030  0006  INPUT Count%
 0030   **     I00002: mov   ax,0FFFFh
 0033   **             push  ax
 0034   **             call  B$SCLS
 0039   **             mov   ax,offset <const>
 003C   **             push  ax
 003D   **             call  0000h
 0040   **             pop   ax
 0041   **             add   ax,000Dh
 0044   **             push  cs
 0045   **             push  ax
 0046   **             call  B$INPP
 004B   **             jmp   $+04h
 004D   **             dw    0002h
 004F   **             db    00h
 0050   **             db    02h
 0051   **             mov   bx,offset COUNT%
 0054   **             push  ds
 0055   **             pop   es
 0056   **             push  es
 0057   **             push  bx
 0058   **             call  B$RDI2
 005D  0008  IF Count% < 100 THEN
 005D  0008     Count% = 100
 005D  0008  END IF
 005D   **             call  B$PEOS
 0062   **             cmp   word ptr COUNT%,64h
 0067   **             jl    $+03h
 0069   **             jmp   I00003
 006C   **             mov   COUNT%,0064h
 0072  0008  PRINT Count%
 0072  0008  END
 0072  0008
 0072  0008
 0072   **     I00003: push  COUNT%
 0076   **             call  B$PEI2
 007B   **             call  B$CEND
 0080   **             call  B$CENP
 0085  0008

43981 Bytes Available
43643 Bytes Free

    0 Warning Error(s)
    0 Severe  Error(s)

Here, the list file shows the original BASIC source code, as well as the
generated assembly language instructions.  The column at the left holds the
code addresses, and these correspond to the addresses that BASIC displays
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when a program crashes with an error message.  Unfortunately, several BASIC
statements are grouped together, so it is not immediately apparent which
address goes with which source statement.  For example, after the BASIC
statement INPUT Count%, the earlier assembly language instructions that
clear the screen are shown.  Similarly, the call to B$PEOS is actually part
of the INPUT code, although it is listed following the IF test.
     When BASIC displays an error message and ends your program by
displaying a segmented address, only the address portion is meaningful.
The segment in which a program is running will depend on many factors,
including the DOS version (and thus its size), the FILES= and BUFFERS=
values specified in CONFIG.SYS, and whether TSR programs and device drivers
are loaded.  Each of these factors cause the program to be loaded at a
higher segment, although the addresses within that segment never change.
Also, in a multi-module program, a different segment is used for each
module's source file.  Therefore, if the message is "Illegal function call
in module XYZ at address 3456:1234", you would compile XYZ.BAS to create a
list file instead of the main program.  The code in the vicinity of address
1234 will be where the error occurred.

USING MICROSOFT CODEVIEW

Although compiling with the /a switch lets you view the assembly language
code that BASIC creates, there is little you can actually do with that
information.  CodeView is a much more powerful debugging tool, and it lets
you step through an .EXE file as it is running.  This lets you follow the
compiled program's execution path, and also view its assembly language
instructions.  Further, CodeView can trace into BASIC's library routines,
as well as calls to C or assembly language routines that you have written.
     CodeView can also be used to see how many bytes of code are generated
for each BASIC statement.  This is a good way to compare the relative
efficiency of different programming methods, to see which ones produce less
code.  It is important to understand that the size of the assembly language
code generated for a given BASIC statement is a combination of two factors:
the number of bytes the compiler generates for each occurrence of the
statement, and the size of the called routine within BASIC's runtime
library.  Of course, the called routine is added to your program only once.
However, the code that sets up and calls the routine is added each time the
statement is encountered.
     Compiling a program for use with CodeView is very simple, and merely
requires the addition of special compiler and linker option switches.  Note
that you cannot compile a program for CodeView from within the QuickBASIC
editor; you must compile and link manually from the DOS command line, as
shown below.  Also notice that the BASIC program must be saved as ASCII
text, and not with the special "Fast Load" method that QB optionally uses.

bc program /zi [/other options];
link program /co [/other options];
cv program

The /zi option tells BC to write additional information into the object
file, which is used by LINK and CodeView to relate each line of BASIC
source code to its resultant assembly code.  The more meaningfully named
/co switch is required so LINK will know to do likewise.  You may be
interested to know that /zi is named after Microsoft legend Mark
Zibikowski, whose initials (MZ) also appear as the first two bytes in every
DOS .EXE file.
     Once the program has been compiled and linked, start CodeView by
entering CV followed by the file's first name (that is, without the .BAS or
.EXE extension).  You will then be presented with a screen very similar to
that of the QB editor.  Most versions of CodeView initially show the BASIC
source code.  In other versions, you must press Alt-R-R to "restart" the
program and bring it to the first source line.  I should point out that
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CodeView is a quirky program, and it is often referred to as the program
that people "love to hate".  It has some glaring omissions, many aspects of
its interface are inconsistent and downright obnoxious, and I personally
would be lost without it.
     When the BASIC source is displayed, you may press F4, F7, F8, and F10,
which perform the same functions as their BASIC editor counterparts.  One
important difference, however, is that you may also press F3 to show a mix
of BASIC and assembly language code.  Stepping through the program with F8
and F10 will execute either a single BASIC statement or a single assembler
command, depending on the context.  That is, if you are in the BASIC view
mode, then you will step through the BASIC code.  If the assembly language
code is being displayed, then you will step through that instead.
     Figure 4-1 [not available here, sorry] shows a screen snapshot of a
short sample program as displayed by CodeView when it is first started in
the BASIC view mode.  Figure 4-2 [also unavailable] shows the same program
after pressing F10 to execute up to the first statement, followed by F3 to
view a mix of BASIC and assembly language.  This screen is in a 50-line
mode to allow the entire program to be displayed.  Although it is not shown
here, CodeView can continuously display the processor's registers in a
small window at the right side of the screen.  The register display is
alternately activated and deactivated by pressing F2.

FIG4-1: The CodeView display when using the BASIC view mode.

FIG4-2: The CodeView display for the same program, but using the assembly
language view mode.

Notice in Figure 4-2 that CodeView displays each BASIC statement indented
and with a line number.  This lets you identify where each BASIC command
starts, and also which block of assembly language code it is associated
with.  The numbers at the left edge of the display show the segment and
address of each instruction in hexadecimal notation.  The segment value
never changes within a single program module, although the addresses
increase based on the number of bytes in each assembly language
instruction.  As you can see, some assembly language commands are as short
as one byte, and others are as long as six.
     In the first instruction, CLS, a value of -1 (FFFF hex) is passed to
the CLS routine as a flag to show that no argument was given.  Had the
BASIC statement been CLS 2, then a value of 2 would have been moved into AX
instead.  Nine bytes of code are generated each time CLS is used, not
counting the code within B$SCLS.  Besides showing the B$SCLS routine name,
CodeView also shows the segment and address at which B$SCLS resides.
Knowing the routine's address is of little practical use in this situation,
and it is displayed solely for informational purposes.
     The INPUT statement is fairly complicated to set up, and I won't
belabor what every assembly language instruction does.  But several items
are worth discussing.  The first is that CodeView attempts to relate every
number it encounters to a variable or procedure address.  In many cases
this is confusing, because some numbers are simply that, and have no
relationship to a variable or procedure address.
     For example, at address 39 the assembly language command MOV AX,40 is
shown as MOV AX,b$STRTAB_END+10 (0040), as if there was some significance
to the fact that the value 40 is an address ten bytes past the end of an
internal string table.  Likewise, two instructions later the value 40 is
represented as being 31 bytes past the beginning of the B$LENDRW procedure.
Two instructions past that the value 13 (0D hex) is added to AX, and again
CodeView tries to establish a significance where none exists.
     In not one of these cases are the values shown related to the named
address, and you should therefore treat those named labels with skepticism.
The only symbolic names that are meaningful in most cases are variable and
procedure names that do not have an extra value added to them.  In the
instruction MOV Word Ptr [COUNT% (0036)],b$HEAP_FIRST (0064) at address 6C,
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the address for Count% (36) is valid, while the value 64 named b$HEAP_FIRST
is meaningless.  In this case, 64 hex represents the value 100 in the BASIC
statement Count% = 100.  Whatever b$HEAP_FIRST may represent, it has no
meaning here.
     I suggest that you enter this short program and then step through it
one statement at a time, just to get a feel for how CodeView operates.  You
should also try tracing into some of the BASIC library calls, as well as
into a simple subprogram or two of your own.  Again, you may use either F10
or F8 to step through the code, but only F8 will trace into code that is
being called.  You can also use F8 to trace into some BIOS interrupts, but
you should never try to trace through a DOS interrupt (21 hex).  Many DOS
services never return, or return in a non-standard manner, and a locked-up
PC is the likely result.  You will not hurt anything if you do trace into a
DOS interrupt, but be prepared to press Ctrl-Alt-Del.
     Besides being able to view and step through the assembly language code
that BASIC creates, you can also view and modify your program's data
directly.  If you have pressed F2 to display the CPU's registers, CodeView
will show the value currently in every memory address that is about to be
accessed.  For example, if the next statement to be executed is MOV Word
Ptr [COUNT%],10, CodeView will show the current contents of the variable
COUNT%.
     A range of memory addresses may be displayed by entering commands into
the immediate window at the bottom of the screen.  When CodeView is first
started, the cursor is placed at the bottom line in that window.  As with
the BASIC editor, the F6 key is used to toggle between the code output and
immediate windows.  Unlike the BASIC editor, however, you may type commands
regardless of which window is active.
     The three primary commands you will find useful are D, U, and R.  The
D (Dump) command tells CodeView to display a range of memory, starting at a
given address.  For example, D 0 means to show the 32 bytes that start at
address 0 in the default data segment.  Likewise, D ES:100 means to start
at address 100 in the segment held in the ES register.  Unfortunately,
CodeView is particularly obtuse in this regard, because in some cases the
numbers you enter are assumed to be decimal while in others it assumes
hexadecimal.  Which is which depends on your view perspective (selected
with F3), and I won't even begin to offer a reason or explain the confusing
rules.  If you don't get what you expect, try adding an "&H" prefix to the
number.  And if you start by using &H and CodeView reports a syntax error,
then try it without the &H.
     When the contents of memory are displayed, they are shown as
individual bytes, rather than as integer words which is generally more
useful.  In the listing below, two string constants have been displayed in
response to the command D &H40.  For space reasons, the segment and address
which CodeView adds to the left of each row of values are instead shown
above the rows.

>D &H40

5676:0040
02 00 44 00 48 69 23 00 4A 00 41 42 43 44 45 46
5676:0050
47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56

As you learned in Chapter 2, BASIC near strings have a 4-byte descriptor,
with the first two bytes holding the string's current length, and the
second two bytes its current address.  Beginning with the first two numbers
displayed, the 02 00 represents the length of a 2-character string, and the
44 00 indicates the address which is 44.  The data itself is a CHR$(&H48)
followed by a CHR$(&H61) ("Hi"), and it immediately follows the string
descriptor.  When two bytes are used to store an integer word, the least
significant byte is kept in the lower memory address.  Therefore, the value
0002 is actually listed as 02 00 (CodeView adds an extra blank between
bytes for clarity).
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     Immediately following the six bytes for the string "Hi" and its
descriptor is another descriptor.  This one shows that the string has a
length of 23 Hex bytes, and its data starts at address 4A Hex.  Again, the
value 0023 is shown as 23 00, and the address 004A is displayed as 4A 00.
This string contains the data "ABCDEFGHIJKLMNOPQRSTUV".
     The U (Unassemble) command can be used to show the assembly language
source code at any arbitrary segment and address.  The command U 2000:1000
will unassemble the code at address 2000:1000, though again you may need to
use U &H2000:&H1000 in some view modes.  The U command is not used that
frequently, since CodeView is used most often to step through code in
sequence, rather than to examine an arbitrary block of instructions.
     The R command lets you change the contents of a register, and this
might be useful when debugging your own assembly language subroutines.
When you type, for example, RCX and press Enter, the current value of the
CX register is displayed and you are prompted for a new value.  Pressing
Enter alone cancels the command and leaves the current register contents
intact.  Otherwise, the value you enter will be assigned to CX.  This is
similar to BASIC's immediate window, in which you can assign new values to
a variable.
     The last CodeView features worth describing here are Watch Variables
and Watch Points, which are similar to the same features in QB.  Unlike QB,
though, you cannot use an expression as the target of a Watch; it must be a
simple variable name, array element, or address.  Watch Variables may be
added using the pull-down menu, or by pressing Alt-W and then typing the
variable name.  If you are in the BASIC view mode you may add only BASIC
variables; in the assembly language view mode you can add only assembly
language variables.  To monitor the contents of a memory address requires
the W command.  For example, W 40 will set up address 40 as the target of a
Watch.
     Although CodeView does support Watch points, whereby the program will
run continuously until a given expression is true, you won't want to use
that feature.  Asking CodeView to stop when, say, CX becomes greater than
100 will cause your program to run at less than one thousandth its normal
speed.  Therefore, I have never found using Watch Points effective in any
situation--it is always too slow.
     I have avoided discussing the latest versions of CodeView, in favor of
focusing on those features which are common to all versions.  CodeView 3.10
which is included with BASIC 7.1 has several new convenience features, and
a few new bugs as well.  Many of the commands that in earlier versions have
to be entered manually are now available by simply typing new values onto
the display.  For instance, where older versions of CodeView required you
to enter Dump commands repeatedly, the new version updates the displayed
values in a range of addresses constantly.  And to change the address
range, you may now simply move the cursor to the segment and address
numbers and type new ones.  An option to display memory values as words or
even single and double precision values is also present in version 3.10.
     Now that you have seen what CodeView is all about and how to use it, I
want to conclude this chapter with a practical example.  As I mentioned in
Chapter 3, the amount of stack memory that is needed in a non-static
subprogram or function can be difficult to determine.  The calculation
itself is trivial: simply add up the number of bytes needed by every
variable in the routine.  Each integer requires two bytes, single
precision, long integer, and string variables need four bytes, and so
forth.  The problem, of course, is who wants to do all that counting,
especially when there may be hundreds of variables.  Counting is what
computers are for, no?
     The solution is that BASIC knows how many bytes are needed for the
subprogram, and the very first thing a subprogram does when it is invoked
is to call another routine that allocates the necessary stack space.  So
rather than use trial and error methods to increase the stack in small
increments, you can use CodeView to directly see how many bytes of stack
space are being requested.  Here's how that's done, using the example
program shown below.
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DEFINT A-Z
DECLARE SUB StackTest (Dummy)
Test = 10
CALL StackTest(Test)
END

SUB StackTest(AnyVar)
  X = 100
  Y = 10
  Z = AnyVar
END SUB

Save this program as an ASCII file using the name TEST.BAS, and then
compile it with the /o and /zi options.  Next, link TEST.OBJ for CodeView
using the /co option.  Then start CodeView by entering CV TEST.  Once you
are in CodeView and viewing the BASIC source, press F10 to skip past
BASIC's start-up code.  At this point the cursor should be on the first
statement, Test = 10.  Finally, press F3 to show a mix of BASIC and
assembly language source code.  The display should look similar to that
shown in Figure 4-3 [unavailable].

FIG4-3: How to determine the amount of stack memory needed for a non-static
procedure.

Notice the first statement within the TestStack subprogram at line 7, where
the value 6 (erroneously labeled b$STRTAB+6) is assigned to the CX
register.  This is the number of bytes of stack space being requested from
the B$ENRA routine which is called in the next instruction.  B$ENRA is the
routine that actually allocates the stack memory, and it uses the value
BASIC sends in CX to know how many bytes are needed.  TestStack has three
local variables and each is a two-byte integer, hence six bytes are
required to store them on the stack.
     For a very large program, the value assigned to CX will of course be
much larger.  Further, if one subprogram calls another, it will be up to
you to add up all of the CX values to determine the total stack memory
requirements.  But this is very much easier than counting variables.

SUMMARY

In this chapter you have learned how to identify and correct common
programming errors.  You have also learned the importance of understanding
BASIC's various quirks, and how some statements do not always do exactly
what you thought they would.  I have shown several debugging strategies,
including a software adaptation of the "cut in half" hardware technique.
     Perhaps your most powerful debugging ally is the QuickBASIC and QBX
editing environments.  These powerful editors let you single step through a
program, monitor variable values and function results, and halt your
program when a specified condition occurs.
     When BASIC terminates a program prematurely with an error message and
a segmented address, you can either use the BC compiler's /a option to
generate a source listing, or use CodeView to see where the error occurred.
CodeView can also be used to step and trace through a program at the
assembly language source level, and to determine the number of bytes of
stack memory a non-static procedure requires.
     In Chapter 5 you will learn about compiling and linking BASIC
programs.  I will present a complete overview of the many BC and LINK
options that are available, and discuss the relative merits of each.
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                                 CHAPTER 5

                           COMPILING AND LINKING

The final step in the creation of any program is compiling and linking, to
produce a stand-alone .EXE file.  Although you can run a program in the
BASIC editing environment, it cannot be used by others unless they also
have their own copy of BASIC.  In preceding chapters I explained the
fundamental role of the BASIC compiler, and how it translates BASIC source
statements to assembly language.  However, that is only an intermediate
action.  Before a final executable program can be created, the compiled
code in the object file must be joined to routines in the BASIC language
library.  This process is called linking, and it is performed by the LINK
program that comes with BASIC.
     In this chapter you will learn about the many options and features
available with the BASIC compiler and LINK.  By thoroughly understanding
all of the capabilities these programs offer, you will be able to create
applications that are as small and fast as possible.  Many programmers are
content to let the BASIC editor create the final program using the pulldown
menu selections.  And indeed, it is possible to create a program without
invoking BC and LINK manually--many programmers never advance beyond
BASIC's "Make .EXE" menu.  But only by understanding fully the many options
that are available will you achieve the highest performance possible from
your programs.
     I'll begin with a brief summary of the compiling and linking process,
and explain how the two processes interact.  I will then move on to more
advanced aspects of compiling and linking.  BC and LINK are very complex
programs which possess many features and capabilities, and all of their
many options will be described throughout this chapter.  You may also refer
back to Chapter 1, which describes compiling in more detail.

AN OVERVIEW OF COMPILING AND LINKING
====================================

When you run the BC.EXE compiler, it reads your BASIC source code and
translates some statements directly into the equivalent assembly language
commands.  In particular, integer math and comparisons are converted
directly, as well as integer-controlled DO, WHILE, and FOR loops.  Floating
point arithmetic and comparisons, and string operations and comparisons are
instead translated to calls to existing routines written by the programmers
at Microsoft.  These routines are in the BCOM and BRUN libraries that come
with BASIC.
     As BC compiles your program, it creates an object file (having an .OBJ
extension) that contains both the translated code as well as header
information that LINK needs to create a final executable program.  Some
examples of the information in an object file header are the name of the
original source file, copyright notices, offsets within the file that
specify external procedures whose addresses are not known at compile time,
and code and data segment names.  In truth, most of this header information
is of little or no relevance to the BASIC programmer; however, it is useful
to know that it exists.  All Microsoft-compatible object files use the same
header structure, regardless of the original source language they were
written in.
     The LINK program is responsible for combining the object code that BC
produces with the routines in the BASIC libraries.  A library (any file
with a .LIB extension) is merely a collection of individual object files,
combined one after the other in an organized manner.  A header portion of
the .LIB file holds the name of each object file and the procedure names
contained therein, as well as the offset within the library where each
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object module is located.  Therefore, LINK identifies which routines are
being accessed by the BASIC program, and searches the library file for the
procedures with those names.  Once found, a copy of that portion of the
library is then appended to the .EXE file being created.
     LINK can also join multiple object files compiled by BC to create a
single executable program, and it can produce a Quick Library comprised of
one or more object files.  Quick Libraries are used only in the editing
environment, primarily to let BASIC access non-BASIC procedures.  Because
the BASIC editor is really an interpreter and not a true compiler, Quick
Libraries were devised as a way to let you call compiled (or assembled)
subroutines during the development of a program.
     When LINK is invoked it reads the header information in each object
file compiled by BC, and uses that to know which routines in the specified
library or libraries must be added to your program.  Since every external
routine is listed by name, LINK simply examines the library header for the
same name.  It is worth mentioning that BASIC places the name of the
default library in the object file, so you don't have to specify it when
linking.  For example, when you compile a stand-alone program (with the /o)
switch) using BC version 4.5, it places the name BCOM45.LIB in the header.
     BASIC is not responsible for determining where external routines are
located.  If your program uses a PRINT statement, the compiler generates
the instruction CALL 0000:0000, and identifies where in the object file
that instruction is located.  BASIC knows that the print routine will be
located in another segment, and so leaves room for both a segment and
address in the Call instruction.  But it doesn't know where in the final
executable file the print routine will end up.  The absolute address
depends on how many other modules will be linked with the current object
file, and the size of the main program.
     In fact, LINK does not even know in which segment a given routine will
ultimately reside.  While it can resolve all of the code and data addresses
among modules, the absolute segment in which the program will be loaded
depends on whether there are TSR programs in memory, the version of DOS
(and thus its size), and the number of buffers specified in the host PC's
CONFIG.SYS file, among other factors.  Therefore, all .EXE files also have
a header portion to identify segment references.  DOS actually modifies the
program, assigning the final segment values as it loads the program into
memory.  Figure 5.1 shows how DOS, file buffers, and device drivers are
loaded in memory, before any executable programs.
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+---------------------+
¦  ROM BIOS routines  ¦
+---------------------¦
¦    Video memory     ¦
¦---------------------¦ <-- top of DOS memory (640K boundary)
¦                     ¦

¦   Far heap storage  ¦
   for dynamic arrays
¦                     ¦

+---------------------¦
¦    String memory    ¦
+---------------------¦
¦      The stack      ¦
+---------------------¦
¦    Variable data    ¦
+---------------------¦
¦ Compiled BASIC code ¦
¦---------------------¦ <-- this address is changeable
¦     TSR programs    ¦
+---------------------¦
¦    Device drivers   ¦
+---------------------¦
¦ File control blocks ¦
+---------------------¦
¦    File buffers     ¦
+---------------------¦
¦     DOS program     ¦
+---------------------¦ <-- address 0000:0600
¦   BIOS work area    ¦
+---------------------¦ <-- address 0000:0400
¦  Interrupt vectors  ¦
+---------------------+ <-- bottom of memory

Figure 5-1: DOS and BASIC memory organization.
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It is important to understand that library routines are added to your
program only once, regardless of how many times they are called.  Even if
you use PRINT three hundred times in a program, only one instance of the
PRINT routine is included in the final .EXE file.  LINK simply modifies
each use of PRINT to call the same memory address.  Further, LINK is
generally smart enough to not add all of the routines in the library.
Rather, it just includes those that are actually called.
     However, LINK can extract only entire object files from a library.  If
a single object module contains, say, four routines, all of them will be
added, even if only one is called.  For BASIC modules that you write, you
can control which procedures are in which object files, and thus how they
are combined.  But you have no control over how the object modules provided
with BASIC were written.  If the routines that handle POS(0), CSRLIN, and
SCREEN are contained in a single assembly language source file (and they
are), all of them are added to your program even if you use only one of
those BASIC statements.
     Now that you understand what compiling and linking are all about, you
may wonder why it is necessary to know this, or why you would ever want to
compile manually from the DOS command line.  The most important reason is
to control fully the many available compile and link options.  For example,
when you let the BASIC editor compile for you, there is no way to override
BC's default size for the communications receive buffer.  Likewise, the
QuickBASIC editor does not let you specify the /s (string) option that in
many cases will reduce the size of your programs.
     LINK offers many powerful options as well, such as the ability to
combine code segments to achieve faster performance during procedure calls.
Another important LINK option lets you create an .EXE file that can be run
under CodeView.  Again, these options are not selectable from within the
QuickBASIC environment [but PDS and VB/DOS Pro Edition let you select more
options than QuickBASIC], and they can be specified only by compiling and
linking manually.  All of these options are established via command line
switches, and each will be discussed in turn momentarily.
     Finally, BASIC PDS includes a number of *stub files* which reduce the
size of your programs, although at the expense of decreased functionality.
For example, if your program does not use the SCREEN statement to enable
graphics mode, a stub file is provided to eliminate graphics support for
the PRINT statement.  BASIC PDS [and the VB/DOS Pro Edition] also support
program overlays, and to use those requires linking manually from DOS.

COMPILING
=========

To compile a program you run BC.EXE specifying the name of the BASIC
program source file.  BC accepts several optional parameters, as well as
many optional command line switches.  The general syntax for BC is as
follows, with brackets used to indicate optional information.

     bc program [/options] [, object] [, listfile] [;]

In most cases you will simply give the name of the BASIC source file, any
option switches, and a terminating semicolon.  A typical BC command is as
follows:

     bc program /o;

Here, a BASIC source file named PROGRAM.BAS is being compiled, and the
output object file will be called PROGRAM.OBJ.  The /o option indicates
that the program will be a stand-alone .EXE file that does not require the
BRUN library to be present at runtime.  If the semicolon is omitted, the
compiler will prompt for each of the file name parameters it needs.  For
example, entering bc program /o invokes the compiler, which then prompts
you for the output and listing file names.  Pressing Enter in response to
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any prompt tells BC to use the source file's first name.  You may also
start BC with no source file name, and let it prompt for that as well.
     In most cases the default file names are acceptable; however, it is
not uncommon to want the output file placed into a different directory.
This is done as follows:

     bc program, \objdir\ /o;

[Note that if the trailing backslash were omitted from \objdir\ above, BC
would create an output file named OBJDIR.OBJ in the root directory.  Of
course, that is not what is intended.  Therefore, a trailing backslash is
added to tell BC to use the default name of PROGRAM.OBJ, and to place that
file in the directory named \OBJDIR.]
     If you are letting BC prompt you for the file names, you would enter
the output path name at that prompt position.  You may also include a drive
letter as part of the path, or a drive letter only to use the default
directory on the specified drive.  The listing that follows shows a typical
BC session that uses prompting.

     C>bc program /o

     Microsoft (R) QuickBASIC Compiler Version 4.50
     (C) Copyright Microsoft Corporation 1982-1988.
     All rights reserved.
     Simultaneously published in the U.S. and Canada.

     Object Filename [PROGRAM.OBJ]: d:\objects\ <Enter>
     Source Listing [NUL.LST]: <Enter>

     43965 Bytes Free
     43751 Bytes Available

         0 Warning Error(s)
         0 Severe Error(s)
     C>

Although you can override the default file extensions, this is not common
and you shouldn't do that unless you have a good reason to.  For example,
the command BC source.txt , output.out; will compile a BASIC source file
named SOURCE.TXT and create an object module named OUTPUT.OUT.  Since there
are already standard default file extension conventions, I recommend
against using any others you devise.
     The optional list file contains a source listing of the BASIC program
showing the addresses of each program statement, and uses a .LST extension
by default.  There are a number of undocumented options you can specify to
control how the list file is formatted, and these are described later in
this chapter in the section *Compiler Metacommands*.  A list file may also
include the compiler-generated assembly language instructions, and you
specify that with the /a option switch.  All of the various command options
will be discussed in the section following.
     Notice that the positioning of the file name delimiting commas must be
maintained when the object file name is omitted.  If you plan to accept the
default file name but also want to specify a listing file, you must use two
commas like this:

     bc source , , listfile;

The Bytes Available and Bytes Free messages indicate how much working
memory the compiler has at its disposal, and how much of it remained free
while compiling your program.  BC must keep track of many different kind of
information as it processes your source code, and it uses its own internal
DGROUP memory for that.  For example, every variable that you use must be
remembered, as well as its address.
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     When BASIC sees a statement such as X = 100, it must look in its
*symbol table* to see if it has already encountered that variable.  If so,
it creates an assembly language instruction to store the value 100 at the
corresponding address.  Otherwise, it adds the variable X to the table,
assigns a new address for it, and then adds code to assign the value 100 to
that address.  When you use PRINT X later on, BASIC will again search its
table, find the address, and use that when it creates the code that calls
the PRINT routine.
     Other data that BASIC must remember as it works includes the number
and type of arguments for each SUB or FUNCTION that is declared, line label
names and their corresponding addresses, and quoted string constants.  As
you may recall, in Chapter 2 I explained that BC maintains a table of
string constants, and stores each in the final program only once.  Even
when the same quoted string is used in different places in a program, BC
remembers that they are the same and stores only a single copy.  Therefore,
an array is used by BC to store these strings while your program is being
compiled.
     In most cases you can simply ignore the Bytes Available and Bytes Free
messages, since how much memory BASIC used or had available is of no
consequence.  The only exception, of course, is when your program is so
large that BC needed more than was available.  But again, you will receive
an error message when that occurs.  However, if you notice that the Bytes
Free value is approaching zero, you should consider splitting your program
into separate modules.
     The error message display indicates any errors that occurred during
compilation, and if so how many.  This display is mostly a throw-back to
the earlier versions of the BASIC compiler, because they had no development
environment.  These days, most people get their program working correctly
in the BASIC editor, before attempting to compile it.  Of course, there
must still be a facility for reporting errors.
     In most cases, any errors that BC reports will be severe errors.
These include a mismatched number of parentheses, using a reserved word as
a variable name (for example, PRINT = 12), and so forth.  One example of a
warning error is referencing an array that has not been dimensioned.  When
this happens, BASIC creates the array with a default 11 elements (0 through
10), and then reports that it did this as a warning.
     One interesting quirk worth mentioning is that BASIC will not let you
compile a program named USER.BAS.  If you enter BC USER, BC assumes that
you intend to enter the entire program manually, statement by statement!
This too must be a holdover from earlier versions of the compiler; however,
when USER.BAS is specified it will appear that the compiler has crashed,
because nothing happens and no prompt is displayed.  In my testing with
BASIC 7.1, any statements I entered were also ignored, and no object file
was created.

COMPILER OPTIONS

All of the options available for use with the BASIC compiler are described
in this section in alphabetical order.  Some options pertain only to BASIC
7 PDS, and these are noted in the accompanying discussion.  Each option is
specified by listing it on the BC command line, along with a preceding
forward slash (/).  Also, these options apply to the BC compiler only, and
not necessarily to the QB and QBX editing environments.

/A

The /a (assembly) switch tells BC to include the assembly language source
code it creates in the listing file.  The format of the file was described
in detail in Chapter 4, so I won't belabor that here.  Note, however, that
a file name must be given in the list file position of the BC command line.
Otherwise, a list file will not be written.
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/Ah

Using /ah (array huge) tells BASIC that you plan to create dynamic arrays
that may exceed 64K in total data size.  This option affects numeric, TYPE,
and fixed-length string arrays only, and not conventional string arrays.
Normally, BASIC calculates the element addresses for array references
directly, based on the segment and other information in the array
descriptor.  This is the most direct method, and thus provides the fastest
performance and smallest code.
     When /ah is used, all access to non-string dynamic arrays is instead
made through a called routine.  This called routine calculates the segment
and address of a single array element, and because it must also manipulate
segment values, increases the size of your programs.  Therefore, /ah should
be avoided unless you truly need the ability to create huge arrays.  Even
if a particular array does not currently exceed the 64K segment limit,
BASIC has no way to know that when it compiles your program.
     To minimize the size and speed penalty /ah imposes, it may be used
selectively on only some of the source modules in a program.  If you have
one subprogram that needs to manipulate huge arrays but the rest of program
does not, you should create a separate file containing only that subprogram
and compile it using /ah.  When the program is linked, only that module's
array accesses will be slower.
     Note that the /ah switch is also needed if you plan to create huge
arrays when running programs in the BASIC editor.  However, with the BASIC
editor, using /ah does not impinge on available memory or make the program
run slower.  Rather, it merely tells BASIC not to display an error message
when an array is dimensioned to a size greater than 64K.  [The BASIC editor
always uses the slower code that checks for illegal array elements anyway,
so it can report an error rather than lock up your computer.]
     One limitation that /ah will not overcome is BASIC's limit of 32,767
elements in a single dimension.  That is, the statement REDIM Array%(1 to
32768) will fail, regardless of whether /ah is used.  There are two ways to
exceed this limit: one is to create a TYPE array in which each element is
comprised of two or more variables.  The other is to create an array that
has more than one dimension.  The brief program below shows how to access a
2-dimensional array as if it had only a single dimension.

DEFINT A-Z

'----- pick an arbitrary group size, and number of groups (in this
'      case 100,000 elements)
GroupSize = 1000: NumGroups = 100

'----- dimension the array
REDIM Array(1 TO GroupSize, 1 TO NumGroups)

'----- pick an element number to assign (note use of a long integer)
Element& = 50000

'----- calculate the first and second subscripts
First = ((Element& - 1) MOD GroupSize) + 1
Second = (Element& - 1) \ GroupSize + 1

'----- assign the appropriate array element
Array(First, Second) = 123

'----- show how to derive the original element based on First and
'      Second (CLNG is needed to prevent an Overflow error)
CalcEl& = First + (Second - 1) * CLNG(GroupSize)

/C
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The /c (communications) option lets you specify the size of the receive
buffer when writing programs that open the COM port.  The value specified
represents the total buffer size in bytes, and is shared when two ports are
open at once.  For example, if two ports are open and the total buffer size
is 4096 bytes, then each port has 2048 bytes available for itself.
     A receive buffer is needed when performing communications, and it
accumulates the incoming characters as they are received.  Each time a
character is accepted by the serial port, it is placed into the receive
buffer automatically.  When your program subsequently uses INPUT or INPUT$
or GET to read the data, it is actually reading the characters from the
buffer and not from the hardware port.  Without this buffering, your
program would have to wait in a loop constantly looking for each character,
which would preclude it from doing anything else!
     Communications data is received in a continuous stream, and each byte
must be processed before the next one arrives, otherwise the data will be
lost.  The communications port hardware generates an interrupt as each
character is received, and the communications routines within BASIC act on
that interrupt.  The byte is retrieved from the hardware port using an
assembly language IN instruction, which is equivalent to BASIC's INP
function.  This allows the characters to accumulate in the background,
without any additional effort on your part.
     As each byte is received it is placed into the buffer, and a pointer
is updated showing the current ending address within the buffer.  As your
program reads those bytes, another pointer is updated to show the new
starting address within the buffer.  This type of buffer is called a
*circular buffer*, because the starting and ending buffer addresses are
constantly changing.  That is, the buffer's end point "wraps" around to the
beginning when it becomes full.
     The receive buffer whose size is specified with /c is located in far
memory.  However, BASIC also maintains a second buffer in near memory, and
its size is dictated by the optional LEN= argument used with the OPEN
statement.  Because near memory can be accessed more quickly than far
memory, it is sensible for BASIC to copy a group of characters from the far
receive buffer to the near buffer all at once, rather than individually
each time you use GET or INPUT$.
     When /c is not specified, the buffer size defaults to 512 bytes.  This
means that up to 512 characters can be received with no intervention on
your part.  If more than 512 bytes arrive and your program still hasn't
removed them using INPUT$ or GET, new characters that come later will be
lost.  It is also possible to stipulate hardware handshaking when you open
the communications port.  This means that the sender and receiver use
physical control wires to indicate when the buffer is full, and when it is
okay to resume transmitting.
     In many programming situations, the 512 byte default will be more than
adequate.  However, if many characters are being received at a high baud
rate (9600 or greater) and your program is unable to accept and process
those characters quickly enough, you should consider using a larger buffer.
Fortunately, the buffer is located in far memory, so increasing its size
will not impinge on available string and data stored in DGROUP.

/D

The /d (debug) option switch is intended solely to help you find problems
in a program while it is being developed.  Because /d causes BC to generate
additional code and thus bloat your executable program, it should be used
only during development.
     When /d is specified, four different types of tests are added to your
program.  The first is a call to a routine that checks if Ctrl-Break has
been pressed.  One call is added for every BASIC source statement, and each
adds five bytes of code to your final executable program.  The second
addition is a one-byte assembly language INTO instruction following each
integer and long integer math operation, to detect overflow errors.
     The third is a call to a routine that calculates array element
addresses, to ensure that the element number is in fact legal.  Normally,
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element addresses are computed directly without checking the upper and
lower bounds, unless you are using huge (greater than 64K) arrays.  Without
/d, it is therefore possible to corrupt memory by assigning an element that
doesn't exist.
      The final code addition implements GOSUB and RETURN statements using
a library routine, rather than calling and returning from the target line
directly.  Normally, a GOSUB statement is translated into a three-byte
assembly language *near call* instruction, and a RETURN is implemented
using a one-byte *near return*.  But when /d is used, the library routines
ensure that each RETURN did in fact result from a corresponding GOSUB, to
detect RETURN without GOSUB errors.  This is accomplished by incrementing
an internal variable each time GOSUB is used, and decrementing it at each
RETURN.  If that variable is decremented below 0 during a RETURN statement,
then BASIC knows that there was no corresponding GOSUB.  These library
routines are added to your program only once by LINK, and comprise only a
few bytes of code.  However, a separate five-byte call is generated for
each GOSUB and RETURN statement.
     Many aspects of the /d option were described in detail in Chapters 1
and 4, and there is no need to repeat that information here.  But it is
important to remember that /d always makes your programs larger and run
more slowly.  Therefore, it should be avoided once a program is running
correctly.

/E

The /e (error) option is necessary for any program that uses ON ERROR or
RESUME with a line label or number.  In most cases using /e adds little or
no extra code to your final .EXE program, unless ON ERROR and RESUME are
actually used, or unless you are using line numbers.  For each line number,
four bytes are added to remember the number itself as well as its position
in the file [two bytes each].  As with /d, every GOSUB and RETURN statement
is implemented through a far call to a library routine, rather than by
calling the target line directly.  Without this added protection it would
not be possible to trap "RETURN without GOSUB" errors correctly, or recover
from them in an ON ERROR handler.
     Also see the /x option which is needed when RESUME is used alone, or
with a 0 or NEXT argument.  The /x switch is closely related to /e, and is
described separately below.

/Fpa and /Fpi (BASIC PDS and later)

When Microsoft introduced their BASIC compiler version 6.0, they included
an alternate method for performing floating point math.  This Floating
Point Alternate library (hence the /fpa) offered a meaningful speed
improvement over the IEEE standard, though at a cost of slightly reduced
accuracy.  This optional math library has been continued with BASIC 7 PDS,
and is specified using the /fpa command switch.
     By default, two parallel sets of floating point math routines are
added to every program.  When the program runs, code in BASIC's runtime
startup module detects the presence of a math coprocessor chip, and selects
which set of math routines will be used.  The coprocessor version is called
the Inline Library, and it merely serves as an interface to the 80x87 math
coprocessor that does the real work in its hardware.  (Note that inline is
really a misnomer, because that term implies that the compiler generates
coprocessor instructions directly.  It doesn't.)  The second version is
called the Emulator Library, because it imitates the behavior of the
coprocessor using assembly language subroutines.
     Although the ability to take advantage of a coprocessor automatically
is certainly beneficial, there are two problems with this dual approach:
code size and execution speed.  The coprocessor version is much smaller
than the routines that perform the calculations manually, since it serves
only as an interface to the coprocessor chip itself.  When a coprocessor is
in fact present, the entire emulator library is still loaded into memory.
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And when a coprocessor is not installed in the host PC, the library code to
support it is still loaded.  The real issue, however, is that each BASIC
math operation requires additional time to route execution to the
appropriate routines.
     Since BC has no way to know if a coprocessor will be present when the
program eventually runs, it cannot know which routine names to call.
Therefore, BASIC uses a system of software interrupts that route execution
to one library or the other.  That is, instead of using, say, CALL
MultSingle, it instead creates code such as INT 39h.  The Interrupt 39h
vector is set when the program starts to point to the correct library
routine.  Unfortunately, the extra level of indirection to first read the
interrupt address and then call that address impacts the program's speed.
     Recall that Chapter 1 explained how the library routines in a BRUN-
style program modify the caller's code the first time they are invoked.
The compiler creates code that uses an interrupt to access the library
routines, and those routines actually rewrite that code to produce a direct
call.  Although this code modification increases the time needed to call a
library routine initially, subsequent calls will be noticeably faster.
BASIC statements executed many times within a FOR or DO loop will show the
greatest improvement, but statements executed only once will be much slower
than usual.
     In a similar fashion, the coprocessor routines that are in BASIC's
runtime library alter the caller's code, replacing the interrupt commands
with equivalent coprocessor instructions.  Each floating point interrupt
that BC generates includes the necessary variable addresses and other
arguments within the caller's code.  These arguments are in the same format
as a coprocessor instruction.  The first time an interrupt is invoked, it
subtracts the "magic value" &H5C32 from the bytes that comprise the
interrupt instruction, thus converting the instruction into a coprocessor
command.  This will be covered in Chapter 12 and I won't belabor it here.
     Since the alternate floating point math routines do not use a
coprocessor even if one is present, the interrupt method is not necessary.
BC simply hardcodes the library subroutine names into the generated code,
and the program is linked with the alternate math library.  Besides the
speed improvement achieved by avoiding the indirection of interrupts, the
alternate math library is also inherently faster than the emulator library
when a coprocessor is not present.
     The /fpi switch tells BASIC to use its normal method of including both
the coprocessor and emulator math libraries in the program, and determining
which to use at runtime.  (See the discussion of /fpa above.)  Using /fpi
is actually redundant and unnecessary, because this is the default that is
used if no math option is specified.

/Fs  (BASIC PDS only)

BASIC PDS offers an option to use far strings, and this is specified with
the /fs (far strings) switch.  Without /fs, all conventional (not fixed-
length) string variables and string arrays are stored in the same 64K
DGROUP memory that holds numeric variables, DATA items, file buffers, and
static numeric and TYPE arrays.  Using the /fs option tells BASIC to
instead store strings and file buffers in a separate segment in far memory.
     Although a program using far strings can subsequently hold more data,
the capability comes at the expense of speed and code size.  Obviously,
more code is required to access strings that are stored in a separate data
segment.  Furthermore, the string descriptors are more complex than when
near strings are used, and the code that acts on those descriptors requires
more steps.  Therefore, you should use /fs only when truly necessary, for
example when BASIC reports an Out of string space error.
     Far versus near strings were discussed in depth in Chapter 2, and you
should refer to that chapter for additional information.
     [One very unfortunate limitation of VB/DOS is that only far strings
are supported.  The decision makers at Microsoft apparently decided it was
too much work to also write a near-strings version of the forms library.
So users of VB/DOS are stuck with the additional size and speed overhead of
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far strings, even for small programs that would have been better served
with near strings.]

/G2  (BASIC PDS and later)

The /g2 option tells BASIC to create code that takes advantage of an 80286
or later CPU.  Each new generation of Intel microprocessors has offered
additional instructions, as well as performance optimizations to the
internal microcode that interprets and executes the original instructions.
When an existing instruction is recoded and improved within the CPU, anyone
who owns a PC using the newer CPU will benefit from the performance
increase.  For example, the original 8086/8088 had several instructions
that performed poorly.  These include Push and Pop, and Mul and Div.  When
Intel released the 80186, they rewrote the microcode that performs those
instructions, increasing their speed noticeably.  The 80286 is an offshoot
of the 80186, and of course includes the same optimizations.  The 80386 and
80486 offer even more improvements and additions to the original 8086
instruction set.
     Besides the enhancements to existing instructions, newer CPU types
also include additional instructions not present in the original 8086.  For
example, the 80286 offers the Enter and Leave commands, each of which can
replace a lengthy sequence of instructions on the earlier microprocessors.
Another useful enhancement offered in the 80286 is the ability to push
numbers directly onto the stack.  Where the 8086 can use only registers as
arguments to Push, the instructions Push 1234 and Push Offset Variable are
legal with 80186 and later CPUs.  Likewise, the 80386 offers several new
commands to directly perform long integer operations.  For example, adding
two long integer values using the 8086 instruction set requires a number of
separate steps.  The 80386 and later CPUs can do this using only one
instruction.
     If you are absolutely certain that your program will be run only on
PCs with an 80286 or later microprocessor, the /g2 option can provide a
modest improvement in code size and performance.  In particular, programs
that use /g2 can save one byte each time a variable address is passed to a
routine.  When /g2 is not used, the command PRINT Work$ results in the code
shown below.

PRINT Work$
  Mov  AX,Offset Work$    'this requires 3 bytes
  Push AX                 'this requires 1 byte
  Call B$PESD             'a far call is 5 bytes

When /g2 is used, the address is pushed directly rather than first being
loaded into AX, as shown following.

PRINT Work$
  Push Offset Work$       'this requires 3 bytes
  Call B$PESD             'this call is 5 bytes

With the rapid proliferation of 80386 and 80486 [and Pentium] computers,
Microsoft should certainly consider adding a /g3 switch.  Taking advantage
of 80386 instructions could provide substantially more improvement over
80286 instructions than the 80286 provides beyond the 8086.
     [In fact, Microsoft has added a /g3 switch to VB/DOS.  Unfortunately,
it does little more than the /g2 switch.  Most of a program's execution is
spent running code inside the Microsoft-supplied runtime libraries.  But
those libraries contain only 8088 code!  Using /g2 and /g3 affect only the
compiler-generated code, which has little impact on a program's overall
performance.  Until Microsoft writes additional versions of their runtime
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libraries using 80386 instructions (yeah, right), using /g2 or /g3 will
offer very little practical improvement.]

/Ix  (BASIC PDS and later)

Another important addition to BASIC 7 PDS is its integral ISAM data file
handler.  Microsoft's ISAM (Indexed Sequential Access Method) offers three
key features: The first is indexing, which lets you search a data file very
quickly.  A simple sequential search reads each record from the disk in
order until the desired information is found.  That is, to find the record
for customer David Eagle you would start at the beginning of the file, and
read each record until you found the one containing that name.  An index
system, on the other hand, keeps as many names in memory as will fit, and
searches memory instead of the disk.  This is many time faster than reading
the disk repeatedly.  If Mr. Eagle is found in, say, the 1200th position,
the index manager can go directly to the corresponding record on disk and
return the data it contains.
     The second ISAM feature is its ability to maintain the data file in
sorted order.  In most situations, records are stored in a data file in the
order they were originally entered.  For example, with a sales database,
each time a customer purchases a product a new record is added holding the
item and price for the item.  When you subsequently step through the data
file, the entries will most likely be ordered by the date and time they
were entered.  ISAM lets you access records in sorted order--for example,
alphabetically by the customer's last name--regardless of the order in
which the data was actually entered.
     The last important ISAM feature is its ability to establish
relationships between files, based on the information they contain.  Many
business applications require at least two data files: one to hold names
and addresses of each customer which rarely changes, and another to hold
the products or other items that are ordered periodically.  It would be
impractical and wasteful to duplicate the name and address information
repeatedly in each product detail record.  Instead, many database programs
store a unique customer number in each record.  Then, it is possible to
determine which sales record goes with which customer based on the matching
numbers in both files.  A program that uses this technique is called a
*relational database*.
     To help the BASIC ISAM routines operate efficiently, you are required
to provide some information when compiling your program.  Each of the /i
switches requires a letter indicating which option is being specified, and
a numeric value.  For each field in the file that requires fast (indexed)
access, ISAM must reserve a block of memory for file buffers.  This is the
purpose of the /ii: switch.  Notice that /ii: is needed only if more than
30 indexes will be active at one time.
     The /ie: option tells ISAM how much EMS memory to reserve for buffers,
and is specified in kilobytes.  This allows other applications to use the
remaining EMS for their own use.
     The /ib: option switch tells ISAM how many 2K (2048-byte) *page
buffers* to create in memory.  In general, the more memory that is reserved
for buffers, the faster the ISAM program can work.  Of course, each buffer
that you specify reduces the amount of memory that is available for other
uses in your program.
     An entire chapter in the BASIC PDS manual is devoted to explaining the
ISAM file system, and there is little point in duplicating that information
here.  Please refer to your BASIC documentation for more examples and
tutorial information on using ISAM.  In particular, advice and formulas are
given that show how to calculate the numeric values these options require.
     In Chapter 6 I will cover file handling and indexing techniques in
detail, with accompanying code examples showing how you can create your own
indexing methods.

/Lp And /Lr  (BASIC PDS only)
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BASIC 7 PDS includes an option to write programs that operate under OS/2,
as well as MS-DOS.  Although OS/2 has yet to be accepted by most PC users,
many programmers agree that it offers a number of interesting and powerful
capabilities.  By default, BC compiles a program for the operating system
that is currently running.  If you are using DOS when the program is
compiled and linked, the resultant program will also be for use with DOS.
Similarly, if you are currently running OS/2, then the program will be
compiled and linked for use with that operating system.
     The /lp (protected) switch lets you override the assumption that BC
makes, and tell it to create OS/2 instructions that will run in protected
mode.  The /lr (real) option tells BC that even though you are currently
running under OS/2, the program will really be run with DOS.  Again, these
switches are needed only when you need to compile for the operating system
that is not currently in use.

/Mbf

With the introduction of QuickBASIC 4.0, Microsoft standardized on the IEEE
format for floating point data storage.  Earlier versions of QuickBASIC and
GW-BASIC used a faster, but non-standard proprietary numeric format that is
incompatible with other compilers and languages.  In many cases, the
internal numeric format a compiler uses is of little consequence to the
programmer.  After all, the whole point of a high-level language is to
shield the programmer from machine-specific details.
     One important exception is when numeric data is stored in a disk file.
While it is certainly possible to store numbers as a string of ASCII
characters, this is not efficient.  As I described in Chapter 2, converting
between binary and decimal formats is time consuming, and also wastes disk
space.  Therefore, BASIC (and most other languages) write numeric data to a
file using its native fixed-length format.  That is, integers are stored in
two bytes, and double-precision data in eight.
     Although QuickBASIC 4 and later compilers use the IEEE format for
numeric data storage, earlier version of the compiler do not.  This means
that values written to disk by programs compiled using earlier version of
QuickBASIC or even GW-BASIC cannot be read correctly by programs built
using the newer compilers.  The /mbf option tells BASIC that it is to
convert to the original Microsoft Binary Format (hence the MBF) prior to
writing those values to disk.  Likewise, floating point numbers read from
disk will be converted from MBF to IEEE before being stored in memory.
[Even when /mbf is used, all floating point numbers are still stored in
memory and manipulated using the IEEE method.  It is only when numbers are
read from or written to disk that a conversion between MBF and IEEE format
is performed.]
     Notice that current versions of Microsoft BASIC also include functions
to convert between the MBF and IEEE formats manually.  For example, the
statement Value# = CVDMBF(Fielded$) converts the MBF-format number held in
Fielded$, and assigns an IEEE-format result to Value#.  When /mbf is used,
however, you do not have to perform this conversion explicitly, and using
Value# = CVD(Fielded$) provides the identical result.
     Also see the data format discussion in Chapter 2, that compares the
IEEE and MBF storage methods in detail.

/O

BASIC can create two fundamentally different types of .EXE programs:  One
type is a stand-alone program that is completely self-contained.  The other
type requires the presence of a special runtime .EXE library file when it
runs, which contains the routines that handle all of BASIC's commands.  By
default, BASIC creates a program that requires the runtime .EXE library,
which produces smaller program files.  However, the runtime library is also
needed, and is loaded along with the program into memory.  The differences
between the BRUN and BCOM programs were described in detail in Chapter 1.
     The /o switch tells BASIC to create a stand-alone program that does
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not require the BRUN library to be present.  Notice that when /o is used,
the CHAIN command is treated as if you had used RUN, and COMMON variables
may not be passed to a subsequently executed program.

/Ot  (BASIC PDS and later)

Each time you invoke a BASIC subprogram, function, or DEF FN function, code
BC adds to the subprogram or function creates a stack frame that remembers
the caller's segment and address.  Normally, Call and Return statements in
assembly language are handled directly by the microprocessor.  DEF FN
functions and GOSUB statements are translated by the compiler into near
calls, which means that the target address is located in the same segment.
Invoking a formal function or subprogram is instead treated as a far call,
to support multiple segments and thus larger programs.  Therefore, a RETURN
or EXIT DEF statement assumes that a single address word is on the stack,
where EXIT SUB or EXIT FUNCTION expect both a segment and address to be
present (two words).
     A problem can arise if you invoke a GOSUB routine within a SUB or
FUNCTION procedure, and then attempt to exit the procedure from inside that
subroutine with EXIT SUB or EXIT FUNCTION.  If a GOSUB is active, EXIT SUB
will incorrectly return to the segment and address that are currently on
the stack.  Unfortunately, the address is that of the statement following
the GOSUB, and the "segment" is in fact the address portion of the original
caller's return location.  This is shown in Figure 5-2.



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 115   -

+-- This is the original caller's segment and address to return to.
¦
¦
¦
¦   ¦                         ¦
¦
¦   +-------------------------¦
+-> ¦ Caller's return segment ¦
¦   +-------------------------¦
+-> ¦ Caller's return address ¦ <-+
    +-------------------------¦   ¦
    ¦ GOSUB's return address  ¦ <-¦
    +-------------------------¦   ¦
    ¦(next available location)¦   ¦
    +-------------------------¦   ¦
                                  ¦
    ¦                         ¦   ¦
                                  ¦
                                  ¦
These addresses will incorrectly -+
be used as a segment and address.

Figure 5.2: The stack frame within a procedure while a GOSUB is pending.
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To avoid this potential problem, the original caller's segment and address
are saved when a subprogram or function is first invoked.  The current
stack pointer is also saved, so it can be restored to the correct value, no
matter how deeply nested GOSUB calls may become.  Then when the procedure
is exited, another library routine is called that forces the originally
saved segment and address to be on the stack in the correct position.
     Because this process reduces the speed of procedure calls and adds to
the resultant code size, the /ot option was introduced with BASIC 7 PDS.
Using /ot tells BASIC not to employ the larger and slower method, unless
you are in fact using a GOSUB statement within a procedure.  Since this
optimization is disabled automatically anyway in that case, it is curious
that Microsoft requires a switch at all.  That is, BC should simply
optimize procedure calls where it can, and use the older method only when
it has to.

/R

The /r switch tells BASIC to store multi-dimensioned arrays in row, rather
than column order.  All arrays, regardless of their type, are stored in a
contiguous block of memory.  Even though string data can be scattered in
different places, the table of descriptors that comprise a string array is
contiguous.  When you dimension an array using two or more subscripts, each
group of rows and columns is placed immediately after the preceding one.
By default, BASIC stores multi-dimensioned arrays in column order, as shown
in Figure 5-3.
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+-------------+
¦ Array(5, 2) ¦   ^
+-------------¦   ¦
¦ Array(4, 2) ¦   ¦
+-------------¦   ¦
¦ Array(3, 2) ¦   +-- toward higher addresses
+-------------¦
¦ Array(2, 2) ¦
+-------------¦
¦ Array(1, 2) ¦
+-------------¦
¦ Array(5, 1) ¦
+-------------¦
¦ Array(4, 1) ¦
+-------------¦
¦ Array(3, 1) ¦
+-------------¦
¦ Array(2, 1) ¦
+-------------¦
¦ Array(1, 1) ¦
+-------------+

Figure 5.3: How BASIC stores a 2-dimensional array dimensioned created
using DIM Array(1 TO 5, 1 TO 2).

As you can see, each of the elements in the first subscript are stored in
successive memory locations, followed each of the elements in the second
subscript.  In some situations it may be necessary to maintain arrays in
row order, for example when interfacing with another language that expects
array data to be organized that way [notably FORTRAN].  When an array is
stored in row order, the elements are arranged such that Array(1, 1) is
followed by Array(1, 2), which is then followed by Array(2, 1), Array(2,
2), Array(3, 1), and so forth.
     Although many of the BC option switches described here are also
available for use with the QB editing environment, /r is not one of them.

/S

The /s switch has been included with BASIC since the first BASCOM 1.0
compiler, and it remains perhaps the least understood of all the BC
options.  Using /s affects your programs in two ways.  The first is
partially described in the BASIC manuals, which is to tell BC not to
combine like string constants as it compiles your program.  As you learned
in Chapter 2, BASIC makes available as much string memory as possible in
your programs, by consolidating identical constant string data.  For
example, if you have the statement PRINT "Insert disk in drive A" seven
times in your program, the message is stored only once, and used for each
instance of PRINT.
     In order to combine like data the BC compiler examines each string as
it is encountered, and then searches its own memory to see if that string
is already present.  Having to store all of the strings your program uses
just to check for duplicates impinges on BC's own working memory.  At some
point it will run out of memory, since it also has to remember variable and
procedure names, line labels and their corresponding addresses, and so on.
When this happens, BC has no recourse but to give up and display an "Out of
memory" error message.
     The /s switch is intended to overcome this problem, because it tells
the compiler not to store your program's string constants.  Instead of
retaining the strings in memory for comparison, each is simply added to the
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object file as it is encountered.  However, strings four characters long or
shorter are always combined, since short strings are very common and doing
that does not require much of BC's memory.
     The second [undocumented] thing /s does is to add two short (eight
bytes each) assembly language subroutines to the very beginning of your
program.  Two of the most common string operations are assignments and
concatenations, which are handled by routines in the runtime library.
Normally, a call to either of these routines generates thirteen bytes of
code, including the statements that pass the appropriate string addresses.
     The subroutines that /s adds are accessed using a near rather than a
far call, and they receive the string addresses in CPU registers rather
than through the stack.  Therefore, they can be called using between three
and nine bytes, depending on whether the necessary addresses are already in
the correct registers at the time.  The inevitable trade-off, however, is
that calling one subroutine that in turn calls another reduces the speed of
your programs slightly.
     In many cases--especially when there are few or no duplicated string
constants--using /s will reduce the size of your programs.  This is
contrary to the Microsoft documentation which implies that /s will make
your programs larger because the duplicate strings are not combined.  I
would like to see Microsoft include this second feature of /s as a separate
option, perhaps using /ss (string subroutine) as a designator.

/T

The /t (terse) switch tells BC not to display its copyright notice or any
warning (non-fatal) error messages.  This option was not documented until
BASIC PDS, even though it has been available since at least QuickBASIC 4.0.
The only practical use I can see for /t is to reduce screen clutter, which
is probably why QB and QBX use it when they shell to DOS to create an .EXE
program.

/V and /W

Any programs that use event handling such as ON KEY, ON COM, ON PLAY, or
the like [but not ON GOTO or ON GOSUB] require that you compile using
either the /v or /w option switches.  These options do similar things,
adding extra code to call a central handler that determines if action is
needed to process an event.  However, the /v switch checks for events at
every program statement while /w checks only at numbered or labeled lines.
     In Chapter 1 I described how event handling works in BASIC, using
polling rather than true interrupt handling.  There you saw how a five-byte
call is required each time BASIC needs to see if an event has occurred.
Because of this added overhead, many programmers prefer to avoid BASIC's
event trapping statements in favor of manually polling when needed.
However, it is important to point out that by using line numbers and labels
sparingly in conjunction with /w, you can reduce the amount of extra code
BASIC creates thus controlling where such checking is performed.

/X

Like the /e switch, /x is used with ON ERROR and RESUME; however, /x
increases substantially the size of your final .EXE program file.  When
RESUME, RESUME 0, or RESUME NEXT are used, BASIC needs a way to find where
execution is to resume in your program.  Unfortunately, this is not a
simple task.  Since a single BASIC source statement can create a long
series of assembly language commands, there is no direct correlation
between the two.  When an error occurs and you use RESUME with no argument
telling BASIC to execute the same statement again, it can't know directly
how many bytes earlier that statement begins.
     Therefore, when /x is specified, a numbered line marker is added in
the object code to identify the start of every BASIC source statement.
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These markers comprise a linked list of statement addresses, and the RESUME
statement walks through this list looking for the address that most closely
precedes the offending BASIC statement.  Because of the overhead to store
these addresses--four bytes for each BASIC source statement--many
professional programmers avoid using /x unless absolutely necessary.
However, the table of addresses is stored within the code segment, and does
not take away from DGROUP memory.

/Z  (BASIC PDS and later)

The /z switch is meant to be used in conjunction with the Microsoft editor.
This editor is included with BASIC PDS, and allows editing programs that
are too large to be contained within the QB and QBX editing environments.
When a program is compiled with /z, BASIC includes line number information
in the object file.  The Microsoft editor can then read these numbers after
an unsuccessful compile, to help you identify which lines were in error.
Because the addition of these line number identifiers increases a program's
size, /z should be used only for debugging and not in a final production.
     In general, the Microsoft editor has not been widely accepted by BASIC
programmers, primarily because it is large, slow, and complicated to use.
Microsoft also includes a newer editing environment called the Programmer's
Workbench with BASIC PDS; however, that too is generally shunned by serious
developers for the same reasons.

/Zd

Like /z, the /zd switch tells BC to include line number information in the
object file it creates.  Unlike /zi which works with CodeView (see the /zi
switch below), /zd is intended for use with the earlier SYMDEB debugger
included with MASM 4.0.  It is extremely unlikely that you will ever need
to use /zd in your programming.

/Zi

The /zi option is used when you will execute your program in the Microsoft
CodeView debugger.  CodeView was described in Chapter 4, and there is no
reason to repeat that information here.  Like /z and /zd, /zi tells BC to
include additional information about your program in the object file.
Besides indicating which assembler statements correspond to which BASIC
source lines, /zi also adds variable and procedure names and addresses to
the file.  This allows CodeView to display meaningful names as you step
through the assembly language compiled code, instead of addresses only.
     In order to create a CodeView-compatible program, you must also link
with the /co LINK option.  All of the options that LINK supports are listed
elsewhere in this chapter, along with a complete explanation of what each
does.
     Note that CodeView cannot process a BASIC source file that has been
saved in the Fast Load format.  This type of file is created by default in
QuickBASIC, when you save a newly created program.  Therefore, you must be
sure to select the ASCII option button manually from the Save File dialog
box.  In fact, there are so many bugs in the Fast Load method that you
should never use it.  Problems range from QuickBASIC hanging during the
loading process to completely destroying your source file!
     If a program that has been saved as ASCII is accidentally damaged, it
is at least possible to reconstruct it or salvage most of it using a DOS
tool such as the Norton Utilities.  But a Fast Load file is compressed and
encrypted; if even a single byte is corrupted, QB will refuse to load it.
Since a Fast Load file doesn't really load that much faster than a plain
ASCII file anyway, there is no compelling reason to use it.
     [Rather than fix the Fast Load bug, which Microsoft claims they cannot
reproduce, beginning with PDS version 7 BASIC now defaults to storing
programs as plain ASCII files.]
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COMPILER METACOMMANDS

There are a number of compiler metacommands that you can use to control how
your program is formatted in the listing file that BC optionally creates.
Although these list file formatting options have been available since the
original IBM BASCOM 1.0 compiler [which Microsoft wrote], they are not
documented in the current versions.  As with '$INCLUDE and '$DYNAMIC and
the other documented metacommands, each list formatting option is preceded
by a REM or apostrophe, and a dollar sign.  The requirement to imbed
metacommands within remarks was originally to let programs run under the
GW-BASIC interpreter without error.
     Each of the available options is listed below, along with an
explanation and range of acceptable values.  Many options require a numeric
parameter as well; in those cases the number is preceded by a colon.  For
example, a line width of 132 columns is specified using '$LINESIZE: 132.
Other options such as '$PAGE do not require or accept parameters.  Notice
that variables may not be used for metacommand parameters, and you must use
numbers.  CONST values are also not allowed.
     Understand that the list file that BASIC creates is of dubious value,
except when debugging a program to determine the address at which a runtime
error occurred.  While a list file could be considered as part of the
documentation for a finished program, it conveys no useful information.
These formatting options are given here in the interest of completeness,
and because they are not documented anywhere else.  [In order to use any of
these list options you must specify a list file name when compiling.]

'$LINESIZE

The '$LINESIZE option lets you control the width of the list file, to
prevent or force line wrapping at a given column.  The default list width
is 80 columns, and any text that would have extended beyond that is instead
continued on the next line.  Many printers offer a 132-column mode, which
you can take advantage of by using '$LINESIZE: 132.  [Of course, it's up to
you to send the correct codes to your printer before printing such a wide
listing.]  Note that the minimum legal width is 40, and the maximum is 255.

'$LIST

The '$LIST metacommand accepts either a minus (-) or plus (+) argument, to
indicate that the listing should be turned off and on respectively.  That
is, using '$LIST - suspends the listing at that point in the program, and
'$LIST + turns it back on.  This option is useful to reduce the size of the
list file and to save paper when a listing is not needed for the entire
program.

'$PAGE

To afford control over the list file format, the '$PAGE metacommand forces
subsequent printing to begin on the next page.  Typically '$PAGE would be
used prior to the start of a new section of code; for example, just before
each new SUB or FUNCTION procedure.  This tells BC to begin the procedure
listing on a new page, to avoid starting it near the bottom of a page.

'PAGEIF

'$PAGEIF is related to '$PAGE, except it lets you specify that a new page
is to be started only if a certain minimum number of lines remain on the
current page.   For example, '$PAGEIF: 6 tells BC to advance to the next
page only if there are six or less printable lines remaining.
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'$PAGESIZE

You can specify the length of each page with the '$PAGESIZE metacommand, to
override the 66-line default.  This would be useful with laser printers, if
you are using a small font that supports more than that many lines on each
page.  Notice that a 6-line bottom margin is added automatically, so
specifying a page size of 66 results in only 60 actual lines of text on
each page.  The largest value that can be used with '$PAGESIZE is 255, and
the smallest is 15.  To set the page length to 100 lines you would use
'$PAGESIZE: 100.  There is no way to disable the page numbering altogether,
and using values outside this range result in a warning error message.

'$OCODE

Using '$OCODE (object code) allows you to turn the assembly language source
listing on or off, using "+" or "-" arguments.  Normally, the /a switch is
needed to tell BC to include the assembly language code in the list file.
But you can optionally begin a listing at any place in the program with
'$OCODE +, and then turn it off again using '$OCODE -.

'$SKIP

Like '$PAGE and '$PAGEIF, the '$SKIP option lets you control the appearance
of the source listing.  '$SKIP accepts a colon and a numeric argument that
tells BC to print that many blank lines in the list file or skip to the end
of the page, whichever comes first.

'$TITLE and '$SUBTITLE

By default, each page of the list file has a header that shows the current
page number, and date and time of compilation.  The '$TITLE and '$SUBTITLE
metacommands let you also specify one or two additional strings, which are
listed at the start of each page.  Using '$TITLE: 'My program' tells BASIC
to print the text between the single quotes on the first line of each page.
If a subtitle is also specified, it will be printed on the second line.
Note that the title will be printed on the first page of the list file only
if the '$TITLE metacommand is the very first line in the BASIC source file.

LINKING
=======

Once a program has been compiled to an object file, it must be linked with
the routines in the BASIC library before it can be run.  LINK combines one
or more object files with routines in a library, and produces an executable
program file having an .EXE extension.  LINK is also used to create Quick
Libraries for use in the QB editing environment, and that is discussed
later in this chapter.
     LINK can combine multiple BASIC object files, as well as object files
created with other Microsoft-compatible languages.  In the section that
follows you will learn how the LINK command line is structured, what each
parameter is for, and how the many available options may be used.  Using
the various LINK options can reduce the size of your programs, and help
them run faster as well.
     I should mention here it is imperative that you use the correct
version of LINK.  DOS comes with an old version of LINK.EXE that is not
suitable for use with QuickBASIC or BASIC PDS.  Therefore, you should
always use the LINK.EXE program that came with your compiler.  I also
suggest that you remove or rename the copy of LINK that came with DOS if it
is still on your hard disk.  More than once I have seen programmers receive
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inexplicable LINK error messages because their PATH setting included the
\DOS directory.  In particular, many of the switches that current versions
of LINK support cause an "Unrecognized option" message from older versions.
If the correct version of LINK is not in the current directory, then DOS
will use its PATH variable to see where else to look, possibly running an
older version.
     The LINK command line is structured as follows, using brackets to
indicate optional information.  The example below is intended to be entered
all on one line.

link [/options] objfile [objfile] [libfile.lib], [exefile], [mapfile],
  [libfile] [libfile] [;]

As with the BC compiler, you may either enter all of the information on a
single command, let LINK prompt you for the file names, or use a
combination of the two.  That is, you could enter LINK [filename] and let
LINK prompt you for the remaining information.  Default choices are
displayed by LINK, and these are used if Enter alone is pressed.  Typing a
semicolon on a prompt line by itself or after a file name tells LINK to
assume the default responses for the remaining fields.  LINK also lets you
use a *response file* to hold the file names and options.  When there are
dozens or even hundreds of files being specified, this is the only
practical method.  Response files are described later in this section.
     Also like BC, the separating commas are required as place holders when
successive fields are omitted.  For example, the command:

     link program , , mapfile;

links PROGRAM.OBJ to produce PROGRAM.EXE, and creates a map file with the
name MAPFILE.MAP.  If the second comma had not been included, the output
file would be named MAPFILE.EXE and a map file would not be written at all.
     The first LINK argument is one or more optional command switches,
which let you control some of the ways in which link works.  For example,
the /co switch tells LINK to add line number and other information needed
when debugging the resultant EXE program with CodeView.  Another option,
/ex, tells LINK to reduce the size of the program using a primitive form of
data compression.  Each LINK option will be discussed in the section that
follows, and we won't belabor them here.
     The second argument is the name of the main program object module,
which contains the code that will be executed when the program is run from
the DOS command line.  Many programs use only a single object file;
however, in a multi-module program you must list the main module first.
That is then followed by the other modules that contain additional
subprograms and functions.  Of course, you can precede any file name with a
drive letter and/or directory name as necessary.
     You may also specify that all of the object modules in an entire
library be included in the executable program by entering the library name
where the object name would be given.  Since LINK assumes an .OBJ file
extension, you must explicitly include the .LIB extension when linking an
entire library.  For example, the command

     link mainprog subs.lib;

creates a program named MAINPROG.EXE which is comprised of the code in
MAINPROG.OBJ and all of the routines in SUBS.LIB.  Normally, a library is
specified at the end of the LINK command line.  However, in that case only
the routines that are actually called will be added to the program.
Placing a library name in the object name field tells LINK to add all of
the routines it contains, regardless of whether they are actually needed.
Normally you do not want LINK to include unused routines, but that is often
needed when creating Quick Libraries which will be discussed in a moment.
     Notice that when more than one object file is given, the first listed
is the one that is run initially.  Its name is also used for the executable
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file name if an output file name is not otherwise given.  Like the BC
compiler, LINK assumes that you are using certain file naming conventions
but lets you override those assumptions with explicit extensions.  I
recommend that you use the standard extensions, and avoid any unnecessary
heartache and confusion.  In particular, using non-standard names is a poor
practice when more than one programmer is working on a project.  Also
notice that either spaces or plus signs (+) may be used to separate each
object and library file name.  Which you use is a matter of personal
preference.
     The third LINK field is the optional executable output file name.  If
omitted, the program will use the base name of the first object file
listed.  Otherwise, the specified name will be used, and given an .EXE
extension.  Again, you can override the .EXE extension, but this is not
recommended.
     Following the output file name field is the map file entry.  A map
file contains information about the executable program, such as segment
names and sizes, the size of the stack, and so forth.  The /map option,
which is described later, tells LINK to include additional information in
the map file.  In general, a map file is not useful in high-level language
programming.
     One interesting LINK quirk is that it will create a map file if empty
commas are used, but not if a semicolon is used prior to that field.  You
can specify the reserved DOS device name nul to avoid creating a map file.
For example, the command

     link program, , nul, library;

links PROGRAM.OBJ to create PROGRAM.EXE, but not does not create the file
PROGRAM.MAP.  I use a similar line in the batch files I use for compiling
and linking, to avoid cluttering my hard disk with these useless files.
     The last field specifies one or more libraries that hold additional
routines needed for the program.  In purely BASIC programming you do not
need to specify a library name, because the compiler specifies a default
library in the object file header.  If you are linking with assembly or
other language subroutines that are in a library, you would list the
library names here.  You can list any number of library names, and LINK
will search each of them in turn looking for any routines it does not find
in the object files.
     The version of LINK that comes with BASIC 7 also accepts a definitions
file as an optional last argument.  But that is used only for OS/2 and
Windows programming, and is not otherwise needed with BASIC.

LINK OPTIONS

All of the available LINK options that are useful with BASIC running under
DOS are shown following in alphabetical order.  As with the switches
supported by BC, each is specified on the LINK command line by preceding it
forward slash (/).  Many of the options may be abbreviated by entering just
the first few letters of their name.  For example, what I refer to as the
/co option is actually named /codeview; however, the first two letters are
sufficient for LINK to know what you mean.
     Each option is described using only enough letters to understand the
meaning of its name.  You can see the full name for those options in the
section headers below, or run LINK with the /help switch.  Any switch may
be specified using only as many characters as needed to distinguish it from
other options.  That is, /e is sufficient to indicate /exepack because it
is the only one that starts with that letter.  But you must use at least
the first three characters of the /nologo switch, since /no could mean
either /nologo or /nodefaultlibrary.  The details section for each option
shows the minimum letters that are actually needed.

/BATCH
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Using /ba tells LINK that you are running it from a batch file, and that it
is not to pause and prompt for library names it is unable to find.  When
/ba is used and external routines are not found, a warning message is
issued rather than the usual prompt.  The /ba option is not generally very
useful--even if you are linking with a batch file--since it offers no
chance to fix an incorrect file or directory name.
     One interesting LINK quirk worth noting is when it is unable to find a
library you must include a trailing backslash (\) after the path name when
reentering it manually.  If LINK displays the prompt "Enter new file spec:"
and you type \pathname, you are telling LINK to use the library named
PATHNAME.LIB and look for it in the root directory.  What is really needed
is to enter \pathname\, which tells it to look in that directory for the
library.  Furthermore, if you initially enter the directory incorrectly,
you must then specify both the directory and library name.  If you are not
sure of the default library name it is often easier to simply press Ctrl-C
and start again.

/CODEVIEW

The /co switch is necessary when preparing a program for debugging with
CodeView.  Because of the extra information that LINK adds to the resultant
executable file, /co should be used only for debugging purposes.  However,
the added data is stored at the end of the file, and is not actually loaded
into memory if the program is run from the DOS command line.  The program
will therefore have the same amount of memory available to it as if /co had
not been used.

/EXEPACK

When /e is used, LINK compresses repeated character strings to reduce the
executable file size.  Because variables and static arrays are initialized
to zero by the compiler, they are normally stored in the file as a group of
CHR$(0) zero bytes.  The /e switch tells LINK to replace these groups of
zero bytes with a group count.  Then when the program is run, the first
code that actually executes is the unpacking code that LINK adds to your
program.  This is not unlike the various self-extracting archive utilities
that are available commercially and as shareware.
     Notice that the compression algorithm LINK employs is not particularly
sophisticated.  For example, SLR System's OptLink is an alternate linker
that reduces a program to a much smaller file size than Microsoft's LINK.
PKWare and SEA Associates are two other third-party companies that produce
utilities to create smaller executable files that unpack and run themselves
automatically.

/FARCALLTRANSLATE

By default, all calls from BASIC to its runtime library routines are far
calls, which means that both a segment and address are needed to specify
the location of the routine being accessed.  Assembly language and C
routines meant to be used with BASIC are also designed as far calls, as are
BASIC subprograms and functions.  This affords the most flexibility, and
also lets you create programs larger than could fit into a single 64K
segment.
     Within the BASIC runtime library there are both near and far calls to
other library routines.  Which is used depends on the routines involved,
and how the various segments were named by the programmers at Microsoft.
Because a far call is a five-byte instruction compared to a near call which
is only three, a near call requires less code and can execute more quickly.
In many cases, separate code segments that are less than 64K in size can be
combined by LINK to form a single segment.  The routines in those segments
could then be accessed using near calls.  However, BASIC always generates
far calls as it compiles your programs.
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     The /f option tells LINK to replace the far calls it encounters with
near calls, if the target address is indeed close enough to be accessed
with a near call.  The improvement /f affords is further increased by also
using the /packcode switch (see below).  Although the far call is replaced
with a near call, LINK can't actually reduce the size of the original
instruction.  Instead it inserts a Nop (no operation) assembly language
command where part of the far call had been.  But since a near call does
not require segment relocation information in the .EXE file header, the
file size may be reduced slightly.  See the text that accompanies Figure 5-
1 earlier in this chapter for an explanation of DOS' loading and relocation
process.
     There is one condition under which the /f option can cause your
program to fail.  The machine code for a far call is a byte with the value
of &H9A, which is what LINK searches for as it converts the far calls to
near ones.  Most high-level languages, store all data in a separate
segment, which is ignored by LINK when servicing /f.  BASIC, however,
stores line label addresses in the program's code segment when ON GOTO and
the other ON commands are used.  If one of those addresses happens to be
&H9A, then LINK may incorrectly change it.  In my personal experience, I
have never seen this happen.  I recommend that you try /f in conjunction
with /packc, and then test your program thoroughly.  You could also examine
any ON statements with CodeView if you are using them, to determine if an
address happens to contain the byte &H9A.

/HELP

Starting LINK with the /he option tells it to display a list of all the
command options it recognizes.  This is useful both as a reminder, and to
see what new features may have been added when upgrading to a newer
compiler.  In many cases, new compilers also include a new version of LINK.

/INFO

The /inf switch tells LINK to display a log of its activity on the screen
as it processes your file.  The name of each object file being linked is
displayed, as are the routines being read from the libraries.  It is
extremely unlikely that you will find /inf very informative.

/LINENUM

If you have compiled with the /zd switch to create SYMDEB information, you
will also need to specify the /li LINK switch.  This tells LINK to read the
line number information in the object file, and include it in the resultant
executable program.  SYMDEB is an awkward predecessor to CodeView that is
also hard to use, and you are not likely to find /li useful.

/MAP

If you give a map file name when linking, LINK creates a file showing the
names of every segment in your program.  The /m switch tells LINK to also
include all of the public symbol names.  A public symbol is any procedure
or data in the object file whose address must be determined by LINK.  This
information is not particularly useful in purely BASIC programming, but it
is occasionally helpful when writing subroutines in assembly language.
Segment naming and grouping will be discussed in Chapter 13.

/NODEFAULTLIB

When BC compiles your program, it places the default runtime library name
into the created object file's header.  This way you can simply run LINK,
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without having to specify the correct library manually.  Before BASIC PDS
there were only two runtime library names you had to deal with--QuickBASIC
4.5 uses BCOM45.LIB and BRUN45.LIB.  But PDS version 7.1 comes with 16
different libraries, each intended for a different use.
     For example, there are BRUN and BCOM libraries for every combination
of near and far strings, IEEE and /fpa (alternate) math, and DOS and OS/2.
That is, BRT71EFR.LIB stands for BASIC Runtime 7.1 Emulator Far strings
Real mode.  Likewise, BCL71ANP is for use with a BCOM stand-along program
using Alternate math and Near strings under OS/2 Protected mode.
     Using /nod tells LINK not to use the library name imbedded within the
object file, which of course means that you must specify a library name
manually.  The /nod switch also accepts an optional colon and explicit
library name to exclude.  That is, /nod:libname means use all of the
default libraries listed in the object file except libname.
     In general, /nod is not useful with BASIC, unless you are using an
alternate library such as Crescent Software's P.D.Q.  Another possible use
for /nod is if you have renamed the BASIC libraries.

/NOEXTDICT

As LINK combines the various object files that comprise your program with
routines in the runtime library, it maintains a table of all the procedure
and data names it encounters.  Some of these names are in the object
modules, such as the names of your BASIC subprograms and functions.  Other
procedure names are those in the library.
     In some situations the same procedure or data name may be encountered
more than once.  For example, when you are linking with a stub file it will
contain a routine with the same name as the one it replaces in BASIC's
library.  Usually, LINK will issue an error message when it finds more than
one occurrence of a public name.  If you use /noe (No Extended Dictionary)
LINK knows to use the routine or data item it finds first, and not to issue
an error message.
     The /noe option should be used only when necessary, because it causes
LINK to run more slowly.  Linking with stub files is described separately
later in this chapter.

/NOFARCALL

The /nof switch is usually not needed, since by default LINK does not
translate far calls to near ones (see /farcalltranslate earlier in this
section).  But since you can set an environment variable to tell LINK to
assume /far automatically, /nof would be used to override that behavior.
Setting LINK options through the use of environment variables is described
later in this chapter.

/NOLOGO

The /nol switch tells LINK not to display its copyright notice, and, like
the /t BC switch may be used to minimize screen clutter.

/NOPACKCODE

As with the /nof switch, /nop is not necessary unless you have established
/packc as the default behavior using an environment variable.

/OVERLAYINT

When you have written a program that uses overlays, BASIC uses an *overlay
manager* to handle loading subprograms and functions in pieces as they are
needed.  Instead of simply calling the overlay manager directly, it uses an
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interrupt.  This is similar to how the routines in a BRUN library are
accessed.
     BASIC by default uses Interrupt &H3F, which normally will not conflict
with the interrupts used by DOS, the BIOS, or network adapter cards.  If an
interrupt conflict is occurring, you can use the /o switch to specify that
a different interrupt number be used to invoke the overlay manager.  This
might be necessary in certain situations, perhaps when data acquisition or
other special hardware is installed in the host PC.

/PACKCODE

The /packc switch is meant to be used with /far, and it combines multiple
adjacent code segments into as few larger ones as possible.  This enable
the routines within those segments to call each other using near, rather
than far calls.  When combined with /f, /packc will make your programs
slightly faster and possibly reduce their size.

/PAUSE

Using /pau tells link to pause after reading and processing the object and
library files, but before writing the final executable program to disk.
This is useful only when no hard drive is available, and all of the files
will not fit onto a single floppy disk.

/QUICKLIB

The /q switch tells LINK that you are creating a Quick Library having a
.QLB extension, rather than an .EXE program file.  A Quick Library is a
special file comprised of one or more object modules, that is loaded into
the QB editing environment.  Although BASIC can call routines written in
non-BASIC languages, they must already be compiled or assembled.  Since the
BASIC editor can interpret only BASIC source code, Quick Libraries provide
a way to access routines written in other languages.  Creating and using
Quick Libraries is discussed separately later in this chapter.

/SEGMENTS

The /seg: switch tells LINK to reserve memory for the specified number of
segment names.  When LINK begins, it allocates enough memory to hold 128
different segment names.  This is not unlike using DIM in a BASIC program
you might write to create a 128-element string array.  If LINK encounters
more than 128 names as it processes your program, it will terminate with a
"Too many segments" error.  When that happens, you must start LINK again
using the /seg switch.
     All of the segments in an object module that contain code or data are
named according to a convention developed by Microsoft.  Segment naming
allows routines in separate files to ultimately reside in the same memory
segment.  Routines in the same segment can access each other using near
calls instead of far calls, which results in smaller and faster programs.
Also, all data in a BASIC program is combined into a single segment, even
when the data is brought in from different modules.  LINK knows which
segments are to be combined by looking for identical names.
     The routines in BASIC's runtime library use only a few different
names, and it is not likely that you will need to use /seg in most
situations.  But when writing a large program that also incorporates many
non-BASIC routines, it is possible to exceed the 128-name limit.  It is
also possible to exceed 128 segments when creating a very large Quick
Library comprised of many individual routines.
     The /seg switch requires a trailing colon, followed by a number that
indicates the number of segment names to reserve memory for.  For example,
to specify 250 segments you would use this command line:
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     link /seg:250 program, , nul, library;

In most cases, there is no harm in specifying a number that is too large,
unless that takes memory LINK needs for other purposes.  Besides the
segment names, LINK must also remember object file names, procedure names,
data variables that are shared among programs, and so forth.  But if LINK
runs out of memory while it is processing your program, it simply creates a
temporary work file to hold the additional information.

/STACK

The /st: option lets you control the size of BASIC's stack.  One situation
where you might need to do this is if your program has deeply nested calls
to non-static procedures.  Likewise, calling a recursive subprogram or
function that requires many levels of invocation will quickly consume stack
space.
     You can increase the stack size in a QuickBASIC program by using the
CLEAR command:

     CLEAR , , stacksize

where stacksize specifies the number of bytes needed.  However, CLEAR also
clears all of your variables, closes all open files, and erases any arrays.
Therefore, CLEAR is suitable only when used at the very beginning of a
program.  Unfortunately, this precludes you from using it in a chained-to
program, since any variables being passed are destroyed.  Using /stack:
avoids this by letting you specify how much memory is to be set aside for
the stack when you link the chained-to program.
     The /stack: option accepts a numeric argument, and can be used to
specify the stack size selectively for each program module.  For example,
/stack:4096 specifies that a 4K block be set aside in DGROUP for use as a
stack.  Furthermore, you do not need to use the same value for each module.
Since setting aside more stack memory than necessary impinges on available
string space, you can override BASIC's default for only those modules that
actually need it.
     Note that this switch is not needed or recommended if you have BASIC
PDS, since that version includes the STACK statement for this purpose.

STUB FILES (PDS and later)

A stub file is an object module that contains an alternate version of a
BASIC language statement.  A stub file could also be an alternate library
containing multiple object files.  The primary purpose of a stub file is to
let you replace one or more BASIC statements with an alternate version
having reduced capability and hence smaller code.  Some stub files
completely remove a particular feature or language statement.  Others offer
increased functionality at the expense of additional code.
     Several stub files are included with BASIC PDS, to reduce the size of
your programs.  For example, NOCOM.OBJ removes the routines that handle
serial communications, replacing them with code that prints the message
"Feature stubbed out" in case you attempt to open a communications port.
     When BASIC compiles your program and sees a statement such as OPEN
Some$ FOR OUTPUT AS #1, it has no way to know what the contents of Some$
will be when the program runs.  That is, Some$ could hold a file name, a
device name such as "CON" or "LPT1:", or a communications argument like
"COM1:2400,N,8,1,RS,DS".  Therefore, BASIC instructs LINK to include code
to support all of those possibilities.  It does this by placing all of the
library routine names in the object file header.  When the program runs,
the code that handles OPEN examines Some$ and determines which routine to
actually call.
     Within BASIC's runtime library are a number of individual object
modules, each of which contains code to handle one or more BASIC
statements.  In chapter 1 you learned that how finely LINK can extract
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individual routines from BASIC's libraries depends on how the routines were
combined in the original assembly language source files.  In BASIC 7.1,
using the SCREEN function in a program also causes LINK to add the routines
that handle CSRLIN and POS(0), even if those statements are not used.  This
is because all three routines are in the same object module.  The manner in
which these routines are combined is called *granularity*, and a library's
granularity dictates which routines can be replaced by a stub file.  That
is, a stub file that eliminated the code to support SCREEN would also
remove CSRLIN and POS(0).
     Some of the stub files included with BASIC 7 PDS are NOGRAPH.OBJ,
NOLPT.OBJ, and SMALLERR.OBJ.  NOGRAPH.OBJ removes all support for graphics,
NOLPT.OBJ eliminates the code needed to send data to a printer, and
SMALLERR.OBJ contains a small subset of the many runtime error messages
that a BASIC program normally contains.  Other stub files selectively
eliminate VGA or CGA graphics support, and another, OVLDOS21.OBJ, adds the
extra code necessary for the BASIC overlay manager to operate with DOS 2.1.
     When linking with a stub file, it is essential that you use the /noe
LINK switch, so LINK will not be confused by the presence of two routines
with the same name.  The general syntax for linking with a stub file is as
follows:

     link /noe basfile stubfile;

Of course, you could add other LINK options, such as /ex and /packc, and
specify other object and library files that are needed as well.
     You can also create your own BASIC stub files, perhaps to produce a
demo version of a program that has all features except the ability to save
data to disk.  In order for this to work, you must organize your
subprograms and functions such that all of the routines that are to be
stubbed out are in separate source files, or combined together in one file.
     In the example above, you would place the routines that save the data
in a separate file.  Then, simply create an empty subprogram that has the
same name and the same number and type of parameters, and compile that
separately.  Finally, you would link the BASIC stub file with the rest of
the program.  Note that such a replacement file is not technically a stub,
unless the BASIC routines being replaced have been compiled and placed into
a library.  But the idea is generally the same.

QUICK LIBRARIES

For many programmers, one of the most confusing aspects of Microsoft BASIC
is creating and managing Quick Libraries.  The concept is quite simple,
however, and there are only a few rules you must follow.
     The primary purpose of a Quick Library is to let you access non-BASIC
procedures from within the BASIC editor.  For example, BASIC comes with a
Quick Library that contains the Interrupt routine, to let you call DOS and
BIOS system services.  A Quick Library can contain routines written in any
language, including BASIC.
     Although the BASIC editor provides a menu option to create a Quick
Library, that will not be addressed here.  Rather, I will show the steps
necessary to invoke LINK manually from the DOS command line.  There are
several problems and limitations imposed by BASIC's automated menus, which
can be overcome only by creating the library manually.
     One limitation is that the automated method adds all of the programs
currently loaded into memory into the Quick Library, including the main
program.  Unfortunately, only subprograms and functions should be included.
Code in the main module will never be executed, and its presence merely
wastes the memory it occupies.  Another, more serious problem is there's no
way to specify a /seg parameter, which is needed when many routines are to
be included in the library.
     [Actually, you can set a DOS environment variable that tells LINK to
default to a given number of segments.  But that too has problems when
using VB/DOS, because the VB/DOS editor specifies a /seg: value manually,
and incorrectly.  Unfortunately, LINK honors the value passed to it by
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VB/DOS, rather than the value you assigned to the environment variable.]
     Quick Libraries are built from one or more object files using LINK
with the /q switch, and once created may not be altered.  Unlike the
LIB.EXE library manager that lets you add and remove object files from an
existing .LIB library, there is no way to modify a Quick Library.
     When LINK combines the various components of an executable file, it
resolves the data and procedure addresses in each object module header.
The header contains relocation information that shows the names of all
external routines being called, as well as where in the object file the
final address is to be placed.  Since the address of an external routine is
not known when the source file is compiled or assembled, the actual CALL
instruction is left blank.  This was described earlier in this chapter in
the section *Overview of Compiling and Linking*.
     Resolving these data and procedure addresses is one of the jobs that
LINK performs.  Because the external names that had been in each object
file are removed by LINK and replaced with numeric addresses, there is no
way to reconstruct them later.  Similarly, when LINK creates a Quick
Library it resolves all incomplete addresses, and removes the information
that shows where in the object module they were located.  Thus, it is
impossible to extract an object module from a Quick Library, or to modify
it by adding or removing modules.
     Understand that the names of the procedures within the Quick Library
are still present, so QuickBASIC can find them and know the addresses to
call.  But if a routine in a Quick Library in turn calls another routine in
the library, the name of the called routine is lost.

Creating a Quick Library

Quick Libraries are created using the version of LINK that came with your
compiler, and the general syntax is as follows:

     link /q obj1 [obj2] [library.lib] , , nul , support;

The support library file shown above is included with BASIC, and its name
will vary depending on your compiler version.  The library that comes with
QuickBASIC version 4.5 is named BQLB45.LIB; BASIC 7 instead includes
QBXQLB.LIB for the same purpose.  You must specify the appropriate support
library name when creating a Quick Library.
     Notice that LINK also lets you include all of the routines in one or
more conventional (.LIB) libraries.  Simply list the library names where
the object file names would go.  The .LIB extension must be given, because
.OBJ is the default extension that LINK assumes.  You can also combine
object files and multiple libraries in the same Quick Library like this:

     link /q obj1 obj2 lib1.lib lib2.lib , , nul , support;

Although Quick Libraries are necessary for accessing non-BASIC subroutines,
you can include compiled BASIC object files.  In general, I recommend
against doing that; however, there are some advantages.  One advantage is
that a compiled subprogram or function will usually require less memory,
because comments are not included in the compiled code and long variable
names are replaced with equivalent 2-byte addresses.  Another advantage is
that compiled code in a Quick Library can be loaded very quickly, thus
avoiding the loading and parsing process needed when BASIC source code is
loaded.
     But there are several disadvantages to storing BASIC procedures in a
Quick Library.  One problem is that you cannot trace into them to determine
the cause of an error.  Another is that all of the routines in a Quick
Library must be loaded together.  If the files are retained in their
original BASIC source form, you can selectively load and unload them as
necessary.  The last disadvantage affects BASIC 7 [and VB/DOS] users only.
     The QBX [and VB/DOS] editors places certain subprogram and function
procedures into expanded memory if any is available.  Understand that all
procedures are not placed there; only those whose BASIC source code size is
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between 1K and 16K.  But Quick Libraries are always stored in conventional
DOS memory.  Therefore, more memory will be available to your programs if
the procedures are still in source form, because they can be placed into
EMS memory.
     Note that when compiling BASIC PDS programs for placement in a Quick
Library, it is essential that you compile using the /fs (far strings)
option.  Near strings are not supported within the QBX editor, and failing
to use /fs will cause your program to fail spectacularly.

RESPONSE FILES

A response file contains information that LINK requires, and it can
completely or partially replace the commands that would normally be given
from the DOS command line.  The most common use for a LINK response file is
to specify a large number of object files.  If you are creating a Quick
Library that contains dozens or even hundreds of separate object files, it
is far easier to maintain the names in a file than to enter them each time
manually.
     To tell LINK that it is to read its input from a response file enter
an at sign (@) followed by the response file name, as shown below.

     link /q @quicklib.rsp

Since the /q switch was already given, the response file need only contain
the remaining information.  A typical response is shown in the listing
below.

     object1 +
     object2 +
     object3 +
     object4 +
     object5
     qlbname
     nul
     support

Even though this example lists only five object files, there could be as
many as necessary.  Each object file name except the last one is followed
by a plus sign (+), so LINK will know that another object file name input
line follows.  The qlbname line indicates the output file name.  If it is
omitted and replaced with a blank line, the library will assume the name of
the first object file but with a .QLB extension.  In this case, the name
would be OBJECT1.QLB.  The nul entry could also be replaced with a blank
line, in which case LINK would create a map file named OBJECT1.MAP.  As
shown in the earlier examples, the support library will actually be named
BQLB45 or QBXQLB, depending on which version of BASIC you are using.
     LINK recognizes several variations on the structure of a response
file.  For example, several object names could be placed on each line, up
to the 126-character line length limit imposed by DOS.  That is, you could
have a response file like this:

     object1 object2 object3 +
     object4 object5 object6 +
     ...

I have found that placing only one name on each line makes it easier to
maintain a large response file.  That also lends itself to keeping the
names in alphabetical order.
     You may also place the various option switches in a response file, by
listing them on the first line with the object files:

     /ex /seg:250 object1 +
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     object2 +
     ...

Response files can be used for conventional linking, and not just for
creating Quick Libraries.  This is useful when you are developing a very
large project comprised of many different modules.  Regardless of what you
are linking, however, understanding how response files are used is a
valuable skill.

LINKING WITH BATCH FILES

Because so many options are needed to fully control the compiling and
linking process, many programmers use a batch file to create their
programs.  The C.BAT batch file below compiles and links a single BASIC
program module, and exploits DOS' replaceable batch parameter feature.

     bc /o /s /t %1;
     link /e /packc /far /seg:250 %1, , nul, mylib;

Like many programs, a batch file can also accept command line arguments.
The first argument is known within the batch file as %1, the second is %2,
and so forth, up to the ninth parameter.  Therefore, when this file is
started using this command:

     c myprog

the compiler is actually invoked with the command

     bc /o /s /t myprog;

The second line becomes

     link /e /far /packc /seg:250 myprog, , nul, mylib;

That is, every occurrence of the replaceable parameter %1 is replaced by
the first (and in this case only) argument: myprog.
     I often create a separate batch file for each new project I begin, to
avoid having to type even the file name.  I generally use the name C.BAT
because its purpose is obvious, and it requires typing only one letter!
Once the project is complete, I rename the batch file to have the same
first name as the main BASIC program.  This lets me see exactly how the
program was created if I have to come back to it again months later.  An
example of a batch file that compiles and links three BASIC source files is
shown below.

     bc /o /s /t mainprog;
     bc /o /s /t module1;
     bc /o /s /t module2;
     link /e /packc /far mainprog module1 module2, , nul, mylib;

Of course, you'd use the compiler and link switches that are appropriate to
your particular project.  You could also specify a LINK response file
within a batch file.  In the example above you would replace the last line
with a command such as this:

     link @mainprog.rsp;

LINKING WITH OVERLAYS (PDS and VB/DOS PRO EDITION ONLY)

At one time or another, most programmers face the problem of having an
executable program become too large to fit into memory when run.  With
QuickBASIC your only recourse is to divide the program into separate .EXE
files, and use CHAIN to go back and forth between them.  This method
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requires a lot of planning, and doesn't lend itself to structured
programming methods.  Each program is a stand-alone main module, rather
than a subprogram or function.
     Worse, chaining often requires the same subroutine code to be
duplicated in each program, since only one program can be loaded into
memory at a time.  If both PROGRAM1.EXE and PROGRAM2.EXE make calls to the
same subprogram, that subprogram will have to be added to each program.
Obviously, this wastes disk space.  BASIC 6.0 included the BUILDRTM program
to create custom runtime program files that combines common subroutine code
with the BASIC runtime library.  But that program is complicated to use and
often buggy in operation.
     Therefore, one of the most useful features introduced with BASIC 7 is
support for program overlays.  An overlay is a module that contains one or
more subprograms or functions that is loaded into memory only when needed.
All overlaid modules are contained in a single .EXE file along with the
main program, as opposed to the separate files needed when programs use
CHAIN.  The loading and unloading of modules is handled for you
automatically by the overlay manager contained in the BASIC runtime
library.
     Consider, as an example, a large accounting program comprised of three
modules.  The main module would consist of a menu that controls the
remaining modules, and perhaps also contains some ancillary subprograms and
functions.  The second module would handle data entry, and the third would
print all of the reports.  In this case, the data entry and reporting
modules are not both required at the same time; only the module currently
selected from the menu is necessary.  Therefore, you would link those
modules as overlays, and let BASIC's overlay manager load and unload them
automatically when they are called.
     The overall structure of an overlaid program is shown in Figure 5-4.
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+----------------------------+
¦ '**** MAINPROG.BAS         ¦
¦ CALL Menu(Choice)          ¦
¦ IF Choice = 1 THEN         ¦
¦   CALL EnterData           ¦
¦ ELSEIF Choice = 2 THEN     ¦
¦   CALL DoReports           ¦
¦ END IF                     ¦
+----------------------------¦
¦ SUB Menu(Choice)           ¦
¦   ...                      ¦
¦   CALL GetChoice(Choice)   ¦
¦   ...                      ¦
¦ END SUB                    ¦
+----------------------------¦
¦ SUB GetChoice(ChoiceNum)   ¦
¦   ...                      ¦
¦   ...                      ¦
¦ END SUB                    ¦
+----------------------------+
+----------------------------+
¦ '*** ENTERDAT.BAS          ¦
¦ SUB EnterData              ¦
¦   ...                      ¦
¦   CALL GetChoice(Choice)   ¦
¦   ...                      ¦
¦ END SUB                    ¦
+----------------------------+
+----------------------------+
¦ '*** REPORTS.BAS           ¦
¦ SUB DoReports              ¦
¦   PRINT "Which report? ";  ¦
¦   CALL GetChoice(Choice)   ¦
¦   ...                      ¦
¦   ...                      ¦
¦ END SUB                    ¦
+----------------------------+

Figure 5-4: The structure of a program that uses overlays.

Here, the main program is loaded into memory when the program is first run.
Since the main program also contains the Menu and GetChoice subprograms,
they too are initially loaded into memory.  Understand that the main
program is always present in memory, and only the overlaid modules are
swapped in and out.  Thus, EnterData and DoReports can both freely call the
GetChoice subprogram which is always in memory, without incurring any delay
to load it into memory from disk.
     If the host computer has expanded memory, BASIC will use that to hold
the overlaid modules.  Since EMS can be accessed much more quickly than a
disk, this reduces the load time to virtually instantaneous.  You should be
aware, however, that BASIC PDS contains a bug in the EMS portion of its
overlay manager.  If EMS is present but less than 64K is available, your
program will terminate with the error message "Insufficient EMS to load
overlay."
     If no expanded memory is available, BASIC simply reads the overlaid
modules from the original disk file each time they are called.  It should
also use the disk if it determines that there isn't enough EMS to handle
the overlay requirements, but it doesn't.  Therefore, it is up to your
users to determine how much expanded memory is present, and disable the EMS
driver in their PC if there isn't at least 64K.
     To specify that a module is to be overlaid, simply surround its name
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with parentheses when linking.  Using the earlier example shown in Figure
5-4, you would link MAINPROG.OBJ with ENTERDAT.OBJ and REPORTS.OBJ as
follows:

     link mainprog (enterdat) (reports);

Of course, you may include any link switches that are needed, and also
include any non-overlaid object files.  Any object file names that are not
surrounded by parentheses will be kept in memory at all times.  Therefore,
you should organize your programs such that subprograms and functions that
are common to the entire application are always loaded.  Otherwise, the
program could become very slow if those procedures are swapped in and out
of memory each time they are called.

OTHER LINK DETAILS

The BASIC PDS documentation lists no less than 143 different LINK error
messages, and at one time or another you are bound to see at least some of
those.  LINK errors are divided into two general categories: warning errors
and fatal errors.  Warning errors can sometimes be ignored.  For example,
failing to use the /noe switch when linking with a stub file produces the
message "Symbol multiply defined", because LINK encountered the same
procedure name in the stub file and in the runtime library.  In this case
LINK simply uses the first procedure it encountered.  In general, however,
you should not run a program whose linking resulted in any error messages.
     Fatal errors are exactly that--an indication that LINK was unable to
create the program successfully.  Even if an .EXE file is produced, running
it is almost certain to cause your PC to lock up.  One example of a fatal
error is "Unresolved external."  This means that your program made a call
to a procedure, but LINK wasn't able to find its name in the list of object
and library files you gave it.  Another fatal error is "Too many segments."
You might think that LINK would be smart enough to finish reading the
files, count the number of segment names it needs, and then restart itself
again reserving enough memory.  Unfortunately, it isn't.
     Regardless of the type of error messages you receive, it is impossible
to read all of them if there are so many that they scroll off the screen.
Although you can press Ctrl-P to tell DOS to echo the messages to your
printer, there is an even better method.  You can use the DOS redirection
feature to send the message to a disk file.  This lets you load the file
into a text editor for later perusal.  To send all of LINK's output to a
file simply use the "greater than" symbol (>) specifying a file name as
follows:

     link [/options] [object files]; > error.log

Instead of displaying the messages on the screen, DOS intercepts and routes
them to the ERROR.LOG file.  It is important to understand that this is a
DOS issue, and has nothing to do with LINK.  Therefore, you can use this
same general technique to redirect the output of most programs to a file.
Note that using redirection causes *all* of the program's output to go to
the file, not just the error messages.  Therefore, nothing will appear to
happen on the screen, since the copyright and sign-on notices are also
redirected.
     Another LINK detail you should be aware of is that numeric arguments
may be given in either decimal or hexadecimal form.  Any LINK option that
expects a number--for example, the /seg: switch--may be given as a
Hexadecimal value by preceding the digits with 0x.  That is, /seg:0x100 is
equivalent to /seg:256.  The use of 0x is a C notation convention, and the
"x" character is used because it sounds like "hex".
     Finally, if you are using QuickBASIC 4.0 there is a nasty bug you
should be aware of.  All versions of QuickBASIC let you create an
executable program from within the editing environment.  And if a Quick
Library is currently loaded, QB knows to link your program with a parallel
.LIB library having the same name.  But instead of specifying that library
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in the proper LINK field, QB 4.0 puts its name in the object file position.
This causes LINK to add every routine in the library to your program,
rather than only those routines that are actually called.  There is no way
to avoid this bug, and QB 4.0 users must compile and link manually from
DOS.

MAINTAINING LIBRARIES
=====================

As you already know, multiple object files may be stored in a single
library.  A library has a .LIB extension, and LINK can extract from it only
those object modules actually needed as it creates an executable file.  All
current versions of Microsoft compiled BASIC include the LIB.EXE program,
which lets you manage a library file.  With LIB.EXE you can add and remove
objects, extract a copy of a single object without actually deleting it
from the library, and create a cross-referenced list of all the procedures
contained therein.
     It is important to understand that a .LIB library is very different
from a Quick Library.  A .LIB library is simply a collection of individual
object files, with a header portion that tells which objects are present,
and where in the library they are located.  A Quick Library, on the other
hand, contains the raw code and data only.  The routines in a Quick Library
do not contain any of the relocation and address information that was
present in the original object module.
     The runtime libraries that Microsoft includes with BASIC are .LIB
libraries, as are third-party support libraries you might purchase.  You
can also create your own libraries from both compiled BASIC code and
assembly language subroutines.  The primary purpose of using a library is
to avoid having to list every object file needed manually.  Another
important use is to let LINK add only those routines actually necessary to
your final .EXE program.
     Like BC and LINK, you can invoke LIB giving all of the necessary
parameters on a single command line, or wait for it to prompt you for the
information.  LIB can also read file names and options from a response
file, which avoids having to enter many object names manually.  A LIB
response file is similar--but not identical--to a LINK response file.
Using LIB response files will be described later in this section.
     The general syntax of the LIB command line is shown below, with
brackets indicating optional information.

     lib [/options] libname [commands] , [listfile] , [newlib] [;]

After any optional switches, the first parameter is the name of the library
being manipulated, and that is followed by one or more commands that tell
LIB what you want to do.  A list file can also be created, and it contains
the names of every object file in the library along with the procedure
names each object contains.  The last argument indicates an optional new
library; if present LIB will leave the original library intact, and copy it
to a new one applying the changes you have asked for.
     There are three commands that can be used with LIB, and each is
represented using a punctuation character.  However, LIB lets you combine
some of these commands, for a total of five separate actions.  This is
shown in Table 5-1.

Command                  Action
=======    =========================================
   +       Add an object module or entire library.
   -       Remove an object module from the library.
   *       Extract a copy of an object module.
   -+      Replace an object module with a new one.
   -*      Extract and then remove an object module.

Table 5-1: The LIB commands for managing libraries.
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To add the file NEWOBJ.OBJ to the existing library MYLIB.LIB you would use
the plus sign (+) as follows:

     lib mylib +newobj;

And to update the library using a newer version of an object already
present in the library you would instead use this:

     lib mylib -+d:\newstuff\anyobj;

As you can see, the combination operators use a sensible syntax.  Here, you
are instructing LIB to first remove ANYOBJ.OBJ from MYLIB.LIB, and then add
a newer version in its place.  A drive and directory are given just to show
that it is possible, and how that would be specified.
     To extract a copy of an object file from a library, use the asterisk
(*) command.  Again, you can specify a directory in which the extracted
file is to be placed, as follows:

     lib mylib *\objdir\thisobj;

You should understand that LIB never actually modifies an existing library.
Rather, it first renames the original library to have a .BAK extension, and
then creates and modifies a new file using the original name.  It is up to
you to delete the backup copy once you are certain that the new library is
correct.  [But this backup is made only if you do not specify a new output
library name--NEWLIB in the earlier syntax example.]
     If the named library does not exist, LIB asks if you want to create
it.  This gives you a chance to abort the process if you accidentally typed
the wrong name.  If you really do want to create a new library, simply
answer Y (Yes) at the prompt.  Of course, the only thing you can do to a
non-existent library is add new objects to it with the plus (+) command.
     One important LIB feature is its ability to create a list file showing
what routines are present in the library.  This is particularly valuable if
you are managing a library you did not create, such as a library purchased
from a third-party vendor.  Many vendors use the same name for the object
file as the routine it contains when possible, but there are exceptions.
For example, an object file name is limited to eight characters, even
though procedure names can be as long as 40.  If you want to know which
object file contains the procedure ReadDirectories, you will need to create
a list file.  Also, one object file can hold multiple procedures, and it is
not always obvious which procedure is in which file.  Individual procedures
cannot necessarily be extracted from a library--only entire object files.
     To create a library list file you will run LIB giving the name of the
library, as well as the name of a list file to create.  The example below
creates a list file named MYLIST.LST for the library named MYLIB.LIB:

     lib mylib , mylist.lst;

The list file that is created contains two cross-referenced tables; one
shows each object name and the procedures it contains, and the other shows
the procedure names and which object they are in.  A typical list file is
shown in the Figure 5-5, using the QB.LIB file that comes with QuickBASIC
4.5 as an example.

ABSOLUTE..........absolute          INT86OLD..........int86old
INT86XOLD.........int86old          INTERRUPT.........intrpt
INTERRUPTX........intrpt

absolute          Offset: 00000010H  Code and data size: cH
  ABSOLUTE

intrpt            Offset: 000000e0H  Code and data size: 107H
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  INTERRUPT         INTERRUPTX

int86old          Offset: 000002a0H  Code and data size: 11eH
  INT86OLD          INT86XOLD

Figure 5-5: The format of a LIB list file.

In this list file, each object module contains only one procedure.  The
first section shows each procedure name in upper case, followed by the
object name in lower case.  The second section shows each object file name,
its offset within the library and size in bytes, and the routine names
within that object file.
     Just for fun, you should create a list file from one of the libraries
that came with your compiler.  Besides showing how a large listing is
structured, you will also be able to see which statements are combined with
others in the same object file.  Thus, you can determine the granularity of
these libraries.  In many cases the names of the procedures are similar to
the corresponding BASIC keywords.
     For example, if you create a list file for the BCOM45.LIB library that
comes with QuickBASIC 4.5, you will see an object file named STRFCN.OBJ
(string function) that contains the procedures B$FASC, B$FLEN, B$FMID,
B$INS2, B$INS3, B$LCAS, B$LEFT, and several other string functions.  Most
of the library routines start with the characters B$, which ensures that
the names will not conflict with procedure names you are using.  (A dollar
sign is illegal in a BASIC procedure name.)  Other procedures (and data
items) use an imbedded underscore (_) which is also illegal in BASIC.
     FASC stands for Function ASC, FLEN is for Function LEN, and so forth.
INS2 and INS3 contain the code to handle BASIC's INSTR function, with the
first being the two-argument version and the second the three-argument
version.  That is, using INSTR(Work$, Substring$) calls B$INS2, and
INSTR(Start, Work$, Substring$) instead calls B$INS3.  As you can see, most
of the internal procedure names are sensible, albeit somewhat abbreviated.

LIB OPTIONS

Many LIB options are frankly not that useful to purely BASIC programming.
However, I will list them here in the interest of completeness.  Note that
none of these option switches are available in versions of LIB prior to the
one that comes with BASIC 7.0.

/HELP

As with the LINK switch of the same name, using /help (or /?) tells LIB to
display its command syntax, and a list of all the available options.

/I

Using /i means that LIB should ignore capitalization when searching the
library for procedure names.  This is the default for LIB, and is not
necessary unless you are manipulating an existing library that was created
with /noi (see below).

/NOE

The /noe option has a similar meaning as its LINK counterpart, and should
be used if LIB reports an Out of memory error.  Creating an extended
dictionary requires memory, and using /noe will avoid that.

/NOI
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The /noi switch tells LIB not to ignore capitalization, and it should not
be used with BASIC programs.

/NOLOGO

Like the LINK option, /nologo reduces screen clutter by eliminating the
sign-on logo and copyright display.

/NOLOGO

The /pa: option lets you change the default library page size of 16 bytes.
Larger values waste memory, because each object file will always occupy the
next higher multiple number of bytes.  For example, with a page size of 200
bytes, a 50 byte object file will require an entire 200-byte page.  Since a
library can hold no more than 65,536 pages, a larger page size is useful
only when you need to create a library larger than 1 megabyte.  The /pa:
switch requires a colon, followed by an integer value between 16 and 32768.
For example, using /pa:256 sets a page size of 256 bytes.

USING RESPONSE FILES WITH LIB.EXE

A LIB response file is similar to a LINK response file, in that it lets you
specify a large number of operations by entering them on separate lines of
a text file.  The syntax is similar to a LINK response file, but it is not
identical.  Since the plus sign continuation character that LINK uses
serves as a command character to LIB, an ampersand (&) is used instead.  A
typical LIB response file is shown below.

     + object1 &
     + \subdir\object2 &
     + c:\subdir2\object3 &
     + object4 ;

As with LINK, you will use an at sign (@) to tell LIB to look in the file
for its input, as opposed to reading the names from the command line:

     lib @filename.rsp

USEFUL BC, LINK, AND LIB ENVIRONMENT PARAMETERS
===============================================

Most programmers are familiar with the DOS environment as a way to
establish PATH and PROMPT variables.  The PATH environment variable tells
DOS where to search for executable program files it doesn't find in the
current directory.  The PROMPT variable specifies a new prompt that DOS
displays at the command line.  For example, many people use the command

     SET PROMPT=$P$G

to show the current drive and directory.  However, the DOS environment can
be used to hold other, more general information as well.
     The environment is simply an area of memory that DOS maintains to hold
variables you have assigned.  Some of these variables are used by DOS, such
as the PATH and PROMPT settings.  Other variables may be defined by you or
your programs, to hold any type of information.  For example, you could
enter SET USERNAME=TAMI in the AUTOEXEC.BAT file, and a program could read
that to know the name of the person who is using it.  The contents of this
variable (TAMI) could then be used as a file or directory name, or for any
other purpose.
     LINK looks at the DOS environment to see if you have specified LINK=
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or LIB= or TMP= variables.  The first is used to specify default option
switches.  For example, if you set LINK=/SEG:450 from the DOS command line
or a batch file, you do not need to use that option each time LINK is run.
Multiple options may be included in a single SET statement, by listing each
in succession.  The command SET LINK=/NOE/NOD/EX establishes those three
options shown as the default.  Additional separating spaces may also be
included; however, that is unnecessary and wastes environment memory.
     Likewise, setting LIB=D:\LIBDIR\ tells LINK to look in the LIBDIR
directory of drive D: for any libraries it cannot find it the current
directory.  In this case, LIB= acts as a sort of PATH command.  Like PATH,
the LIB= variable accepts multiple path names with or without drive
letters, and each is separated by a semicolon.  The command

     SET LIB=C:\LIBS\;D:\WORKDIR\

sets a library path to both C:\LIBS and D:\WORKDIR, and even more
directories could be added if needed.  To remove an environment variable
simply assign it to a null value; in this case you would use SET LIB=.
     The TMP= variable also specifies a path that tells LINK where to write
any temporary files.  When a very large program or Quick Library is being
created, it is possible for LINK to run out of memory.  Rather than abort
with an error message, LINK will open a temporary disk file and spool the
excess data to that file.  If no TMP= variable has been defined, that file
is created in the current directory.  However, if you have a RAM disk you
can specify that as the TMP parameter, to speed up the linking process.
For example, SET TMP=F:\ establishes the root directory of drive F as the
temporary directory.
     The INCLUDE= variable is recognized by both BC and MASM (the Microsoft
Macro Assembler program), to specify where they should look for Include
files.  In my own programming, I prefer to give an explicit directory name
as part of the $INCLUDE metacommand.  This avoids unpleasant surprises when
an obsolete version of a file is accidentally included.  But you may also
store all $INCLUDE files in a single directory, and then set the INCLUDE
variable to show where that directory is.  Like LIB and PATH, the INCLUDE
variable accepts one or more directory names separated by semicolons.

SUMMARY
=======

In this chapter you have learned about compiling and linking manually from
the DOS command line, to avoid the limitations imposed by the automated
menus in the BASIC editor.  You have also learned how to create and
maintain both Quick Libraries and conventional .LIB libraries.  Besides
accepting information you enter at the DOS command line, LINK and LIB can
also process instructions and file names contained in a response file.
     All of the commands and option switches available with BC, LINK, and
LIB were described in detail, along with a listing of the undocumented BC
metacommands for controlling the format of a compiler list file.  Library
list files were also discussed, and a sample printout was given showing how
LIB shows all the procedure and object names in a library cross-referenced
alphabetically.
     The discussion about stub files explained what they are and how to use
them, to reduce the size of your programs.  Overlays were also covered,
accompanied by some reasons you will find them useful along with specific
linking instructions.
     Finally, I explained some of the details of the linking process.
Information in each object file header tells LINK the names of external
procedures being called, and where in the object file the incomplete
addresses are located.  Besides the segment and address fixups that LINK
performs, DOS also makes some last-minute patches to your program as it is
loaded into memory.
     In the next chapter I will cover file handling in similar detail,
explaining how files are manipulated at a low level, and also offering
numerous tips for achieving high performance and small program size.
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                                 CHAPTER 6

                         FILE AND DEVICE HANDLING

     At some point, all but the most trivial computer programs will need to
store and retrieve data using a disk file.  Data files are used for two
primary purposes: to hold information when there is more than can fit into
the computer's memory all at once, and to provide a permanent, non-volatile
means of storage.  Files are also used to allow data from one computer to
be used on another.  Such data sharing can be as simple as a "sneaker net"
system, whereby a floppy disk is manually carried from one PC to another,
or as complex as a multi-user network where disk data can be accessed
simultaneously by several users.
     Although there are two fundamentally different types of disk drives,
floppy and fixed [not counting CD-ROMs drives which are removable], they
are accessed identically using the same BASIC statements.  BASIC's file
commands may also be used to communicate with devices such as a printer or
modem, and even the screen and keyboard.  There are many ways to manipulate
files and devices, and some are substantially faster than others.  By
understanding fully how BASIC interacts with DOS, file access in your
programs can often be speeded up by a factor of five or even more.
     In this chapter I will address the fundamental aspects of file and
device handling, and provide specific examples of how to achieve the
highest performance possible.  I will begin with an overview of how DOS
organizes information on a disk, and then continue with practical examples.
Unlike earlier chapters in which only short program fragments were shown,
several complete programs and subprograms will be presented to illustrate
the most important of these techniques in context.  I will also describe
the underlying theory of how disks are organized, and explain why this is
important for the BASIC programmer to know.
     In Chapter 7 the subject of files will be continued; there you will
learn how to write programs for use with a network, and also how relational
databases are constructed.  In particular, coverage of these two very
important subjects is severely lacking in the documentation that comes with
Microsoft BASIC.  As personal computers continue to permeate the office
environment, networks and databases are becoming ever more common.  Many
programmers find themselves in the awkward position of having to write
programs that run on a network, but with no adequate source of information.

DISK FILE FUNDAMENTALS
======================

All disks used with MS-DOS are organized into groups of bytes called
*sectors*, and these sectors are further combined into *clusters*.  DOS
keeps track of every file on a disk, but with this organization DOS needs
to remember only the cluster number at which each file begins.  The minimum
amount of disk space that is allocated by DOS is one cluster.  Therefore,
if you create a very small file--say, ten bytes--an entire cluster is
allocated to that file, and then marked as unavailable for other use.
     In most cases, each disk sector holds 512 bytes; however, one
exception is when you use a RAM disk to simulate a disk drive in memory.
Many RAM disk programs lets you specify a smaller sector size, to minimize
waste when there are many small files.  The number of sectors that are
stored in each cluster depends on the type of disk and its size.  For
example, a 360K floppy disk stores two sectors in each cluster, and a 32 MB
hard disk formatted using DOS 3.3 stores four sectors in each cluster.
Therefore, the minimum unit of storage allocation for these disks is 1K
(1024 bytes), and 2K (2048 bytes) respectively.  DOS 2.x offers less room
to store cluster numbers, and must combine more sectors into each cluster.
A 20MB hard disk formatted with DOS 2.1 allocates 8K for even a one-line
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batch file!
     As files are created and appended, DOS allocates new space to hold the
file contents.  By allocating disk space in units, DOS is also able to
minimize disk fragmentation.  As you learned in Chapter 2, BASIC manages
variable-length strings by claiming new memory as necessary.  When
available memory is exhausted BASIC compacts its string space, overwriting
abandoned string data with strings that are still active.
     This method is not practical with disk files, because copying data
from one part of the disk to another for the purpose of compaction would
take an unacceptable amount of time.  Therefore, DOS initially allocates an
entire cluster for each file, to provide space for subsequent data.  When
the ten-byte file mentioned earlier is added to, space on the disk has
already been set aside for all or part of the new data that will be
written.  And when the first cluster's capacity is exceeded, DOS allocates
an entire second cluster to hold the additional data.
     Even though it is common for a disk to become fragmented, allocating
clusters that are comprised of groups of contiguous sectors greatly reduces
the number of individual fragments that must be accessed.  The track,
sector, and cluster makeup of a 360k 5-1/4 inch floppy disk is shown in
Figure 6-1.

Figure 6.1: Sector and cluster organization for a 360k floppy disk.
[Sorry, this figure is not available.]

This disk is divided into 40 circular tracks, and each track is further
divided into nine sectors.  One track holds 512 bytes, and each pair of
tracks is combined to form a single cluster.  For a 360k disk, no file
fragment will ever be smaller than two clusters, since this is the minimum
amount of space that DOS allocates.  Likewise, a hard disk that combines
four sectors into each cluster will never be divided into pieces smaller
than four sectors.
     Please understand that tracks and sectors are physical entities that
are magnetically encoded onto the disk when it is formatted--it is DOS that
treats each pair of sectors as a single cluster.  Note that since a 360k
disk stores nine sectors on each track, some clusters will in fact span two
tracks.
     Using the disk in Figure 6-1 as an example, the first short file that
is written to it will be placed in cluster 1 (sectors 1 and 2), even if the
file does not fill both sectors.  The second file written to this disk will
then be stored starting at cluster 2 (sectors 3 and 4).  If the first file
is later extended beyond the 1,024 bytes that can fit into cluster 1, the
excess will be added beginning at cluster 3 (sectors 5 and 6).  Thus, when
DOS reads the first file sequentially, it must read cluster 1, skip over
cluster 2, and then continue reading at cluster 3.
     Of course, this takes longer than reading a file that is contiguous,
because the disk drive must wait until the second file's intervening
sectors have passed beneath it.  This problem is compounded by additional
head movement when the fragmentation extends across more than one track, as
well as by other timing issues.
     There are also three special areas on every disk: the boot sector, the
Disk Directory and the File Allocation Table (FAT).  DOS uses the directory
and FAT to know the name of each file, and where on the disk its first
cluster is located.  For simplicity, these are not shown in Figure 6-1, and
indeed, they are in fact stored before any files on a disk.
     When a 360K floppy disk is formatted, DOS sets aside room for 112
directory entries.  Each entry is 32 bytes long, and holds the name of each
file on the disk, its current size, the date and time it was last written
to, its attribute (hidden, read-only, and so forth), and starting cluster
number.  When you open a file, DOS searches each directory entry for the
file name you specified, and once found, goes to the first cluster that
holds the file's data.
     The disk's FAT contains one entry for every cluster in the data area,
to show which clusters are in use and by which file.  The FAT is organized



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 143   -

as a linked list, with each entry pointing to the next.  The last cluster
in the file is identified with a special value.  The FAT also holds other
special values to identify unused, reserved, and defective clusters.
     Because there are a fixed number of directory entries on a disk, it is
possible to receive a "Disk full" message when attempting to open a new
file, even when there is sufficient data space.  The root directory of a
360K floppy disk is limited to 112 entries, and a 1.2MB disk can hold up to
224 file names.  Notice that a volume label takes one directory entry,
although no data space is allocated to it.  Unlike the root directory on a
disk, subdirectories that you create are not limited to an arbitrary number
of file name entries.  Rather, a subdirectory *is* in fact a file, and it
can be extended indefinitely until there is no more room on the disk.
     Fortunately, most programmers do not have to deal with disk access at
this level.  When you ask BASIC to open a file and then read from or write
to it, DOS handles all the low-level details for you.  However, I think it
is important to have at least a rudimentary understanding of how disks are
organized.  If you are interested in learning more about the structure of
disks and data files, I recommend Peter Norton's *Programmer's Guide to the
IBM PC & PS/2*.  This excellent reference is published by Microsoft Press,
and can be found at most major book stores.

DISK-LIKE DEVICES
=================

A device is related to a file in that you can open it using BASIC's OPEN
command, and then access it with GET # and PRINT # and the other file-
related BASIC statements.  There are a number of devices commonly used with
personal computers, and these include printers, modems, tape backup units,
and the console (the PC's keyboard and display screen).  Some of these
devices are maintained by DOS, and others are also controlled by BASIC.
     For example, when you open "SCRN:" for Output mode in a BASIC program,
BASIC takes responsibility for displaying the characters that you print.
However, if you instead open "CON", BASIC merely sends the data to DOS,
which in turn sends it to the display screen.  Any device whose name is
followed by a colon is considered a to be BASIC device; the absence of a
trailing colon indicates a DOS device.  This is important to understand,
because there may be situations when you want to route your program's
output directly through DOS, and not have it be intercepted by BASIC.
     One such situation would be when printing the special control
characters that the ANSI.SYS device driver recognizes.  Normally, BASIC
processes data in a PRINT statement by writing directly to screen memory.
This provides the fastest response, which is of course desirable in most
programs.  But ANSI.SYS operates by intercepting the stream of characters
sent through DOS.  Since BASIC normally bypasses DOS for screen operations,
ANSI.SYS never gets a chance to see those characters.
     Another reason for printing through DOS is to activate TSR (Terminate
and Stay Resident) programs that intercept the BIOS video routines.  (When
data is sent through DOS for display, DOS merely passes it on to the BIOS
routines which do the real work.)  For example, some early screen design
utilities use this method, to accommodate multiple programming languages by
avoiding the differences in calling and linking.  Therefore, to activate,
say, a pop-up help screen, you are required to print a special control
string.  One such utility uses two CHR$(255) bytes followed by the name of
the screen to be displayed.
     Although this method is very clumsy when compared to newer products
that provide BASIC-linkable object files, it is simpler for the vendor than
providing different objects for each supported language.  This also allows
screens to be displayed from within a batch file using the ECHO command.
Therefore, if you need to send data through DOS or the BIOS for whatever
reason, you would open and print to the "CON" device, instead of using
normal PRINT statements or printing to the "SCRN:" device.
     One final point worth mentioning is the value of using the same syntax
for both files and devices.  Many programs let the user specify where a
report is to be sent--either to a disk file, a printer, or the screen.



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 144   -

Rather than duplicate similar code three times in a program, you can simply
assign a string variable to the appropriate device or file name.  This is
shown in the listing below.

PRINT "Printer, Screen, or File? (P/S/F): ";

DO
  Choice$ = UCASE$(INKEY$)
LOOP UNTIL INSTR(" PSF", Choice$) > 1

IF Choice$ = "P" THEN
  Report$ = "LPT1:"
ELSEIF Choice$ = "S" THEN
  Report$ = "SCRN:"
ELSE
  PRINT
  LINE INPUT "Enter a file name: ", Report$
END IF

OPEN Report$ FOR OUTPUT AS #1
  PRINT #1, Header$
  PRINT #1, SomeStuff$
  PRINT #1, MoreStuff$
  ...
  ...
CLOSE #1
END

Here, the same block of code can be used regardless of where the report is
to be sent.  The only alternative is to duplicate similar code three times
using PRINT statements if the screen was specified, LPRINT if they want the
printer, or PRINT # if the report is being sent to a file.  Of course, this
example could be further expanded to prompt for a printer number (1, 2, or
3) if a printer is specified.

EXPLORING DATA FILES
====================

All data is stored on disk as a continuous stream of binary information,
regardless of how the file was opened.  Even though BASIC and other
languages offer a number of different file access methods, all disk files
merely contain a series of individual bytes.  When you open a file for
random access, you are telling BASIC that it is to treat those bytes in a
particular manner.  In this case, the file is comprised of one or more
fixed-length records.  Thus, BASIC can perform many of the low level
details that help you to organize and maintain that data.
     Likewise, opening a file for INPUT tells BASIC that you plan to read
variable-length string data.  Rather than reading or writing a single block
of a given length, BASIC instead knows to continue to read bytes from the
file until a terminating comma or carriage return is encountered.  However,
in both of these cases the disk file is still comprised of a series of
bytes, and the access method you specify merely tells BASIC how it is to
treat those bytes.
     The short program below illustrates this in context, and you can
verify that all three files are identical using the DOS COMP utility
program.

OPEN "File1" FOR OUTPUT AS #1
  PRINT #1, "Testing"; SPC(13);
CLOSE
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OPEN "File2" FOR BINARY AS #1
  Work$ = "Testing" + SPACE$(13)
  PUT #1, , Work$
CLOSE

OPEN "File3" FOR RANDOM AS #1 LEN = 20
  FIELD #1, 20 AS Temp$
  LSET Temp$ = "Testing"
  PUT #1
CLOSE
END

In fact, even executable program files are indistinguishable from data
files, other than by their file name extension.  Again, it is how you
choose to view the file contents that determines the actual form of the
data.

FILE BUFFERS

Before I explain the various file access methods that BASIC provides, there
is one additional low-level detail that needs to be addressed: file
buffers.  A file buffer is a portion of memory that holds data on its way
to and from a disk file, and it is used to speed up file reads and writes.
     As you undoubtedly know, accessing a disk drive is one of the slowest
operations that occurs on a PC.  Because disk drives are mechanical, data
being read or written requires a motor that spins the actual disk, as well
as a mechanism to move the drive head to the appropriate location on the
disk surface.  Even if a file is located in contiguous disk clusters, a
substantial amount of mechanical activity is required during the course of
accessing a large file.
     When you open a file for reading, DOS uses a section of memory that it
allocated on bootup as a disk buffer.  The first time the file is accessed,
DOS reads an entire sector into memory, even if your program requests only
a few bytes.  This way, when your program makes a subsequent read request,
DOS can retrieve that data from memory instead of from the disk.  This
provides an enormous performance boost, since memory can be accessed many
times faster than any mechanical disk drive.  Even if the next portion of
data being read is located in the same sector, the disk drive must wait for
the disk to spin until that sector arrives at the magnetic read/write head.
     When using a floppy disk the time delays are even worse.  Once a
second or two have passed after accessing a floppy disk, the motor is
turned off automatically.  Having to then restart it again imposes yet
another one or two second delay.
     Similarly, when you write data to a file DOS simply stores the data in
the buffer, instead of writing it to the disk.  When the buffer becomes
full (or when you close the file--whichever comes first), DOS writes the
entire buffer contents to the disk all at once.  Again, this is many times
faster than accessing the physical drive every time data is written.
     You can control the amount of memory that DOS sets aside for its
buffers with a BUFFERS= statement in the PC's CONFIG.SYS file.  For each
buffer you specify, 512 bytes of memory is taken and made unavailable for
other uses.  Even though you might think that more buffers will always be
faster than fewer, this is not necessarily the case.  For each buffer, DOS
also maintains a table that shows which disk sectors the buffer currently
holds.  At some point it can actually take longer for DOS to search through
this table than to read the sector from disk.  Of course, this time depends
on the type of disk (floppy or hard), and the disk's access speed.
     Although DOS' use of disk buffers greatly improves file access speed,
there is still room for improvement.  Each call to DOS to read or write a
file takes a finite amount of time, because most DOS services are handled
by the same interrupt service routine.  Which particular service a program
wants is specified in one of the processor's registers, and determining
which of the many possible services has been requested takes time.
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     To further improve disk access performance, BASIC performs additional
file buffering using its own routines.  Since BASIC's buffers are usually
located in near memory, they can also be accessed very quickly, because
additional steps are needed to access data outside of DGROUP.  However,
BASIC PDS [and VB/DOS] store file buffers in the same segment used for
string variables, so there is slightly less improvement when far strings
are being used.  When you open a random access file, a block of memory
large enough to hold one entire record is set aside in string memory.  If a
record length is given as part of the OPEN command with LEN =, BASIC uses
that for the buffer size.  Otherwise, it uses the default size of 128
bytes.
     When you open a file for sequential access, BASIC also allocates
string memory for a buffer.  512 bytes are used by default, though you can
override that with the optional LEN = argument.  Specifying a buffer size
with non-random files will be discussed later in this chapter.
     Note that BASIC PDS does not create a buffer when a file is opened for
random access and you are using far strings.  If a subsequent FIELD
statement is then used, the fielded strings themselves comprise the buffer.
Otherwise, BASIC assumes you will be reading the data into a TYPE variable,
and avoids the extra buffering altogether.  Also, file buffers in a BASIC
PDS program are always stored in string memory, which is not necessarily
DGROUP.  If you are in the QBX environment or have compiled with the /fs
far strings option, all file buffers will be stored in the far string data
segment.
     Although BASIC's additional file buffering does improve your program's
speed, it also comes at a cost: the buffers take away from string memory,
and the only way to release their memory is to flush their contents to disk
by closing the file.  DOS offers a service to purge a file's buffers, to
ensure that the data will be intact even if the program is terminated
abnormally or the power is turned off.  Therefore, it is considered good
practice to periodically close a file during long data entry sessions.  But
closing the file and then reopening it after writing each record takes a
long time, and more than negates any advantage offered by BASIC's added
buffering.  [Also, the DOS service that flushes a file's buffers does *not*
flush BASIC's buffers.  Any data you have written to disk that is still
pending in a BASIC buffer will not be written to the file by this service.]
     It is interesting to note that BASIC always closes all open files when
a program ends, so it is not strictly necessary to do that manually.  I
mention this only because you can save a few bytes by eliminating the CLOSE
command.  Also, DOS flushes its buffers and closes all open files when a
program ends, so a few bytes can be saved this way even with non-BASIC
programs.  Again, I am not necessarily recommending that you do this, and
some programmers would no doubt disagree with such advice.  But the fact is
that an explicit CLOSE is not truly needed.

FILE ACCESS METHODS
===================

BASIC offers three fundamental methods for accessing files, and these are
specified when the file is opened.  There are also several variations and
options available with each method, and these will be discussed in more
detail in the sections that describe each method.
     The first access method is called Sequential, because it requires you
to read from or write to the file in a continuous stream.  That is, to read
the last item in a sequential file you must read all of the items that
precede it.  There are three different forms of OPEN for accessing
sequential files.
     OPEN FOR OUTPUT creates the named file if it does not yet exist, or
truncates it to a length of zero if it does.  Once a file has been opened
for output, you may only write data to it.
     OPEN FOR APPEND is related to OPEN FOR OUTPUT, and it also tells BASIC
to open the file for writing.  Unlike OPEN FOR OUTPUT, however, OPEN FOR
APPEND does not truncate a file if it already exists.  Rather, it opens the
file and then seeks to the place just past the last byte.  This way, data
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that is subsequently written will be appended to the end of the file.  Note
that OPEN FOR APPEND will also create a file if it does not already exist.
     OPEN FOR INPUT requires that the named file be present; otherwise, a
"File not found" error will result.  Once a file has been opened for input,
you may only read from it.
     BASIC also offers the SEEK command to skip to any arbitrary position
in the file, and SEEK can in fact be used with sequential files.  However,
sequential files are generally written using a comma or a carriage
return/line feed pair, to indicate the end of each data item.  Since each
item can be of a varying length, it is difficult if not impossible to
determine where in the file a given item begins.  That is, if you wanted to
read, say, the 200th line in a README file, how could you know where to
seek to?
     The second primary file access method is Random, and it allows you to
read from and write to the file.  When you use OPEN FOR RANDOM, BASIC knows
that you will be accessing fixed-length blocks of data called *records*.
The advantage of random access is that any record can be accessed by a
record number, instead of having to read through the entire file to get to
a particular location.  That is, you can read or write any record randomly,
without regard to where it is in the file.  Because each record has the
same physical length as every other record, it is easy for BASIC to
calculate the location in the file to seek to, based on the desired record
number and the fixed record length.
     Using random access is ideal for data that is already organized as
fixed-length records such as you would find in a name and address database.
Since each record contains the same amount of information, there is a
natural one-to-one correspondence between the data and the record number in
which it resides.  For example, the data for customer number 1 would be
stored in record number 1, customer 2 is stored in record 2, and so forth.
     Random access can also be used for text and other document files;
however, that is much less common.  Although this would let you quickly
access any arbitrary line of text in the file, the tradeoff is a
considerable waste of disk resources.  For each line, space equal to the
longest one must be set aside for all of them.  In a typical document file
line lengths will vary greatly, and it is wasteful to set aside, say, 80
bytes for each line.
     The third access method is Binary, which is a hybrid of sequential and
random access.  A binary file is opened using the OPEN FOR BINARY command,
and like random, BASIC lets you both read and write the file.  Binary
access is most commonly used when the data in the file is neither fixed-
length in nature, nor delimited by commas or carriage returns.  One example
of a binary file is a Lotus 1-2-3 worksheet file.  Each cell's contents
follows a well-defined format, but varying types of information are
interspersed throughout the file.
     For example, an 8-byte double-precision number may be followed by a
variable length text field, which is in turn followed by the current column
width represented as a 2-byte integer.  Another example of binary
information is the header portion of a dBASE data file.  Although the data
itself is of a fixed length, a block of data is stored at the beginning of
every dBASE data file to indicate the number of fields in each file and
their type.  [Naturally, the length of this header will vary depending on
the number of fields in each record.]  An example program to read Lotus
worksheet files is given later in this chapter, and a program to read and
process dBASE files is shown in Chapter 7.
     Note that BASIC imposes its own rules on what you may and may not do
with each file access method.  This is unfortunate, because DOS itself has
no such restrictions.  That is, DOS allows you to open a file for output,
and then freely read from the same file.  To do this with BASIC you must
first close the file, and then open it again for input.  You can bypass
BASIC entirely if you want, to open files and then read and write them.
This requires using CALL Interrupt, and examples of doing this will be
shown in Chapter 12.
     BASIC offers two different forms of the OPEN command.  The more common
method--and the one I prefer--is as follows:



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 148   -

     OPEN FileName$ FOR OUTPUT AS #FileNum [LEN = Length].

Of course, OUTPUT could be replaced with RANDOM, BINARY, INPUT, or APPEND.
The other syntax is more cryptic, and it uses a string to specify the file
mode.  To open a file for output using the second method you'd use this:

     OPEN "O", #FileNum, FileName$, [Length]

The first syntax is available only in QuickBASIC and the other current
versions of the BASIC compiler.  The second is a holdover from GW-BASIC,
and according to Microsoft is maintained solely for compatibility with old
programs.  The available single-letter mode designators are "O" for output,
"I" for input, "R" for random, "A" for append, and "B" for binary.  Note
that "B" is not supported in GW-BASIC, and was added beginning with
QuickBASIC version 4.0.
     Besides being more obscure and harder to read, the older syntax does
not let you specify the various access and sharing options available in the
newer syntax.  One advantage of the older method is that you can defer the
open mode until the program runs.  That is, a string variable can be used
to determine how the file will be opened.  However, there are few
situations I can envision where that would be useful.  Of course, the
choice is yours, and some programmers continue to use the original version.

FILE MANIPULATION STATEMENTS
============================

BASIC offers a number of different statements for opening and manipulating
files.  In a few cases, the same command may have different meanings,
depending on how the file is opened.  For example LEN = mentioned earlier
assumes a different default value when a file is opened for random access
compared to when it is opened for output.  Similarly, GET # may or may not
accept or require a variable name and optional seek offset, depending on
the file mode.  Therefore, pay close attention to each statement as it is
described in the sections that follow.  Specific differences will be listed
as they relate to each of the various file access methods.

OPENING AND CLOSING FILES

Before any file or device may be accessed, it must first be opened with
BASIC's OPEN statement.  When you use OPEN, it is up to you make up a file
number that will be used when you reference the file later.  If you use
OPEN "MYDATA" FOR OUTPUT AS #1, then you will also use the same file number
(1) when you subsequently print to the file.  For example, you might use
PRINT #1, Any$.  Initially, it might appear that letting the programmer
determine his or her own file numbers is a feature.  After all, you are
allowed to make up your own variable names, so why not file numbers too?
Indeed, BASIC is rare among the popular languages in this regard; both C
and Pascal require that the programmer remember a file number that is given
to them.
     There are several problems with BASIC's use of file numbers, and in
fact DOS does not use this method either.  Instead, DOS returns a *file
handle* when a file has been successfully opened.  When an assembly
language program (or BASIC itself) calls DOS to open a file, it is DOS who
issues the number, and not the program.  BASIC must therefore maintain a
translation table to relate the numbers you give to the actual handles that
DOS returns.  This table requires memory, and that memory is taken from
DGROUP.
     But there is another, more severe problem with BASIC's use of file
numbers instead of DOS handles, because it is possible that you could
accidentally try to open more than one file using the same number.  In a
small program that opens only one or two files, it is not difficult to
remember which file number goes with which file.  But when designing
reusable subroutines that will be added to more than one program, it is
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impossible to know ahead of time what file numbers will be in use.
     To solve this problem, Microsoft introduced the FREEFILE function with
QuickBASIC 4.0.  FREEFILE was described in Chapter 4, but it certainly
bears a brief mention again here.  Each time you use FREEFILE it returns
the next available file number, based on which numbers are already taken.
Therefore, any subroutine that needs to open a file can use the number
FREEFILE returns, confident that the number is not already in use.
     Unless you specify otherwise, a file that has been opened for RANDOM
or BINARY can be both read from and written to.  The ACCESS option of the
OPEN statement lets you indicate that a random or binary file may be read
or written only.  Even though you may ask for both READ and WRITE access
when the file is opened, read/write permission is the default.  In some
cases you may need to open a file for binary access, and also prevent your
program from later writing to it.  In that case you would use the ACCESS
READ option.
     Likewise, specifying ACCESS WRITE tells BASIC to let your program
write to the file, but prevent it from reading.  This may seem nonsensical,
but one situation in which write-only access might be desirable is when
designing a network mail system.  In that case it is quite likely that a
program would be permitted to send mail to another user's electronic
"mailbox", but not be allowed to read the mail contained in that file.  The
various ACCESS options are intended for use with any version of DOS higher
than 2.0.
     Frankly, these ACCESS options are pointless, because if you wrote the
program then you can control whether the file is read from or written to.
If you are writing the Send Mail portion of a network application, then you
would disallow reading someone else's mail as part of the program logic.
And if you do open a file for ACCESS WRITE, BASIC will generate an error if
you later try to read from it.  So I personally don't see any real value in
using these ACCESS arguments.
     The remaining two OPEN options are LOCK and SHARED, and these are
meant for use with shared files under DOS 3.0 or later.  Shared access is
primarily employed on a network, though it is possible to share files on a
single computer.  This could be the case when a file needs to be accessed
by more than one program when running under a task-switching program such
as Microsoft Windows.
     You can specify that a file is to be shared by simply adding the
SHARED clause to the OPEN statement.  Thus, another program could both read
and write the file, even while it is open in your program.  To specify
shared access but prevent other programs from writing to the file you would
use LOCK WRITE.  Similarly, using LOCK READ lets another program write to
the file but not read from it, and LOCK READ WRITE prevents both.
     The LOCK statement can optionally be used on a shared file that is
already open to prohibit another program from accessing it only at certain
times.  The LOCK statement allows all or just a portion of a file to be
locked, and the UNLOCK statement releases the locks that were applied
earlier.  Please understand that these network operations are described
here just as a way to introduce what is possible.  Network and database
programming will be described in depth in Chapter 7.
     Finally, you close an open file using BASIC's CLOSE command.  CLOSE
accepts one or more file numbers separated by commas, or no numbers at all
which means that every open file is to be closed.  You can also use the
RESET command to close all currently open files.  When a file that has been
opened for one of the output modes is closed, its file buffer is flushed to
disk and DOS updates the directory entry for that file to indicate the
current date and time and new file size.  Closing any type of file releases
the buffer memory back to BASIC's string memory pool for other uses.

READING AND WRITING DATA

Once a file has been opened you can read from it, write to it, or both,
depending on what form of OPEN was used.  Any file that has been opened for
input may be read from only.  Unlike the BASIC-related limitations I
mentioned earlier, DOS imposes this restriction, and for obvious reasons.
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However, when you open a file for output or append, it is BASIC that
prevents you from reading back what you wrote.  BASIC imposes several other
unfortunate limitations regarding what you can and cannot do with an open
file, as you will see momentarily.
     Sequential access is commonly used with devices as well as with files.
Although it is possible to open a printer for random access, there is
little point since data is always printed sequentially.  Similarly, reading
from the keyboard or writing to the screen must be sequential.  In the
discussions that follow, you can assume that what is said about accessing
files also applies to devices, unless otherwise noted.

Sequential Output

Data is written to a sequential file using the PRINT # statement, using the
same syntax as the normal PRINT statement when printing to the display
screen.  That is, PRINT # accepts an optional semicolon to suppress a
carriage return and line feed from being written to the file, or a comma to
indicate that one or more blank spaces is to be written after the data.
The number of blanks sent to the file depends on the current print
position, just like when printing to the screen.
     You can also use the WRITE # statement to print data to a sequential
file, but I recommend against using WRITE in most situations.  Unlike PRINT
that merely sends the data you give it, WRITE adds surrounding quotes to
all string data, which takes time and also additional disk space.  Since a
subsequent INPUT from the file will just have to remove those quotes which
takes even more time, what's the point?  Further, WRITE does not let you
specify a trailing semicolon or comma.  Although a comma may be used as a
delimiter between items written to disk, the comma is stored in the file
literally when WRITE is used.
     The only time I can see WRITE being useful is for printing data that
will be read by a non-BASIC application that explicitly requires this
format.  Many database and spreadsheet programs let you import comma-
delimited data with quoted strings such as WRITE uses.  These programs
treat each complete line ending with a carriage return as an entire record,
and each comma-delimited item within the line as a field in that record.
But you should avoid WRITE unless your program really needs to communicate
with other such applications, because it results in larger data files and
slower performance.
     Another use for WRITE is to protect strings that contain commas from
being read incorrectly by a subsequent INPUT statement.  INPUT uses commas
to delimit individual strings, and the quotes allow you to input an entire
string with a single INPUT command.  But BASIC's LINE INPUT does this
anyway, since it reads an entire line of text up to a terminating carriage
return.  You could also add the quotes manually when needed:

IF INSTR(Work$, ",") THEN
  PRINT #1, CHR$(34); Work$; CHR$(34)
ELSE
  PRINT #1, Work$
END IF

You may also use TAB and SPC to format the output you print to a file or
device.  For the most part, TAB and SPC operate like their non-file
counterparts, including the need to add an extra empty PRINT to force a
carriage return at the end of a line.  That is, when you use

     PRINT Any$; TAB(20)
or
     PRINT #1, SomeVar; SPC(13)

BASIC adds a trailing semicolon whether you want it or not.  To force a new
line at that point in the printing process requires an additional PRINT or
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PRINT # statement.  This isn't really as much of a nuisance as yet another
code bloater, since an empty PRINT adds 9 bytes of compiler-generated code
and an empty PRINT # adds 18 bytes.
     One important difference between the screen and file versions of TAB
and SPC is the way long strings are handled.  If you use TAB or SPC in a
PRINT statement that is then followed by a string too long to fit on the
current line, the screen version will advance to the next row, and print
the string at the left edge.  This is probably not what you expected or
wanted.  When printing to a file, however, the string is simply written
without regard to the current column.  Column 80 is the default width for
the screen and printer when they have been opened as devices, though you
may change that using WIDTH.
     The WIDTH statement lets you specify at which column BASIC is to
automatically add a carriage return/line feed pair.  The default for a
printer is at column 80.  In most programming situations this behavior is a
nuisance, since many printers can accommodate 132 columns.  After all, why
shouldn't you be allowed to print what you want when you want, without
BASIC intervening to add unexpected and often unwanted extra characters?
Most programmers disable this automatic line wrapping by using WIDTH #
FileNum, 255 if the printer was opened as a device, or WIDTH LPRINT, 255 if
using LRPINT statements.
     Curiously, this special value is not mentioned anywhere in the
otherwise very complete documentation that comes with BASIC PDS.  In fact,
using a width value of 255 is mandatory if you intend to send binary data
to a printer.  Most modern printers accept both graphics commands and
downloadable fonts.  Since either of these will no doubt result in strings
longer than 80 or even 255 characters, it is essential that you have a way
to disable the "favor" that BASIC does for you.  Undoubtedly, the automatic
addition of a carriage return and line feed goes back to the early days of
primitive printers that required this.  The only reason Microsoft continues
this behavior is to assure compatibility with programs written using
earlier versions of BASIC.
     Related to the WIDTH anomaly is BASIC's insistence on adding a
CHR$(10) line feed whenever you print a CHR$(13) carriage return to a
device.  Again, this dubious feature is provided on the assumption that you
would always want a line feed after every carriage return.  But there are
many cases where you wouldn't, such as the font and graphics examples
mentioned earlier.  If you add the "BIN" (binary) option when opening a
printer, you can prevent BASIC from forcing a new line every 80 columns,
and also suppress the addition of a line feed following each carriage
return.  For example, OPEN "LPT1:BIN" FOR OUTPUT AS #1 tells BASIC to open
the first parallel printer in binary mode.
     The PRINT # USING statement lets you send formatted numeric data to a
file, in the same way you would use the regular PRINT USING to format
numbers on the screen.  PRINT # USING accepts the same set of formatting
commands as PRINT USING, allowing you to mix text and formatted numbers in
a single PRINT operation.  If your program will be printing formatted
reports from the disk file later, I recommend using PRINT USING at that
time, instead of when writing the data to disk.  Otherwise, the extra
spaces and other formatting information are added to the file increasing
its size.  In fact, PRINT # USING is really most appropriate when printing
to a device such as a printer.
     Finally, it is important to point out the importance of selecting a
suitable buffer size.  As I described earlier, BASIC and DOS employ an area
of memory as a buffer to hold information on its way to and from disk.
This way information can often be written to or read from memory, instead
of having to access the physical disk each time.  Besides the buffers that
DOS maintains, BASIC provides additional buffering when your program is
using sequential input or output.
     BASIC lets you control the size of this buffer, using the LEN = option
of the OPEN statement.  In general, the larger you make the buffer, the
faster your programs will read and write files.  The trade-off, however, is
that BASIC's buffers are stored in string memory.  With QuickBASIC and near
strings in BASIC PDS, the buffer is located in DGROUP.  When BASIC PDS far
strings are used, the buffer is in the same segment that the current module
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uses for string storage.
     Conversely, you can actually reduce the default buffer size when
string space is at a premium, but at the expense of disk access speed.
When using OPEN FOR INPUT and OPEN FOR OUTPUT, BASIC sets aside 512 bytes
of string memory for the buffer, unless you specify otherwise.  If you have
many sequential files open at once you could reduce the buffer sizes to 128
bytes, for a net savings of 384 bytes for each file.  The legal range of
values for LEN = is between 1 and 32767 bytes.
     Notice that the best buffer values will be a multiple of a power of
two, and when increasing the buffer size, a multiple of 512.  Since a disk
sector is almost always 512 bytes, DOS will fill the buffer with an entire
sector.  In fact, DOS always reads and writes entire sectors anyway.  If
you use a buffer size of, say, 600 bytes, DOS will have to read 1024 bytes
just to get the first portion of the second sector.  But when more data is
needed later, BASIC will then have to go back and ask DOS for the same
information again.  By reading entire sectors or evenly divisible portions
of a sector, you can avoid having BASIC and DOS read the same information
more than once.
     Even though larger buffers usually translate to better performance,
you will eventually reach the point of diminishing returns, beyond which
little performance improvement will result.  Table 6-1 shows the timing
results with various buffer sizes when reading a 104K BASIC source file
using LINE INPUT.  Understand that this test is informal, and merely shows
the results obtained using only one PC.  In particular, the hard disk
results are for a fairly fast (17 millisecond) 150 MB ESDI drive and a PC
equipped with a 25 MHz. 386.  Therefore, the improvement from a larger
buffer is less than you would get on a slower computer with a slower hard
disk or with a floppy disk.  Many older XT and AT compatible PCs will
probably fall somewhere between the results shown here for the hard and
floppy disks.  Notice that while the improvement actually seems somewhat
worse for some increases, this can be attributed to the lack of resolution
in the PC's system timer.
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Fast ESDI hard disk:

Buffer Size (in bytes)         Seconds
----------------------         -------
          64                    2.699
         128                    2.420
         256                    2.410
         512                    2.420
        1024                    2.311
        2048                    2.139
        4096                    2.201
        8192                    2.080
       16384                    2.039

360K floppy disk:

Buffer Size (in bytes)         Seconds
----------------------         -------
          64                   45.260
         128                   45.141
         256                   45.148
         512                   45.150
        1024                   27.180
        2048                   18.180
        4096                   13.570
        8192                   11.650
       16384                   11.371

Table 6-1: Timing Results For Sequential Reading Versus Buffer Size.

It is important to point out that a buffer is created only for sequential
input and output, and also for random files with QuickBASIC.  Opening a
file for random access with BASIC PDS [and I'll presume VB/DOS] does not
create a buffer, nor does opening a file for binary with either version.
Further, with random access files a buffer is created by QuickBASIC only
when FIELD is used, and the buffer is located within the actual fielded
strings.  Therefore, the LEN = argument in an OPEN FOR RANDOM statement
merely tells BASIC how to calculate record offsets when SEEK and GET are
used.

Sequential Input

Sequential data is read using INPUT #, LINE INPUT #, or INPUT$ #.  Like the
console form of INPUT, INPUT # can be used to read one or more variables of
any type and in any order with a single statement.  When reading a file,
INPUT # recognizes both the comma and the carriage return as a valid
delimiter, to indicate the end of one variable.  This is in contrast to the
regular [keyboard] version of INPUT, which issues a "Redo from start" error
if the wrong number of comma-delimited variables are entered.  Instead,
INPUT # simply moves on to the next line for the remaining variables.
     LINE INPUT # avoids this entirely, and simply reads an entire string
without regard to commas until a carriage return is encountered.  This
precludes LINE INPUT # from being used with anything but string variables.
However, LINE INPUT # can be used with fixed- as well as variable-length
strings, without the overhead of copying from one type to the other that
BASIC usually adds.  [This copying was described in Chapter 2.]  As with
INPUT #, LINE INPUT # strips leading and trailing quotes from the line if
they are present in the file.
     The last method for reading a sequential file or device is with the
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INPUT$ # function.  INPUT$ # is used to read a specified number of
characters, without regard to their meaning.  Where commas and carriage
returns are normally used to delimit each line of text, INPUT$ returns them
as part of the string.  INPUT$ # accepts two arguments--the number of
characters to read and the file number--and assigns them to the specified
string.  To read, say, 20 bytes from a sequential file that has been opened
as #3, you would use Any$ = INPUT$(20, #3).  Although the pound sign (#) is
optional, I prefer to include it to avoid confusion as to which parameter
is the file number and which is the number of bytes.
     As with sequential output, specifying a larger buffer size than the
default 512 bytes can greatly improve the speed of INPUT # and LINE INPUT #
statements, but at the expense of string memory.

Random Access

Unlike sequential files that are almost always read starting at the
beginning, data in a random access file can be accessed literally in any
arbitrary order.  Random access files are comprised of fixed-length
*records*, and each record contains one or more *fields*.  The most common
application of random access techniques is in database programs, where each
record holds the same type of information as the next.  For example, a
customer name and address database is comprised of a first name, a last
name, a street address, city, state, and zip code.  Even though different
names and addresses will be stored in different records, the format and
length of the information in each record is identical.
     BASIC provides two different ways to handle random access files: the
FIELD statement and TYPE variables.  Before QuickBASIC version 4.0, the
FIELD method was the only way to define the structure of a random access
data file.  Although Microsoft has publicly stated that FIELD is provided
in current versions of BASIC only for compatibility with older programs, it
has several important properties that cannot be duplicated in any other
way.  FIELD also lets you perform some interesting an non-obvious tricks
that have nothing to do with reading or writing files.  These are described
later in this chapter in the section *Advanced File Techniques*.
     Once a file has been opened for RANDOM you may use the FIELD statement
by specifying one or more string variables to hold each field, along with
their length.  A typical example showing the syntax for the FIELD statement
is as follows:

OPEN FileName$ FOR RANDOM AS #1 LEN = 97
FIELD #1, 17 AS LastName$, 14 AS FirstName$, 32 AS Address$, 15 AS City$, _
  2 AS State$, 9 AS Zip$, 8 AS BalanceDue$

Here, the file is opened for random access, and the record length is
established as being 97 characters.  This allows room for each of the
fields in the FIELD statement.  In this case 17 characters are set aside
for the last name, 14 for the first name, 32 for the street address, 15 for
the city, 2 for the state, 9 for the zip code, and 8 for the double
precision balance due value.  I often use a field length of 32 characters
for name and address data, because that's how many can fit comfortably on a
standard 3-1/2 by 15/16 inch mailing label.  (The first and last names
above add up to 32 characters, including a separating blank space.)
     Note that the underscore shown above is used here as line continuation
character, and you'd actually type the entire statement as one long line.
In fact, in most cases a FIELD statement must be able to fit entirely on a
single line, and there is no direct way to continue the list of variables.
Although the BC compiler recognizes an underscore to continue a line as
shown here, the BASIC environment does not.  Underscores in a source file
are removed by the BASIC editor when the file is loaded, and the lines are
then combined.
     If a second FIELD statement for the same file number is given on a
separate line, the additional strings specified are placed starting at the
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beginning of the same buffer.  While it is possible to coerce a new FIELD
statement to begin farther into the buffer, that requires an additional
dummy string variable:

FIELD #1, 17 AS LastName$, 14 AS FirstName$
FIELD #1, 31 AS Dummy$, 32 AS Address$, 15 AS City$
FIELD #1, 78 AS Dummy2$, 2 AS State$, 9 AS Zip$

Here, the dummy strings are used as placeholders to force the Address$ and
State$ variables farther into the buffer, and you would not refer to the
dummy strings in your program.
     Once a field buffer has been defined, special precautions are needed
when assigning and reading the fielded string variables.  As you know,
BASIC often moves strings around in memory when they are assigned.
However, that would be fatal if those strings are in a field buffer.  A
field buffer is written to disk all at once when you use PUT, and it is
essential that all of the strings therein be contiguous.  If you simply
assign a variable that is part of a field buffer, BASIC may move the string
data to a new location outside of the buffer and your program will fail.
     To avoid this problem you must assign fielded string using either
LSET, RSET, or the statement form of MID$.  These BASIC commands let you
insert characters into a string, so BASIC will not have to claim new string
memory.  This further contributes to FIELD's complexity, and it also adds
slightly to the amount of code needed for each assignment.  For example,
the statement One$ = Two$ generates 13 bytes of compiled code, and the
statement LSET One$ = Two$ creates 17.  Although LSET is generally faster
than a direct assignment, it is important to understand that it also
creates more code.  But the situation gets even worse.
     Because all of the variables in a field buffer must be strings,
additional steps are needed to assign numeric variables such as integer and
double precision.  The CVI and MKS$ family of BASIC functions are needed to
convert numeric data to their equivalent in string form and back.  There
are eight of these functions in QuickBASIC with two each for integer, long
integer, single precision, and double precision variables.  BASIC PDS adds
two more to support the Currency data type.  All of the various conversion
functions have names that start with the letters MK or CV, and a complete
list can be found in your BASIC manual.
     To convert a double precision variable to equivalent data in an 8-byte
string you would use MKD$, and to convert a 2-byte string that holds an
integer to an actual integer value you would use CVI.  MKD$ stands for
"Make Double into a string" and it has a dollar sign to show that it
returns a string.  CVI stands for "Convert to Integer" and the absence of a
dollar sign shows that it returns a numeric value.  Combined with the
requisite LSET, a complete assignment prior to writing a record to disk
with PUT would be something like this: LSET BalanceDue$ = MKD$(BalDue#).
And if a record has just been read using GET, an integer value in the field
buffer could be retrieved using code such as MyInt% = CVI(IntVar$).
     The need for LSET, RSET, CVI, and MKS$ and so forth has historically
made learning random access file techniques one of the most difficult and
messy aspects of BASIC programming.  Besides having to learn all of the
statements and how they are used, you also need to understand how many
bytes each numeric data type occupies to set aside the correct amount of
space in the field buffer.  Further, a lot of compiled code is created to
convert large amounts of data between numeric and string form.  For these
and other reasons, Microsoft introduced the TYPE variable with its release
of QuickBASIC 4.0.
     The TYPE method allows you to establish a record's structure by
defining a custom variable that contains individual components for each
field in the record.  In general, using TYPE is a much clearer way to
define a record, and it also avoids the added library code to handle the
FIELD, LSET, CVI, and MKS$ statements.  When you use AS INTEGER and AS
DOUBLE and so forth to define each portion of the TYPE, the correct number
of bytes are allocated to store the value in its native fixed-length
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format.  This avoids having to convert the data to and from ASCII digits.
     Using the earlier example, here's how you would define and assign the
same record using a TYPE variable:

TYPE Record
  LastName AS STRING * 17
  FirstName AS STRING * 14
  Address AS STRING * 32
  State AS STRING * 2
  Zip AS STRING 9
  BalanceDue AS DOUBLE
END TYPE
DIM MyRecord AS Record

MyRecord.LastName = LastName$
MyRecord.FirstName = FirstName$
MyRecord.Address = Address$
MyRecord.State = State$
MyRecord.Zip = Zip$
MyRecord.BalanceDue = BalanceDue#

Even though the same names are used for both the TYPE variable members and
the strings they are being assigned from, you may of course use any names
you want.  You could also assign the portions of a TYPE variable from
constants using MyRecord.Zip = "06896" or MyRecord.BalanceDue = 4029.80.
Further, one entire TYPE variable may be assigned to another in a single
operation using ThisType = ThatType.  Dissimilar TYPE variables may be
assigned using LSET like this: LSET MyType = YourType.
     As you can see, using TYPE variables instead of FIELD yields an
enormous improvement in a program's clarity.  However, there are still some
programming problems that only FIELD can solve.  One limitation of using
TYPE variables is that the file structure must be known when the program is
compiled, and you cannot defer this until runtime.  Therefore, it is
impossible to design a general purpose database program, in which a single
program can manipulate any number of differently structured files.  The
compiler needs to know the length and type of data within a TYPE variable,
in order to access the data it contains.  So while you can use a variable
as the LEN = argument with OPEN, the record structure itself must remain
fixed.
     FIELD avoids that limitation because it accepts a variable number of
arguments, and varying lengths within each field component.  Therefore, by
dimensioning a string array to the number of elements needed for a given
record, the entire process of opening, fielding, reading, and writing can
be handled using variables whose contents and type are determined at
runtime.  Some amount of IF testing will of course be required when the
program runs, but at least it's possible to process a file using variable
information.
     The following complete program first creates a random access file with
five slightly different records using a TYPE variable.  It then reads the
file independently of the TYPE structure using the FIELD method.  Although
the second portion of the program uses DATA statements to define the file's
structure, in practice this information would be read from disk.  In fact,
this is the method used by dBASE and Clipper files, based on the field
information that is stored in a header portion of the data file.



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 157   -

'----- create a data file containing five records
DEFINT A-Z

TYPE MyType
  FirstName AS STRING * 17
  LastName AS STRING * 14
  DblValue AS DOUBLE
  IntValue AS INTEGER
  MiscStuff AS STRING * 20
  SngValue AS SINGLE
END TYPE
DIM MyVar AS MyType

OPEN "MYFILE.DAT" FOR RANDOM AS #1 LEN = 65
MyVar.FirstName = "Jonathan"
MyVar.LastName = "Smith"
MyVar.DblValue = 123456.7
MyVar.IntValue = 10
MyVar.MiscStuff = "Miscellaneous stuff"
MyVar.SngValue = 14.29
FOR X = 1 TO 5
  PUT #1, , MyVar
  MyVar.DblValue = MyVar.DblValue * 2
  MyVar.IntValue = MyVar.IntValue * 2
  MyVar.SngValue = MyVar.SngValue * 2
NEXT
CLOSE #1

'----- read the data without regard to the TYPE above
READ FileName$, NumFields
REDIM Buffer$(1 TO NumFields)   'holds the FIELD strings
REDIM FieldType(1 TO NumFields) 'the array of data types

RecLength = 0
FOR X = 1 TO NumFields
  READ ThisType
  FieldType(X) = ThisType
  RecLength = RecLength + ABS(ThisType)
NEXT

OPEN FileName$ FOR RANDOM AS #1 LEN = RecLength

PadLength = 0
FOR X = 1 TO NumFields
  ThisLength = ABS(FieldType(X))
  FIELD #1, PadLength AS Pad$, ThisLength AS Buffer$(X)
  PadLength = PadLength + ThisLength
NEXT

NumRecs = LOF(1) \ RecLength    'calc number of records
FOR X = 1 TO NumRecs            'read each in sequence
  GET #1                        'get the current record
  CLS
  FOR Y = 1 TO NumFields        'walk through each field
    PRINT "Field"; Y; TAB(15);  'display each field
    SELECT CASE FieldType(Y)    'see what type of data
      CASE -8                   'double precision
        PRINT CVD(Buffer$(Y))   'so use CVD
      CASE -4                   'single precision
        PRINT CVS(Buffer$(Y))   'as above
      CASE -2                   'integer
        PRINT CVI(Buffer$(Y))
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      CASE ELSE                 'string
        PRINT Buffer$(Y)
    END SELECT
  NEXT
  LOCATE 20, 1
  PRINT "Press a key to view the next record ";
  WHILE LEN(INKEY$) = 0: WEND
NEXT
CLOSE #1
END

DATA MYFILE.DAT, 6
DATA 17, 14, -8, -2, 20, -4

There are several issues that need elaboration in this program.  First is
the use of arrays to hold the fielded string data and also each field's
type.  When the field buffer is defined with an array, the same variable
name can be used repeatedly in a loop.  A parallel array that holds the
field data types permits the program to relate the field data to its
corresponding type of data.  That is, Buffer$(3) holds the data for field
3, and FieldType(3) indicates what type of data it is.
     Second, the FieldType array uses a simple coding method that combines
both the data type and its length into a single value.  That is, positive
values are used to indicate string data, and the value itself is the field
length.  Negative values reflect the data type as well as the length, using
a negative version of that data type's length.  Specifically, -8 is used to
indicate a double precision field type, -4 a single precision type, and -2
an integer.  If you need to handle long integers or the BASIC PDS Currency
data type, you'll need to devise a slightly different method.  I chose this
one because it is simple and effective.
     The final point worth mentioning when comparing FIELD to TYPE is that
the field buffer is relinquished back to BASIC's string pool when the file
is closed.  But when a TYPE variable is dimensioned, the near memory it
occupies is allocated by the compiler, and is never available for other
uses.  Although there is a solution, it requires some slight trickery.  The
statement REDIM TypeVar(1 TO 1) AS TypeName will create a 1-element TYPE
array in far memory that can then be used as if it were a single TYPE
variable.  That is, any place you would have used the TYPE variable, simply
substitute the sole element in the array.
     Understand that more code is required to access data in a dynamic
array than in a static variable.  For example, an integer assignment to a
member of a dynamic TYPE array generates 17 bytes of code, compared to only
6 bytes for the same operation on a static TYPE.  But when string space is
more important than .EXE file size, this trick can make the difference
between a program that runs and one that doesn't.
     Regardless of which method you use--TYPE or FIELD--there are several
additional points to be aware of.  First, the PUT # and GET # statements
are used to write and read a random access file respectively.  PUT # and
GET # accept two different forms, depending on whether you are using TYPE
or FIELD to define the record structure.
     When FIELD is used, PUT # and GET # may be used with either no
argument to access the current record, or with an optional record number
argument.  That is, PUT #1 writes the current field buffer contents to disk
at the current DOS SEEK position, and GET #1, RecNum reads record number
RecNum into the buffer for subsequent access by your program.
     As with sequential files, each time a record is read or written, DOS
advances its internal seek location to the next successive position in the
file.  Therefore, to read a group of records in forward order does not
require a record number, nor does writing them in that order.  In fact,
slightly more time is required to access a record when a record number is
given but not needed, because BASIC makes a separate call to perform an
explicit Seek to that location in the file.
     When the TYPE method is used to access random access data, the record
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number is also optional, but you must provide the name of a TYPE variable
or TYPE array element.  In this case, the record number is still used as
the first argument, and the TYPE variable is the second argument.  If you
omit the record number you must include an empty comma placeholder.  For
example, PUT #1, RecNum, TypeVar writes the contents of TypeVar to the file
at record number RecNum, and GET #1, , TypeArray(X) reads the current
record into TYPE array element X.
     It is not essential that the TYPE variable be as long as the record
length specified when LEN = was used with OPEN, but it generally should be.
When a record number is given with PUT # or GET #, BASIC uses the original
LEN = value to know where to seek to in the file.  If a record number is
omitted, BASIC will still advance to the next complete record even if the
TYPE variable being read or written is shorter than the stated record
length.  In most cases, however, you should use a TYPE whose length
corresponds to the LEN = argument unless you have a good reason not to.
     Notice that when LEN = is omitted, BASIC defaults to a record length
of 128 bytes.  Indeed, forgetting to include the length can lead to some
interesting surprises.  One clever trick that avoids having to calculate
the record length manually is to use BASIC's LEN function.  Although
earlier versions of BASIC allowed LEN only in conjunction with string
variables, QuickBASIC 4.0 and later versions recognize LEN for any type of
data.
     For example, LEN(IntVar%) is always 2, and LEN(AnyDouble#) is always
equal to 8.  When LEN is used this way the compiler merely substitutes the
appropriate numeric constant when it builds your program.  Since LEN can
also be used with TYPE variables and TYPE array elements, you can let BASIC
do the byte counting for you.  The brief program fragment below shows this
in context.

TYPE Something
  X AS INTEGER
  Y AS DOUBLE
  Z AS STRING * 100
END TYPE
DIM Anything AS Something
OPEN MyData$ FOR RANDOM AS #1 LEN = LEN(Anything)

In particular, this method is useful if you later modify the TYPE
definition, since the program will be self-accommodating.  Changing Z to
STRING * 102 will also change the value used as the LEN = argument to OPEN.
Be careful to use the actual variable name with LEN, and not the TYPE name
itself.  That is, LEN(Anything) will equal 110, but LEN(Something) will be
2 if DEFINT is in effect.  When BASIC sees LEN(Something) it assumes you
are referring to a variable with that name, not the TYPE definition.
     The only time this use of LEN will be detrimental is when it is used
as a passed parameter many times in a program.  Since LEN is treated in
this case as a numeric constant, it is subject to the same copying issues
that CONST values and literal numbers are.  Therefore, you would probably
want to assign a variable once from the value that LEN returns, and use
that variable repeatedly later as described in Chapter 2.

Binary Access

Binary file access lets you read or write any portion of a file, and
manipulate any type of information.  Reading a sequential file requires
that the end of each data item be identified by a comma, or a carriage
return line feed pair.  Random access files do not require special
delimiters, and instead rely on a fixed record length to know where each
record's data starts and ends.  A binary file may be organized in any
arbitrary manner; however, it is up to the programmer to devise a method
for determining what goes where in the file.
     The overwhelming advantage of binary over sequential access is the
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enormous space and speed savings.  A file that requires extra carriage
returns or commas will be larger than one that does not.  Moreover, numeric
data in a binary file is stored in its native fixed-length format, instead
of as a string of ASCII digits.  Therefore, the integer value -32700 will
occupy only two bytes, as opposed to the seven needed for the digits plus
either a comma or carriage return and line feed.
     Furthermore, converting between numbers and their ASCII representation
is one of the slowest operations in BASIC.  Because the STR$ and VAL
functions must be able to operate on floating point numbers and perform
rounding, they are extremely slow.  For example, VAL must examine the
digits in a string for many special characters such as "e", "d", "&H", and
so forth.  And with the statement IntVar% = VAL("1234.56"), VAL must also
round the value to 1235 before assigning the result to IntVar%.  Even if
you don't use STR$ or VAL explicitly when reading or writing a file, BASIC
does internally.  That is, the statement PRINT #1, D# is compiled as if you
used PRINT #1, STR$(D#).  Likewise, INPUT #1, IntVar% is compiled the same
as INPUT #1, Temp$: IntVar% = VAL(Temp$).
     When a file has been opened for binary access you may not use PRINT #,
WRITE #, or PRINT # USING.  The only statement that can write data to a
binary file is PUT #.  PUT # may be used with any type of variable, but not
constants or expressions.  That is, you can use PUT #1, , AnyVar, but not
PUT #1, , 13 or PUT #1, SeekLoc, X + Y! or PUT #1, , LEFT$(Work$, 10).
This is yet another unnecessary BASIC limitation, which means that to write
a constant you must first assign it to a temporary variable, and then use
PUT specifying that variable.
     Reading from a binary file requires GET #, which is the complement of
PUT #.  Like PUT #, GET # may be used with any kind of variable, including
TYPE variables.  When a string variable is written to disk with PUT #, the
entire string is sent.  However, when a string variable is used with GET #,
BASIC reads only as many bytes as will fit into the target string.  So to
read, say, 20 bytes into a string from a binary file you would use this:

     Temp$ = SPACE$(20)       'make room for 20 bytes
     GET #FileNum, , Temp$    'read all 20 bytes

Although fixed-length strings cannot be cleared to relinquish the memory
they occupied, they are equally valid for reading data from a binary file:

     DIM FLen AS STRING * 20
     GET #FileNum, , FLen

You can also use INPUT$ to read a specified number of bytes from a binary
file.  Therefore you can replace both examples above with the statement
Temp$ = INPUT$(20, #FileNum).  Contrary to some versions of Microsoft BASIC
documentation, PUT # does not store the length of the string in a binary
file prior to writing the data as it does with files opened for RANDOM.
     As you've seen, data is written to a binary file using the PUT #
command, and read using GET #.  These work much like their random access
counterparts in that a seek offset is optional, and if omitted must be
replaced with an empty comma placeholder.  But where the seek argument in a
random GET # or PUT # specifies a record number, a binary GET # treats it
as a byte offset into the file.
     The first byte in a binary file is considered by BASIC to be byte
number 1.  This is important to point out now, because DOS considers the
first byte to be numbered 0.  When we discuss using CALL Interrupt to
access files in Chapter 12, you will need to take this difference into
account.
     When reading and writing binary files, BASIC always uses the length of
the specified variable to know how many bytes to read or write.  The
statement GET #1, , IntVar% reads two bytes at the current DOS seek
location into the integer variable IntVar%, and PUT #1, 1000, LongVar#
writes the contents of LongVar# (eight bytes) to the file starting at the
1000th byte.  Let's now take a look at a practical application of binary
file techniques.
     Rather than invent a binary file format as an example, I will instead
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use the Lotus 1-2-3 file structure to illustrate the effective use of
binary access.  Although it is possible to skip around in a binary file and
read its data in any arbitrary order, a Lotus worksheet file is intended to
be read sequentially.  Each data item is preceded by an integer code that
indicates the type and length of the data that follows.  Note that the same
format is used by Lotus 1-2-3 versions 1 and 2, and also Lotus Symphony.
Newer versions of 1-2-3 that support three-dimensional work sheets use a
different format that this program will not accommodate.
     A Lotus spreadsheet can contain as many as 63 different kinds of data.
However, we will concern ourselves with only those that are of general
interest such as cell contents and simple formatting commands.  These are
Beginning of File, End of File, Integer values, Floating point values, Text
labels and their format, and the double precision values embedded within a
Formula record.  The format used by the actual formulas is quite complex,
and will not be addressed.  Other records that will not be covered here are
those that pertain to the structure of the worksheet itself.  For example,
range names, printer setup strings, macro definitions, and so forth.  You
can get complete information on the Lotus file structure as well as other
standard formats in Jeff Walden's excellent book, *File Formats for Popular
PC Software* (Wiley Press, ISBN 0-471-83671-0).  [Unfortunately that book
is now out of print.  But you may be able to get this information from
Lotus directly.]
     A Lotus file is comprised of individual records, and each record may
have a varying length.  The length of a record depends on its type and
contents, and most records contain a fixed-length header which describes
the information that follows.  Regardless of the type of record being
considered, each follows the same format: an operation code (opcode), the
data length, and the data itself.
     The opcode is always a two-byte integer which identifies the type of
data that will follow.  For example, an opcode of 15 indicates that the
data in the record will be treated by 1-2-3 as a text label.  The length is
also an integer, and it holds the number of bytes in the Data section (the
actual text) that follows.
     All of the records that pertain to a spreadsheet cell contain a
five-byte header at the beginning of the data section.  These five bytes
are included as part of the data's length word.  The first header byte
contains the formatting information, such as the number of decimal
positions to display.  The next two bytes together contain the cell's row
as an integer, and the following two bytes hold the cell's column.
     Again, this header is present only in records that refer to a cell's
contents.  For example, the Beginning of File and End of File records do
not contain a header, nor do those records that describe the worksheet.
Some records such as labels and formulas will have a varying length, while
those that contain numbers will be fixed, depending on the type of number.
Floating point values are always eight bytes long, and are in the same IEEE
format used by BASIC.  Likewise, an integer value will always have a length
of two bytes.  Because the length word includes the five-byte header size,
the total length for these double precision and integer examples is 13 and
7 respectively.
     It is important to understand that in a Lotus worksheet file, rows and
columns are based at zero.  Even though 1-2-3 considers the leftmost row to
be number 1, it is stored in the file as a zero.  Likewise, the first
column as displayed by 1-2-3 is labelled "A", but is identified in the file
as column 0.  Thus, it is up to your program to take that into account as
translates the columns to the alphabetic format, if you intend to display
them as Lotus does.
     In the Read portion of the program that follows, the same steps are
performed for each record.  That is, binary GET # statements read the
record's type, length, and data.  If the record type indicates that it
pertains to a worksheet cell, then the five-byte header is also read using
the GetFormat subprogram.  Opcodes that are not supported by this program
are simply displayed, so you will see that they were encountered.
     The Write portion of the program performs simple formatting, and also
ensures that a column-width record is written only once.  Table 6-2 shows
the makeup of the numeric formatting byte used in all Lotus files.
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            bits --> 7  6  5  4  3  2  1  0
                     ^  ^  ^  ^  ^  ^  ^  ^
                     |  |  |  |  |  |  |  |
protected if set ----+  |  |  |  |  |  |  |
  type of format -------+--+--+  |  |  |  |
number of digits ----------------+--+--+--+

                        ^  ^  ^
                        |  |  |
fixed number of digits  0  0  0
  exponential notation  0  0  1
              currency  0  1  0
               percent  0  1  1
    flag to add commas  1  0  0
                unused  1  0  1
                unused  1  1  0
          other format  1  1  1

Table 6-2: The Structure of a Lotus 1-2-3 Format Byte.

The program example below can either read or write a Lotus 1-2-3 worksheet
file.  If you select Create when this program is run, it will write a
worksheet file named SAMPLE.WKS suitable for reading into any version of
Lotus 123.  This sample file contains an assortment of labels and values.
If you select Read, the program will prompt for the name of a worksheet
file which it then reads and displays.
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DEFINT A-Z
DECLARE SUB GetFormat (Format, Row, Column)
DECLARE SUB WriteColWidth (Column, ColWidth)
DECLARE SUB WriteInteger (Row, Column, ColWidth, Temp)
DECLARE SUB WriteLabel (Row, Column, ColWidth, Msg$)
DECLARE SUB WriteNumber (Row, Col, ColWidth, Fmt$, Num#)

DIM SHARED CellFmt AS STRING * 1    'to read one byte
DIM SHARED ColNum(40)               'max columns to write
DIM SHARED FileNum                  'the file number to use

CLS
PRINT "Read an existing 123 file or ";
PRINT "Create a sample file (R/C)? "
LOCATE , , 1
DO
   X$ = UCASE$(INKEY$)
LOOP UNTIL X$ = "R" OR X$ = "C"
LOCATE , , 0
PRINT X$

IF X$ = "R" THEN

  '----- read an existing file
  INPUT "Lotus file to read: ", FileName$
  IF INSTR(FileName$, ".") = 0 THEN
    FileName$ = FileName$ + ".WKS"
  END IF
  PRINT

  '----- get the next file number and open the file
  FileNum = FREEFILE
  OPEN FileName$ FOR BINARY AS #FileNum

  DO UNTIL Opcode = 1       'until End of File code

     GET FileNum, , Opcode  'get the next opcode
     GET FileNum, , Length  'and the data length

     SELECT CASE Opcode     'filter the Opcodes

    CASE 0                  'Beginning of File record
      PRINT "Beginning of file, Lotus ";
      GET FileNum, , Temp

      SELECT CASE Temp
        CASE 1028
          PRINT "1-2-3 version 1.0 or 1A"
        CASE 1029
          PRINT "Symphony version 1.0"
        CASE 1030
          PRINT "123 version 2.x"
        CASE ELSE
          PRINT "NOT a Lotus File!"
      END SELECT

    CASE 1                  'End of File
      PRINT "End of File"

    CASE 12                 'Blank cell
       'Note that Lotus saves blank cells only if
       'they are formatted or protected.
       CALL GetFormat(Format, Row, Column)
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       PRINT "Blank:      Format ="; Format,
       PRINT "Row ="; Row,
       PRINT "Col ="; Column

    CASE 13                 'Integer
       CALL GetFormat(Format, Row, Column)
       GET FileNum, , Temp
       PRINT "Integer:    Format ="; Format,
       PRINT "Row ="; Row,
       PRINT "Col ="; Column,
       PRINT "Value ="; Temp

    CASE 14                 'Floating point
       CALL GetFormat(Format, Row, Column)
       GET FileNum, , Number#
       PRINT "Number:     Format ="; Format,
       PRINT "Row ="; Row,
       PRINT "Col ="; Column,
       PRINT "Value ="; Number#

    CASE 15                 'Label
       CALL GetFormat(Format, Row, Column)
       'Create a string to hold the label.  6 is
       'subtracted to exclude the Format, Column,
       'and Row information.

       Info$ = SPACE$(Length - 6)
       GET FileNum, , Info$         'read the label
       GET FileNum, , CellFmt$      'eat the CHR$(0)
       PRINT "Label:      Format ="; Format,
       PRINT "Row ="; Row,
       PRINT "Col ="; Column, Info$

    CASE 16                 'Formula
       CALL GetFormat(Format, Row, Column)
       GET FileNum, , Number#      'read cell value
       GET FileNum, , Length       'and formula length
       SEEK FileNum, SEEK(FileNum) + Length 'skip formula
       PRINT "Formula:    Format ="; Format,
       PRINT "Row ="; Row,
       PRINT "Col ="; Column,
       PRINT "Value ="; Number#

    CASE ELSE
       Dummy$ = SPACE$(Length)     'skip the record
       GET FileNum, , Dummy$       'read it in
       PRINT "Opcode: "; Opcode    'show its Opcode

     END SELECT

     '----- pause when the screen fills
     IF CSRLIN > 21 THEN
       PRINT
       PRINT "Press <ESC> to end or ";
       PRINT "any other key for more"
       DO
         K$ = INKEY$
       LOOP UNTIL LEN(K$)
       IF K$ = CHR$(27) THEN EXIT DO
       CLS
     END IF

     NumRecs = NumRecs + 1      'count the records

  LOOP
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  PRINT "Number of Records Processed ="; NumRecs
  CLOSE

ELSE

  '----- write a sample file
  FileNum = FREEFILE            'as above
  OPEN "SAMPLE.WKS" FOR BINARY AS #FileNum

  Temp = 0                      'OpCode for Start of File
  PUT FileNum, , Temp           'write that
  Temp = 2                      'its data length is 2
  PUT FileNum, , Temp           'since it's an integer
  Temp = 1030                   'Lotus version 2.x
  PUT FileNum, , Temp

  Row = 0                       'write this in Row 1
  DO
     CALL WriteLabel(Row, 0, 16, "This is a Label")
     CALL WriteLabel(Row, 1, 12, "So is this")
     CALL WriteInteger(Row, 2, 7, 12345)
     CALL WriteNumber(Row, 3, 9, "C2", 57.23#)
     CALL WriteNumber(Row, 4, 9, "F5", 12.3456789#)
     CALL WriteInteger(Row, 6, 9, 99)  'skip a column for fun
     Row = Row + 1                     'go on to the next row
  LOOP WHILE Row < 6

  '----- Write the End of File record and close the file
  Temp = 1                  'Opcode for End of File
  PUT FileNum, , Temp
  Temp = 0                  'the data length is zero
  PUT FileNum, , Temp
  CLOSE

END IF
END

SUB GetFormat (Format, Row, Column) STATIC
  GET FileNum, , CellFmt$: Format = ASC(CellFmt$)
  GET FileNum, , Column
  GET FileNum, , Row
END SUB

SUB WriteColWidth (Column, ColWidth) STATIC

  '----- allow a column width only once for each column
  IF NOT ColNum(Column) THEN
    Temp = 8
    PUT FileNum, , Temp
    Temp = 3
    PUT FileNum, , Temp
    PUT FileNum, , Column
    Temp$ = CHR$(ColWidth)
    PUT FileNum, , Temp$
    '----- show we wrote this column's width
    ColNum(Column) = -1
  END IF

END SUB

SUB WriteInteger (Row, Column, ColWidth, Integ) STATIC

  Temp = 13                     'OpCode for an integer
  PUT FileNum, , Temp
  Temp = 7                      'Length + 5 byte header
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  PUT FileNum, , Temp
  Temp$ = CHR$(127)             'the format portion
  PUT FileNum, , Temp$
  PUT FileNum, , Column
  PUT FileNum, , Row
  PUT FileNum, , Integ
  CALL WriteColWidth(Column, ColWidth)

END SUB

SUB WriteLabel (Row, Column, ColWidth, Msg$)

  IF LEN(Msg$) > 240 THEN       '240 is the maximum length
    Msg$ = LEFT$(Msg$, 240)
  END IF

  Temp = 15                     'OpCode for a label
  PUT FileNum, , Temp
  Temp = LEN(Msg$) + 7          'Length plus 5-byte header
                                'plus "'" plus CHR$(0)
  PUT FileNum, , Temp
  Temp$ = CHR$(127)             '127 is the default format
  PUT FileNum, , Temp$
  PUT FileNum, , Column
  PUT FileNum, , Row
  Temp$ = "'" + Msg$ + CHR$(0)  'a "'" left-aligns a label
                                'use "^" instead to center
  PUT FileNum, , Temp$
  CALL WriteColWidth(Column, ColWidth)

END SUB

SUB WriteNumber (Row, Col, ColWidth, Fmt$, Num#) STATIC

  IF LEFT$(Fmt$, 1) = "F" THEN                    'fixed
    '----- specify the number of decimal places
     Format$ = CHR$(0 + VAL(RIGHT$(Fmt$, 1)))
  ELSEIF LEFT$(Fmt$, 1) = "C" THEN                'currency
     Format$ = CHR$(32 + VAL(RIGHT$(Fmt$, 1)))
  ELSEIF LEFT$(Fmt$, 1) = "P" THEN                'percent
     Format$ = CHR$(48 + VAL(RIGHT$(Fmt$, 1)))
  ELSE                                            'default
     Format$ = CHR$(127)    'use CHR$(255) for protected
  END IF

  Temp = 14                 'Opcode for a number
  PUT FileNum, , Temp
  Temp = 13                 'Length (8) + 5 = 13
  PUT FileNum, , Temp

  PUT FileNum, , Format$
  PUT FileNum, , Col
  PUT FileNum, , Row
  PUT FileNum, , Num#

  CALL WriteColWidth(Column, ColWidth)

END SUB

There are several points worth noting about this program.  First, Lotus
label strings are always terminated with a CHR$(0) zero byte, which is the
same method used by DOS and the C language.  Therefore, the WriteLabel
subprogram adds this byte, which is also included as part of the length
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word that follows the Opcode.
     In the WriteNumber subprogram, the 1-byte format code is either 127 to
default to unformatted, or bit-coded to indicate fixed, currency, or
percent formatting.  WriteNumber expects a format string such as "F3" which
indicates fixed-point with three decimal positions, or "P1" for percent
formatting using one decimal place.  If you instead use "C", WriteNumber
will use a fixed 2-decimal point currency format.
     Earlier I pointed out the extra work is needed to write a constant
value to a binary file, because only variables may be used with PUT #.
This is painfully clear in each of the Write subprograms, where the integer
variable Temp is repeatedly assigned to new values.  We can only hope that
Microsoft will see fit to remove this arbitrary limitation in a later
version of BASIC.
     Finally, note the use of the fixed-length string CellFmt$.  Although
some language support a one-byte numeric variable type, BASIC does not.
Therefore, to read and write these values you must use a fixed-length
string.  To determine the value after reading a file you will use ASC, and
to assign a value prior to writing it you instead use CHR$.  For example,
to assign CellFmt$ to the byte value 123 use CellFmt$ = CHR$(123).

NAVIGATING YOUR FILES

BASIC offers a number of file-related functions to determine how long a
file is, the current DOS seek location where the next read or write will
take place, and also if that location is at the end of the file.  These are
LOF, LOC and SEEK, and EOF respectively.  LOF stands for Length Of File,
LOC means current Location, and EOF is End Of File.  The SEEK statement is
also available to force the next file access to occur at a specified place
within the file.  All of these require a file number argument to indicate
which file is being referred to.

The EOF Function

The EOF function is most useful when reading sequential text files, and it
avoids BASIC's "Input past end" error that would otherwise result from
trying to read past the end of the available data.  The following short
complete program reads a text file and displays it contents, and shows how
EOF is used for this purpose.

OPEN FileName$ FOR INPUT AS #1
  WHILE NOT EOF(1)
    LINE INPUT #1, This$
    PRINT This$
  WEND
CLOSE

Notice the use of the NOT operator in this example.  The EOF function
returns an integer value of either -1 or 0, to indicate true (at the end of
the file) or false.  Therefore, NOT -1 is equal to 0 (False), and NOT 0 is
equal to -1 (True).  This use of bit manipulation was described earlier in
Chapter 2.
     EOF can also be used with binary and random access files for the same
purpose.  In fact, EOF may be even more useful in those cases, because
BASIC does not create an error when you attempt to read past the end as it
does for sequential files.  Indeed, once you go past the end of a binary or
random access file, BASIC simply fills the variables being read with zero
bytes.  Without EOF there is no way to distinguish between zeros returned
by BASIC because you went past the end of the file and zeros that were read
as legitimate data.
     The EOF function was originally needed with DOS 1.0 for a program to
determine when the end of the file was reached.  That version of DOS always
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wrote all data in multiples of 128 bytes, and all file directory entries
also were listed with lengths being a multiple of 128.  [That is, a file
which contains only ten bytes of data will be reported by DIR as being 128
bytes long.]  To indicate the true end of the file, a CHR$(26) end of file
marker was placed just past the last byte of valid data.  Thus, EOF was
originally written to search for a byte with that value, and return True
when it was found.
     Most modern applications do not use an EOF character, and instead rely
on the file length that is stored in the file's directory entry.  However,
some older programs still write a CHR$(26) at the end of the data, and DOS'
COPY CON command does this as well.  Therefore, BASIC's EOF will return a
True value when this character is encountered, even if there is still more
data to be read in the file.  In fact, you can provide a minimal amount of
data security by intentionally writing a CHR$(26) at or near the beginning
of a sequential file.  If someone then uses the DOS TYPE command to view
the file, only what precedes the EOF marker will be displayed.
     Another implication of EOF characters in BASIC surfaces when you open
a sequential file for append mode.  BASIC makes a minimal attempt to locate
an EOF character, and if one exists it begins appending on top of it.
After all, if writing started just past the EOF byte, a subsequent LINE
INPUT would fail when it reached that point.  Likewise, an EOF test would
return true and the program would stop reading at that location in the
file.  Therefore, BASIC checks the last few bytes in the file when you open
for append, to see if an EOF marker is present.  However, if the marker is
much earlier in a large file, BASIC will not see it.
     When EOF is used with serial communications, it returns 0 until a
CHR$(26) byte is received, at which point it continues to return -1 until
the communications port is closed.

The LOF Function

The LOF function simply returns the current length of the file, and that
too can be used as a way to tell when you have reached the end.  In the
random access FIELD example program shown earlier, LOF was used in
conjunction with the record length to determine the number of records in
the file.  Since the length of most random access files is directly related
to [and evenly divisible by] the number of records in the file, simple
division can be used to determine how many records there are.  The formula
is NumRecords = LOF(FileNum) \ RecLength.
     Understand that when used with sequential and binary files, LOF
returns the length of the file in bytes.  But with a random access file,
LOF instead provides the number of records.
     LOF can also be used as a crude way to see if a file exists.  Even
though this is done much more effectively and elegantly with assembly
language or CALL Interrupt, the short example below shows how LOF can be
used for this purpose.

FUNCTION Exist% (FileName$) STATIC
  FileNum = FREEFILE
  OPEN FileName$ FOR BINARY AS #FileNum
    Length = LOF(FileNum)
  CLOSE #FileNum
  IF Length = 0 THEN   'it probably wasn't there
    Exist% = 0         'return False to show that
    KILL FileName$     'and delete what we created
  ELSE
    Exist% = -1        'otherwise return True
  END IF
END FUNCTION

Besides being clunky, this program also has a serious flaw: If the file
does exist but has a perfectly legal length of zero, this function will say
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it doesn't exist and then delete it!  As I said, this method is crude, but
a lot of programmers have used it.

The LOC and SEEK Functions

LOC and SEEK are closely related, in that they return information about
where you are in the file.  However, LOC reports the position of the last
read or write, and SEEK tells where the next one will occur.  As with LOF,
LOC and SEEK return byte values for files that were opened for sequential
or binary access, and record numbers when used with random access files.
     In practice, LOC is of little value, especially when you are
manipulating sequential files.  For reasons that only Microsoft knows, LOC
returns the number of the last byte read or written, but *divided by 128*.
Since no program I know of treats sequential files as containing 128-byte
records, I cannot imagine how this could be useful.  Further, since LOC
returns the location of the *last* read or write, it never reflects the
true position in the file.
     When used with communications, LOC reports the number of characters in
the receive buffer that are currently waiting to be read, which is useful.
When used with INPUT$ #, LOC provides a handy way to retrieve all of the
characters present in the buffer at one time.  This is shown in context
below, and the example assumes that the communications port has already
been opened.

NumChars = LOC(1)
IF NumChars THEN
  This$ = INPUT$(NumChars)
END IF

The SEEK function always returns the current file position, which is the
point at which the next read or write will take place.  One good use for
SEEK is to read the current location in a sequential file, to allow a
program to walk backwards through the file later.  For example, if you need
to create a text file browsing program, there is no other way to know where
the previous line of a file is located.  A short program that shows this in
context follows in the section that describes the SEEK statement.

The SEEK Statement

Where the SEEK function lets you determine where you are currently in a
file, the SEEK statement lets you move to any arbitrary position.  As you
might imagine, SEEK as a statement is similar to the function version in
that it assumes a byte value when used with sequential and binary files,
and a record number with random access files.
     SEEK can be very useful in a variety of situations, and in particular
when indexing random access files.  When an indexing system is employed,
selected portions of a data file are loaded into memory where they can be
searched very quickly.  Since the location of the index information being
searched corresponds to the record number of the complete data record, the
record can be accessed with a single GET #.  This was described briefly in
the discussion of the BASIC PDS ISAM options in Chapter 5.  Thus, once the
record number for a given entry has been identified, the SEEK statement (or
the SEEK argument in the GET # command) is used to access that particular
record.
     For this example, though, I will instead show how SEEK can be used
with a sequential file.  The following complete program provides the
rudiments of a text file browser, but this version displays only one line
at a time.  It would be fairly easy to expand this program to display
entire screenfuls of text, and I leave that as an exercise for you.
     The program begins by prompting for a file name, and then opens that
file for sequential input.  The maximum number of lines that can be
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accommodated is set arbitrarily at 5000, though you will not be able to
specify more than 16384 unless you compile with the /ah option.  The long
integer Offset&() array is used to remember where each line encountered so
far in the file begins, and 16384 is the maximum number of elements that
can fit into a single 64K array.  For a typical text file with line lengths
that average 60 characters, 16384 lines is nearly 1MB of text.
     When you run the program, it expects only the up and down arrow keys
to advance and go backwards through the file, the Home key to jump to the
beginning, or the Escape key to end the program.  Notice that the words
"blank line" are printed when a blank line is encountered, just so you can
see that something has happened.
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DEFINT A-Z
CONST MaxLines% = 5000
REDIM Offset&(1 TO MaxLines%)

CLS
PRINT "Enter the name of file to browse: ";
LINE INPUT "", FileName$

OPEN FileName$ FOR INPUT AS #1

  Offset&(1) = 1                'initialize to offset 1
  CurLine = 1                   'and start with line 1

  WHILE Action$ <> CHR$(27)     'until they press Escape
    SEEK #1, Offset&(CurLine)   'seek to the current line
    LINE INPUT #1, Text$        'read that line
    Offset&(CurLine + 1) = SEEK(1)  'save where the next
                                    '  line starts
    CLS
    IF LEN(Text$) THEN          'if it's not blank
      PRINT Text$               'print the line
    ELSE                        'otherwise
      PRINT "(blank line)"      'show that it's blank
    END IF

    DO                          'wait for a key
      Action$ = INKEY$
    LOOP UNTIL LEN(Action$)

    SELECT CASE ASC(RIGHT$(Action$, 1))
      CASE 71                   'Home
        CurLine = 1

      CASE 72                   'Up arrow
        IF CurLine > 1 THEN
          CurLine = CurLine - 1
        END IF

      CASE 80                   'Down arrow
        IF (NOT EOF(1)) AND CurLine < MaxLines% THEN
          CurLine = CurLine + 1
        END IF

      CASE ELSE
    END SELECT
  WEND
CLOSE
END

You should be aware that BASIC does not prevent you from using SEEK to go
past the end of a file that has been opened for Binary access.  If you do
this and then write any data, DOS will actually extend the file to include
the data that was just written.  Therefore, it is important to understand
that any data that lies between the previous end of the file and the newly
added data will be undefined.  When a file is deleted DOS simply abandons
the sectors that held its data, and makes them available for later use.
But whatever data those sectors contained remains intact.  When you later
expand a file this way using SEEK, the old abandoned sector contents are
incorporated into the file.  Even if the sectors that are allocated were
never written to previously, they will contain the &HF6 bytes that DOS'
FORMAT.COM uses to initialize a disk.
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     You can turn this behavior into an important feature, and in some
cases recreate a file that was accidentally truncated.  If you erase a file
by mistake, it is possible to recover it using the Norton Utilities or a
similar disk utility program.  But when an existing file is opened for
output, DOS truncates it to a length of zero.  The following program shows
the steps necessary to reconstruct a file that has been destroyed this way.

OPEN FileName$ FOR BINARY AS #1
SEEK #1, 30000
PUT #1, , X%
CLOSE #1

In this case, the file is restored to a length of 30000, and you can use
larger or smaller values as appropriate.  Understand that there is no
guarantee that DOS will reassign the same sectors to the file that it
originally used.  But I have seen this trick work more than once, and it is
at least worth a try.
     In a similar fashion, you can reduce the size of a file by seeking to
a given location and then writing *zero* bytes there.  Since BASIC provides
no way to write zero bytes to a file, some additional trickery is needed.
This will be described in Chapter 12 in the section that discusses using
CALL Interrupt to access DOS and BIOS services.

ADVANCED FILE TECHNIQUES
========================

There are a number of clever file-related tricks that can be performed
using only BASIC programming.  Some of these tricks help you to improve on
BASIC's speed, and others let you do things that are not possible using the
normal and obvious methods.  BASIC is no slower than other languages when
reading and writing large amounts of data, and indeed, the bottleneck is
frequently DOS itself.  Further, if you can reduce the amount of data that
is written, your files will be smaller as well.  With that in mind, let's
look at some ways to further improve your programs.

SPEEDING UP FILE ACCESS

The single most important way to speed up your programs is to read and
write large amounts of data in one operation.  The normal method for saving
a numeric or TYPE array is to write each element to disk in a loop.  But
when there are many thousands of elements, a substantial amount of overhead
is incurred just from BASIC's repeated calls to DOS.  There are several
solutions you can consider, each with increasing levels of complexity.

BLOAD and BSAVE

The simplest way to read and write a large amount of contiguous data is
with BLOAD and BSAVE.  BSAVE takes a "snapshot" of any contiguous area of
memory up to 64K in size, and saves it to disk in a single operation.  When
an application calls DOS to read or write a file, it furnishes DOS with the
segment and address where the data is to be loaded or saved from, and also
the number of bytes.  BLOAD and BSAVE provide a simple interface to the DOS
read and write services, and they can be used to load and save numeric
arrays up to 64K in size, as well as screen images.
     [I have seen a number of messages in the MSBASIC forum on CompuServe
stating that BSAVE and BLOAD do not work with compressed disks.  Many of
those messages have come from Microsoft technical support, and I have no
reason to doubt them.  It may be that only VB/DOS has this problem, but I
have no way to test QB and PDS because I don't use disk compression.]
     A file that has been written using BSAVE includes a 7-byte header that



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 173   -

identifies it as a BSAVE file, and also shows where it was saved from and
how many bytes it contains.  BLOAD requires this header, and thus cannot be
used with any arbitrary type of file.  But when used together, these
commands can be as much as ten times faster than a FOR/NEXT loop.
     The example below creates and then saves a single precision array, and
then loads it again to prove the process worked.

DEFINT A-Z
CONST NumEls% = 20000
REDIM Array(1 TO NumEls%)            'create the array

FOR X = 1 TO NumEls%                 'file it with values
  Array(X) = X
NEXT

DEF SEG = VARSEG(Array(1))           'set the BSAVE segment
BSAVE "ARRAY.DAT", VARPTR(Array(1)), NumEls% * LEN(Array(1))

REDIM Array(1 TO NumEls%)            'recreate the array
DEF SEG = VARSEG(Array(1))           'the array may have moved
BLOAD "ARRAY.DAT", VARPTR(Array(1))

FOR X = 1 TO NumEls%                 'prove the data is valid
  IF Array(X) <> X THEN
    PRINT "Error in element"; X
  END IF
NEXT
END

Because BSAVE and BLOAD use the current DEF SEG setting to know the segment
the data is in, VARSEG is used with the first element of the array.  Once
the correct segment has been established, BSAVE is given the name of the
file to save, the starting address, and the number of bytes of data.  As
with the TYPE variable example shown earlier, LEN is ideal here as well to
help calculate the number of bytes that must be saved.  In this case, each
integer array element is two bytes long, and BASIC multiplies the constants
NumEls% and LEN(Array(1)) when the program is compiled.  Therefore, no
additional code is added to the program to calculate this value at runtime.
     Once the array has been saved it is redimensioned, which effectively
clears it to all zero values prior to reloading.  Notice that DEF SEG is
used again before the BLOAD statement.  This is an important point, because
there is no guarantee that BASIC will necessarily allocate the same block
of memory the second time.  If a file is loaded into the wrong area of
memory, your program is sure to crash or at least not work correctly.
     Also note that BLOAD always loads the entire file, and a length
argument is not needed or expected.  This brings up an important issue: how
can you determine how large to dimension an array prior to loading it?  The
answer, as you may have surmised, is to open the file for binary access and
read the length stored in the BSAVE header.  All that's needed is to know
how the header is organized, as the following program reveals.
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DEFINT A-Z
TYPE BHeader
  Header AS STRING * 1
  Segment AS INTEGER
  Address AS INTEGER
  Length AS INTEGER
END TYPE
DIM BLHeader AS BHeader

OPEN "ARRAY.DAT" FOR BINARY AS #1
  GET #1, , BLHeader
CLOSE

IF ASC(BLHeader.Header) <> &HFD THEN
  PRINT "Not a valid BSAVE file"
  END
END IF

LongLength& = BLHeader.Length
IF LongLength& < 0 THEN
  LongLength& = LongLength& + 65536
END IF

NumElements = LongLength& \ 2
REDIM Array(1 TO NumElements)

DEF SEG = VARSEG(Array(1))
BLOAD "ARRAY.DAT", VARPTR(Array(1))
END

Even though the original segment and address from which the file was saved
is in the BSAVE header, that information is not used here.  In most
situations you will always provide BLOAD with an address to load the file
to.  However, if the address is omitted, BASIC uses the segment and address
stored in the file, and ignores the current DEF SEG setting.  This would be
useful when handling text and graphics images which are always loaded to
the same segment from which they were originally saved.  But in general I
recommend that you always define an explicit segment and address.
     There are a few other points worth elaborating on as well.  First, the
program examines the first byte in the file to be sure it is the special
value &HFD which identifies a BSAVE file.  The ASC function is required for
that, since the only way to define a TYPE component one byte long is as a
string.
     Second, the length is stored as an unsigned integer, which cannot be
manipulated directly in a BASIC program if its value exceeds 32767.  As you
learned in Chapter 2, integer values larger than 32767 are treated by BASIC
as signed, and in this case they are considered negative.  Therefore, the
value is first assigned to a long integer, which is then tested for a value
less than zero.  If it is indeed negative, 65536 is added to the variable
to convert it to an equivalent positive number.  Note that the length in a
BSAVE header does not include the header length; only the data itself is
considered.
     If you single-step through this program after running the earlier one
that created the file, you will see that the code that adds 65536 is
executed, because the header shows that the file contains 40000 bytes.
     There are two limitations to using BSAVE and BLOAD this way.  One
problem is that you may not want the header to be attached to the file.
The other, more important problem is that BASIC allows arrays to exceed
64K.  Saving a single huge array in multiple files is clumsy, and
contributes to the clutter on your disks.  The header issue is less
important, because you can always access the file with normal binary
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statements after using a SEEK to skip over the header.  But the huge array
problem requires some heavy ammunition.
     One final point worth mentioning is that BSAVE and BLOAD assume a .BAS
file name extension if none is given.  This is incredibly stupid, since the
contents of a BSAVE file have no relationship to a BASIC source file.
Therefore, to save a file with no extension at all you must append a period
to the name: BSAVE "MYFILE.", Address, Length.

Beyond BSAVE

The program that follows includes both a demonstration and a pair of
subprograms that let you save any data regardless of its size or location.
These routines are primarily intended for saving huge numeric and TYPE
arrays, but there is no reason they couldn't be used for other purposes.
However, they cannot be used with conventional variable-length string
arrays, because the data in those arrays is not contiguous.  The file is
processed in 16K blocks using multiple passes, and the actual saving and
loading is performed by calling BASIC's internal PUT # and GET # routines.
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DEFINT A-Z
'NOTE: This program must be compiled with the /ah option.

DECLARE SUB BigLoad (FileName$, Segment, Address, Bytes&)
DECLARE SUB BigSave (FileName$, Segment, Address, Bytes&)
DECLARE SUB BCGet ALIAS "B$GET3" (BYVAL FileNum, BYVAL Segment, _
  BYVAL Address, BYVAL NumBytes)
DECLARE SUB BCPut ALIAS "B$PUT3" (BYVAL FileNum, BYVAL Segment, _
  BYVAL Address, BYVAL NumBytes)

CONST NumEls% = 20000
REDIM Array&(1 TO NumEls%)
NumBytes& = LEN(Array&(1)) * CLNG(NumEls%)

FOR X = 1 TO NumEls%            'fill the array
  Array&(X) = X
NEXT

Segment = VARSEG(Array&(1))     'save the array
Address = VARPTR(Array&(1))
CALL BigSave("ARRAY.DAT", Segment, Address, NumBytes&)

REDIM Array&(1 TO NumEls%)      'clear the array

Segment = VARSEG(Array&(1))     'reload the array
Address = VARPTR(Array&(1))
CALL BigLoad("ARRAY.DAT", Segment, Address, NumBytes&)

FOR X = 1 TO NumEls%            'prove this all worked
  IF Array&(X) <> X THEN
    PRINT "Error in element"; X
  END IF
NEXT
END

SUB BigLoad (FileName$, DataSeg, Address, Bytes&) STATIC

  FileNum = FREEFILE
  OPEN FileName$ FOR BINARY AS #FileNum
  NumBytes& = Bytes&            'work with copies to
  Segment = DataSeg             'protect the parameters

  DO
    IF NumBytes& > 16384 THEN
      CurrentBytes = 16384
    ELSE
      CurrentBytes = NumBytes&
    END IF
    CALL BCGet(FileNum, Segment, Address, CurrentBytes)
    NumBytes& = NumBytes& - CurrentBytes
    Segment = Segment + &H400
  LOOP WHILE NumBytes&

  CLOSE #FileNum

END SUB

SUB BigSave (FileName$, DataSeg, Address, Bytes&) STATIC

  FileNum = FREEFILE
  OPEN FileName$ FOR BINARY AS #FileNum
  NumBytes& = Bytes&            'work with copies to
  Segment = DataSeg             'protect the parameters
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  DO
    IF NumBytes& > 16384 THEN
      CurrentBytes = 16384
    ELSE
      CurrentBytes = NumBytes&
    END IF
    CALL BCPut(FileNum, Segment, Address, CurrentBytes)
    NumBytes& = NumBytes& - CurrentBytes
    Segment = Segment + &H400
  LOOP WHILE NumBytes&

  CLOSE #FileNum

END SUB

Although BASIC lets you save and load only single variables or array
elements, its internal library routines can work with data of nearly any
size.  And since TYPE variables can be as large as 64K, these routines must
be able to accommodate data at least that big.  Therefore, BASIC's usual
restriction on what you can and cannot read or write to disk with GET # and
PUT # is an arbitrary one.
     Accessing BASIC's internal routines requires that you declare them
using ALIAS, since it is illegal to call a routine that has a dollar sign
in its name.  As you can see, these routines expect their parameters to be
passed by value, and this is handled by the DECLARE statements.  Normally,
you cannot call these routines from within the QB editing environment.  But
if you separate the two subprograms and place them into a different module,
that module can be compiled and added to a Quick Library.  That is, the
subprograms can be together in one file, but not with the demo that calls
them.  Be sure to add the two DECLARE statements that define B$PUT3 and
B$GET3 to that module as well.
     The long integer array this program creates exceeds the normal 64K
limit, so the /ah compiler switch must be used.  Notice in the BigLoad and
BigSave subprograms that copies are made of two of the incoming parameters.
If this were not done, the subprograms would change the passed values,
which is a bad practice in this case.  Also, notice how the segment value
that is used for saving and loading is adjusted through each pass of the DO
loop.  Since the data is saved in 16K blocks, the segment must be increased
by 16384 \ 16 = 1024 for each pass.  The use of an equivalent &H value here
is arbitrary; I translated this program from another version written in
assembly language that used Hex for that number.

Processing Large Files

Although the solutions shown so far are valuable when saving or loading
large amounts of data, that is as far as they go.  In many cases you will
also need to process an entire existing file.  Some examples are a program
that copies or encrypts files, or a routine that searches an entire file
for a string of text.  As with saving and loading files, processing a file
or portion of a file in large blocks is always faster and more effective
than processing it line by line.
     The file copying subprogram below accepts source and destination file
names, and copies the data in 4K blocks.  The 4K size is significant,
because it is large enough to avoid many repeated calls to DOS, and small
enough to allow a conventional string to be used as a file buffer.  As with
the BigLoad and BigSave routines, the file is processed in pieces.  Also,
for simplicity a complete file name and path is required.  Although the DOS
COPY command lets you use a source file name and a destination drive or
path only, the CopyFile subprogram requires that entire file names be given
for both.
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DEFINT A-Z
DECLARE SUB CopyFile (InFile$, OutFile$)

SUB CopyFile (InFile$, OutFile$) STATIC

  File1 = FREEFILE
  OPEN InFile$ FOR BINARY AS #File1

  File2 = FREEFILE
  OPEN OutFile$ FOR BINARY AS #File2

  Remaining& = LOF(File1)
  DO
    IF Remaining& > 4096 THEN
      ThisPass = 4096
    ELSE
      ThisPass = Remaining&
    END IF
    Buffer$ = SPACE$(ThisPass)
    GET #File1, , Buffer$
    PUT #File2, , Buffer$
    Remaining& = Remaining& - ThisPass
  LOOP WHILE Remaining&

  CLOSE File1, File2

END SUB

Once the basic structure of a routine that processes an entire file has
been established, it can be easily modified for other purposes.  For
example, CopyFile can be altered to encrypt an entire file, search a file
for a text string, and so forth.  A few of these will be shown here.  Note
that for simplicity and clarity, CopyFile creates a new buffer with each
pass through the loop.  You could avoid that by preceding the assignment
with IF LEN(Buffer$) <> ThisPass THEN or similar logic, to avoid creating
the buffer when it already exists and is the correct length.
     The BufIn function and example below serves as a very fast LINE INPUT
replacement.  Even though BASIC's own file input routines provide buffering
for increased speed, they are not as effective as this function.  In my
measurements I have found BufIn to be consistently four to five times
faster than BASIC's LINE INPUT routine when reading large (greater than
50K) files.  With smaller files the improvement is less, but still
substantial.
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DEFINT A-Z
DECLARE FUNCTION BufIn$ (FileName$, Done)

LINE INPUT "Enter a file name: ", FileName$

'---- Show how fast BufIn$ reads the file.
Start! = TIMER
DO
  This$ = BufIn$(FileName$, Done)
  IF Done THEN EXIT DO
LOOP
Done! = TIMER
PRINT "Buffered input: "; Done! - Start!

'---- Now show how long BASIC's LINE INPUT takes.
Start! = TIMER
OPEN FileName$ FOR INPUT AS #1
DO
  LINE INPUT #1, This$
LOOP UNTIL EOF(1)
Done! = TIMER
PRINT " BASIC's INPUT: "; Done! - Start!
CLOSE
END

FUNCTION BufIn$ (FileName$, Done) STATIC

IF Reading GOTO Process        'now reading, jump in

'----- initialization
Reading = -1                   'not reading so start now
Done = 0                       'clear Done just in case
CR$ = CHR$(13)                 'define for speed later

FileNum = FREEFILE             'open the file
OPEN FileName$ FOR BINARY AS #FileNum

Remaining& = LOF(FileNum)      'byte count to be read
IF Remaining& = 0 GOTO ExitFn  'empty or nonexistent file

BufSize = 4096                 'bytes to read each pass
Buffer$ = SPACE$(BufSize)      'assume BufSize bytes

DO                             'the main outer loop
  IF Remaining& < BufSize THEN 'read only what remains
    BufSize = Remaining&       'resize the buffer
    IF BufSize < 1 GOTO ExitFn 'possible only if EOF byte
    Buffer$ = SPACE$(BufSize)  'create the file buffer
  END IF
  GET #FileNum, , Buffer$      'read a block

  BufPos = 1                   'start at the beginning
  DO                                 'walk through buffer
    CR = INSTR(BufPos, Buffer$, CR$) 'look for a Return
    IF CR THEN                       'we found one
      SaveCR = CR                    'save where
      BufIn$ = MID$(Buffer$, BufPos, CR - BufPos)
      BufPos = CR + 2                'skip inevitable LF
      EXIT FUNCTION                  'all done for now
    ELSE                             'back up in the file
      '---- if at the end and no CHR$(13) was found
      '     return what remains in the string
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      IF SEEK(FileNum) >= LOF(FileNum) THEN
        Output$ = MID$(Buffer$, SaveCR + 2)
        '---- trap a trailing EOF marker
        IF RIGHT$(Output$, 1) = CHR$(26) THEN
          Output$ = LEFT$(Output$, LEN(Output$) - 1)
        END IF
        BufIn$ = Output$             'assign the function
        GOTO ExitFn                  'and exit now
      END IF
      Slop = BufSize - SaveCR - 1    'calc buffer excess
      Remaining& = Remaining& + Slop 'calc file excess
      SEEK #FileNum, SEEK(FileNum) - Slop
    END IF

Process:
   LOOP WHILE CR               'while more in buffer
   Remaining& = Remaining& - BufSize

LOOP WHILE Remaining&          'while more in the file

ExitFn:
  Reading = 0                  'we're not reading anymore
  Done = -1                    'show that we're all done
  CLOSE #FileNum               'final clean-up

END FUNCTION

As you can see, the BufIn function opens the file, reads each line of text,
and then closes the file and sets a flags when it has exhausted the text.
Even though this example show BufIn being invoked in a DO loop, it can be
used in any situation where LINE INPUT would normally be used.  As long as
you declare the function, it may be added to programs of your own and used
when sequential line-oriented data must be read as quickly as possible.
     I don't think each statement in the BufIn function warrants a complete
explanation, but some of the less obvious aspects do.  BufIn operates by
reading the file in 4K blocks in an outer loop, and each block is then
examined for a CHR$(13) line terminator in an inner loop that uses INSTR.
INSTR happens to be extremely fast, and it is ideal when used this way to
search a string for a single character.
     The only real complication is when a portion of a string is in the
buffer, because that requires seeking backwards in the file to the start of
the string.  Other, less important complications that also must be handled
arise from the presence of a CHR$(26) EOF marker, and a final string that
has no terminating carriage return.
     I have made every effort to make this function as bullet-proof as
possible; however, it is mandatory that every carriage return in the file
be followed by a corresponding line feed.  Some word processors eliminate
the line feed to indicate a "soft return" at the end of a line, as opposed
to the "hard return" that signifies the end of a paragraph.  Most word
processor files use a non-standard format anyway, so that should not be
much of a problem.
     The last complete program I'll present here is called TEXTFIND.BAS,
and it searches a group of files for a specified string.  TEXTFIND is
particularly useful when you need to find a document, and cannot remember
its name.  If you can think of a snippet of text the file might contain,
TEXTFIND will identify which files contain that text, and then display it
in context.
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'----- TEXTFIND.BAS

'Copyright (c) 1991 by Ethan Winer

DEFINT A-Z

TYPE RegTypeX                   'used by CALL Interrupt
  AX    AS INTEGER
  BX    AS INTEGER
  CX    AS INTEGER
  DX    AS INTEGER
  BP    AS INTEGER
  SI    AS INTEGER
  DI    AS INTEGER
  Flags AS INTEGER
  DS    AS INTEGER
  ES    AS INTEGER
END TYPE
DIM Registers AS RegTypeX       'holds the CPU registers

TYPE DTA                        'used by DOS services
  Reserved  AS STRING * 21      'reserved for use by DOS
  Attribute AS STRING * 1       'the file's attribute
  FileTime  AS STRING * 2       'the file's time
  FileDate  AS STRING * 2       'the file's date
  FileSize  AS LONG             'the file's size
  FileName  AS STRING * 13      'the file's name
END TYPE
DIM DTAData AS DTA

DECLARE SUB InterruptX (IntNumber, InRegs AS RegTypeX, OutRegs AS RegTypeX)

CONST MaxFiles% = 1000
CONST BufMax% = 4096

REDIM Array$(1 TO MaxFiles%)    'holds the file names
Zero$ = CHR$(0)                 'do this once for speed

'----- This function returns the larger of two integers.
DEF FNMax% (Value1, Value2)
  FNMax% = Value1
  IF Value2 > Value1 THEN FNMax% = Value2
END DEF

'----- This function loads a group of file names.
DEF FNLoadNames%

  STATIC Count

  '---- define a new Data Transfer Area for DOS
  Registers.DX = VARPTR(DTAData)
  Registers.DS = VARSEG(DTAData)
  Registers.AX = &H1A00
  CALL InterruptX(&H21, Registers, Registers)

  Count = 0                  'zero the file counter
  Spec$ = Spec$ + Zero$      'DOS needs an ASCIIZ string
  Registers.DX = SADD(Spec$) 'show where the spec is
  Registers.DS = SSEG(Spec$)    'use this with PDS
 'Registers.DS = VARSEG(Spec$)  'use this with QB
  Registers.CX = 39          'the attribute for any file
  Registers.AX = &H4E00      'find file name service
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  '---- Read the file names that match the search specification.  The Flags
  '     registers indicates when no more matching files are found.  Copy
  '     each file name to the string array.  Service &H4F is used to
  '     continue the search started with service &H4E using the same file
  '     specification.
  DO
    CALL InterruptX(&H21, Registers, Registers)
    IF Registers.Flags AND 1 THEN EXIT DO
    Count = Count + 1
    Array$(Count) = DTAData.FileName
    Registers.AX = &H4F00
  LOOP WHILE Count < MaxFiles%

  FNLoadNames% = Count       'return the number of files

END DEF

'----- The main body of the program begins here.
PRINT "TEXTFIND Copyright (c) 1991, Ziff-Davis Press."
PRINT

'---- Get the file specification, or prompt for one if it wasn't given.
Spec$ = COMMAND$
IF LEN(Spec$) = 0 THEN
  PRINT "Enter a file specification: ";
  INPUT "", Spec$
END IF

'----- Ask for the search string to find.
PRINT "    Enter the text to find: ";
INPUT Find$
PRINT

Find$ = UCASE$(Find$)        'ignore capitalization
FindLength = LEN(Find$)      'see how long Find$ is
IF FindLength = 0 THEN END

Count = FNLoadNames%         'load the file names
IF Count = 0 THEN
  PRINT "No matching files"
  END
END IF

'----- Isolate the drive and path if given.
FOR X = LEN(Spec$) TO 1 STEP -1
  Char = ASC(MID$(Spec$, X))
  IF Char = 58 OR Char = 92 THEN   '":" or "\"
    Path$ = LEFT$(UCASE$(Spec$), X)
    EXIT FOR
  END IF
NEXT

FOR X = 1 TO Count           'for each matching file
  Array$(X) = LEFT$(Array$(X), INSTR(Array$(X), Zero$) - 1)
  PRINT "Reading "; Path$; Array$(X)
  OPEN Path$ + Array$(X) FOR BINARY AS #1
  Length& = LOF(1)           'get and save its length
  IF Length& < FindLength GOTO NextFile

  BufSize = BufMax%          'assume a 4K text buffer
  IF BufSize > Length& THEN BufSize = Length&
  Buffer$ = SPACE$(BufSize)  'create the file buffer

  LastSeek& = 1              'seed the SEEK location
  BaseAddr& = 1              'and the starting offset
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  Bytes = 0                  'how many bytes to search

  DO                         'the file read loop
     BaseAddr& = BaseAddr& + Bytes 'track block start
     IF Length& - LastSeek& + 1 >= BufSize THEN
       Bytes = BufSize       'at least BufSize bytes left
     ELSE                    'get just what remains
       Bytes = Length& - LastSeek& + 1
       Buffer$ = SPACE$(Bytes) 'adjust the buffer size
     END IF

     SEEK #1, LastSeek&      'seek back in the file
     GET #1, , Buffer$       'read a chunk of the file

     Start = 1               'this is the INSTR loop for
     DO                      'searching within the buffer
       Found = INSTR(Start, UCASE$(Buffer$), Find$)
       IF Found THEN         'print it in context
         Start = Found + 1   'to resume using INSTR later
         PRINT               'add a blank line for clarity
         PRINT MID$(Buffer$, FNMax%(1, Found - 20), FindLength + 40)
         PRINT

         PRINT "Continue searching "; Array$(X);
         PRINT "? (Yes/No/Skip): ";
         WHILE INKEY$ <> "": WEND   'clear kbd buffer
         DO
           KeyHit$ = UCASE$(INKEY$) 'then get a response
         LOOP UNTIL KeyHit$ = "Y" OR KeyHit$ = "N" OR KeyHit$ = "S"
         PRINT KeyHit$              'echo the letter
         PRINT

         IF KeyHit$ = "N" THEN      '"No"
           END                      'end the program
         ELSEIF KeyHit$ = "S" THEN  '"Skip"
           GOTO NextFile            'go to the next file
         END IF

       END IF
                                    'search for multiple hits
     LOOP WHILE Found               'within the file buffer

     IF Bytes = BufSize THEN        'still more file to examine
       '---- Back up a bit in case Find$ is there but straddling the buffer
       '     boundary.  Then update the internal SEEK pointer.
       BaseAddr& = BaseAddr& - FindLength
       LastSeek& = BaseAddr& + Bytes
     END IF

  LOOP WHILE Bytes = BufSize AND BufSize = BufMax%

NextFile:
  CLOSE #1
  Buffer$ = ""               'clear the buffer for later

NEXT
END

TEXTFIND may be run either in the BASIC editor or compiled to an executable
file and then run.  If you are using QuickBASIC you will need either QB.QLB
or QB.LIB because the program relies on CALL Interrupt to interface with
DOS.  To start QB and load the QB.QLB library simply enter qb /l.  If you
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are compiling the program, specify the QB.LIB file when it is linked:

     link textfind , , nul , qb;

For BASIC 7 users the appropriate library names are QBX.QLB and QBX.LIB
respectively.  [And for VB/DOS the libraries are VBDOS.QLB and VBDOS.LIB.]
     When you run TEXTFIND you may either enter a file specification such
as *.BAS or LET*.TXT or the like as a command line argument, or enter
nothing and let the program prompt you.  In either case, you will then be
asked to enter the text string you're searching for.  TEXTFIND will search
through every file that matches the file specification, and display the
string in context if it is found.
     As written, TEXTFIND shows the 20 characters before and after the
string.  You may of course modify that to any reasonable number of
characters.  Simple change the 20 and 40 values in the corresponding PRINT
statement.  The first value is the number of characters on either side to
display, and the second must be twice that to accommodate the length of the
search string itself.  Note the use of FNMax% which ensures that the
program will not try to print characters before the start of the buffer.
If the text were found at the very start of the file, attempting to print
the 20 characters that precede it will create an "Illegal function call"
error at the MID$ function.
     Each time the string is found and displayed you are offered the
opportunity to continue searching the same file, ending the program, or
skipping to the next file.
     Although CALL Interrupt will be discussed in depth in Chapter 12,
there are several aspects of the program's operation that require
elaboration here.  First, any program that uses the DOS Find First and Find
Next services to read a list of file names must establish a small block of
memory as a Disk Transfer Area (DTA).  The DTA holds pertinent information
about each file that is found, such as its date, time, size, and attribute.
In this case, though, we are merely interested in each file's name.  DOS
service &H1A is used to assign the DTA to a TYPE variable that is designed
to facilitate extracting this information.  BASIC PDS [and VB/DOS] include
the DIR$ function which lets you read file names, but I have used CALL
Interrupt here so the program will also work with QuickBASIC.
     Second, DEF FN-style functions are used instead of formal functions
because they are smaller and slightly faster.  The FNLoadNames function is
responsible for loading all of the file names into the string array, and it
returns the number of files that were found.  After each call to DOS to
find the next matching name, the Carry flag is tested.  DOS often uses the
carry flag to indicate the success or failure of an operation, and in this
case it is set to True when there are no more files.
     Note how a CHR$(0) is appended to the file specification when calling
DOS, to indicate the end of the string.  Similarly, DOS returns each file
name terminated with a zero byte, and INSTR is used to find that byte.
Then, only those characters to the left of the zero are kept using LEFT$.
     Third, the block of code that isolates the drive and path name if
given is needed because the DOS Find services return only a file name.  If
you enter D:\ANYDIR\*.* as a file specification, that is then passed to
DOS.  But DOS returns only the names it finds that match the specification.
Therefore, the drive and path must be added to the beginning of each name,
to create a complete file name for the subsequent OPEN command.
     Finally, as with the BufIn function, the files are read in 4K (4096-
byte) blocks, except for the last block which of course may be smaller.  A
smaller block is also used when the file is less than 4K in length.  Within
each outer read loop, an inner loop is employed to search for the text, and
again INSTR is used because of its speed.  As written, TEXTFIND looks for
the specified string without regard to capitalization.  You can remove that
feature by eliminating the UCASE$ function in both the INSTR loop, and at
the point in the program where Find$ is capitalized.

MINIMIZING DISK USAGE
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While improving your program's performance is certainly a desireable
pursuit, equally important is minimizing the amount of space needed to
store data.  Besides the obvious savings in disk space, the less data there
is, the faster it can be loaded and saved.  There are a number of simple
tricks you can use to reduce the size of your data files, and some types of
data lend themselves quite nicely to compaction techniques.
     Date information is particularly easy to reduce.  At the minimum, you
should remove the separating slashes or dashes--perhaps with a dedicated
function.  For example, you would convert "06-22-91" to "062291".  Even
better, however, is to convert each digit pair to an equivalent single
CHR$() byte, and also swap the order of the digits.  That is, the date
above would be packed to CHR$(91) + CHR$(6) + CHR$(22).  By placing the
year first followed by the month and then the day, dates may also be
compared.  Otherwise, a normal string comparison would show the date "01-
01-91" as being less (earlier) than "12-31-90" even though it is in fact
greater (later).  A complementary function would then extract the ASCII
values into a date string suitable for display.  These are shown below.
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DEFINT A-Z
DECLARE FUNCTION PackDate$ (D$)
DECLARE FUNCTION UnPackDate$ (D$)

D$ = "03-22-91"
Packed$ = PackDate$(D$)
UnPacked$ = UnPackDate$(Packed$)

PRINT D$
PRINT Packed$
PRINT UnPacked$
END

FUNCTION PackDate$ (D$) STATIC
  Year = VAL(RIGHT$(D$, 2))
  Month = VAL(LEFT$(D$, 2))
  Day = VAL(MID$(D$, 4, 2))
  PackDate$ = CHR$(Year) + CHR$(Month) + CHR$(Day)
END FUNCTION

FUNCTION UnPackDate$ (D$) STATIC
  Month$ = LTRIM$(STR$(ASC(MID$(D$, 2, 1))))
  Day$ = LTRIM$(STR$(ASC(RIGHT$(D$, 1))))
  Year$ = LTRIM$(STR$(ASC(LEFT$(D$, 1))))
  UnPackDate$ = RIGHT$("0" + Month$, 2) + "-" + RIGHT$("0" + Day$, 2) + _
    "-" + RIGHT$("0" + Year$, 2)
END FUNCTION

Because the compacted dates will likely contain a CHR$(26) byte which is
used by DOS and BASIC as an EOF marker, this method is useful only with
random access and binary data files.  But since it is usually large
database files that need the most help anyway, these functions are ideal.
     Another useful database compaction technique is to replace selected
strings with an equivalent integer or byte value.  The commercial database
program *DataEase* uses a very clever trick to implement multiple choice
fields.  It is not uncommon to have a string field that contains, say, an
income or expense category.  For example, most businesses are required to
indicate the purpose of each check that is written.  Instead of using a
string field and requiring the operator to type Entertainment, Payroll, or
whatever, a menu can be popped up showing a list of possible choices.
     Assuming there are no more than 256 possibilities, the choice number
that was entered can be stored on disk in a single byte.  You would use
something like FileType.Choice = CHR$(MenuChoice), where the Choice portion
of the file type was defined as STRING * 1.  Then to extract the choice
after a record was read you would use MenuChoice = ASC(FileType.Choice).
     Some database programs support Memo Fields, whereby the user can enter
a varying amount of memo information.  Since database files almost always
use a fixed length for each record, this presents a programming dilemma:
How much space do you set aside for the memo field?  If you set aside too
little, the user won't be very pleased.  But setting aside enough to
accommodate the longest possible string is very wasteful of disk space.
     One good solution is to store a long integer pointer in each record,
and keep the memos themselves in a separate file.  A long integer requires
only four bytes of storage, yet it can hold a seek location for memo data
kept in a separate file whose size can be greater than 2000 MB!  As each
new memo is entered, the current length [derived using LOF] of the memo
file is written in the current record of the data file.  The memo string is
then appended to the memo file.  When you want to retrieve the memo, simply
seek to the long integer offset held in the main data record and use LINE
INPUT to read the string from the memo file.
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     The only real complication with this method is when a memo field must
be edited.  There's no reasonable way to lengthen or shorten data in the
middle of a file, and no reasonable program would even try.  Instead, you
would simply overwrite the existing data with special values--perhaps with
CHR$(255) bytes--and then append the new memo to the end of the file.
Periodically you would have to run a utility program that copied only the
valid memo fields to a new file, and then delete the old file.  Be aware
that you will also have to update the long integer pointers in the main
data file, to reflect the new offsets of their corresponding memo fields.
     The last data size reduction technique is probably the simplest of
all, and that is to use the appropriate type of data and file access
method.  If you can get by with a single precision variable, don't use a
double precision.  And if the range of integer values is sufficient, use
those.  Many programmers automatically use single precision variables
without even thinking about it, when a smaller data type would suffice.
     Finally, avoid using sequential files to store numeric data.  As I
already pointed out, an integer can be stored in a binary file in only two
bytes--no matter what its value--compared to as many as eight bytes needed
to store the equivalent digits, possible minus sign, and a terminating
carriage return and line feed.  Be creative, and don't be afraid to invent
a method that is suited to your particular application.  The Lotus format
is a good one for many other applications, whereby a size and type code
precedes each piece of information.  If your needs are modest you can
probably get away with a single byte as a type code, further reducing the
amount of storage that is needed.

AVOIDING BASIC'S LIMITATIONS

So far I have focused on improving what BASIC already does.  I showed
techniques for speeding up file accesses, and reducing the size of your
data.  I even showed how to overcome BASIC's unwillingness to directly
write binary data larger than a single variable.  But there are other BASIC
limitations that can be overcome as well.
     One important limitation is that BASIC lets you run only .EXE files
with the RUN statement.  If you need to execute a .COM program or a batch
file, BASIC will not let you.  However you can trick DOS into believing a
.COM program or batch file's name was entered at the DOS prompt.  The
StuffBuffer subprogram shown below inserts a string of up to 15 characters
directly into the keyboard buffer.  It works by poking each character one
by one into the buffer address in low memory.  Thus, when your program ends
the characters are there as if someone had typed them manually.
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DEFINT A-Z
DECLARE SUB StuffBuffer (Cmd$)

SUB StuffBuffer (Cmd$) STATIC

  '----- Limit the string to 14 characters plus Enter and save the length.
  Work$ = LEFT$(Cmd$, 14) + CHR$(13)
  Length = LEN(Work$)

  '----- Set the segment for poking, define the buffer head and tail, and
  '      then poke each character.
  DEF SEG = 0
  POKE 1050, 30
  POKE 1052, 30 + Length * 2
  FOR X = 1 TO Length
    POKE 1052 + X * 2, ASC(MID$(Work$, X))
  NEXT

END SUB

To run a .COM program or batch file simply call StuffBuffer and end the
program:

     CALL StuffBuffer("PROGRAM"): END

A terminating carriage return is added to the command, to include a final
Enter keypress.  Because the keyboard buffer holds only 15 characters, you
cannot specify long path names when using StuffBuffer.  However, you can
easily open and write a short batch file with the complete path and file
name, and run the batch file instead.
     Notice that this technique will not work if the original BASIC program
itself has been run from a batch file, because that batch file gains
control when the program ends.  Also, when creating and running a batch
file that will be run by StuffBuffer, it is imperative that the last line
*not* have a terminating carriage return.  The short example below shows
the correct way to create and run a batch file for use with StuffBuffer.

OPEN "MYBAT.BAT" FOR OUTPUT AS #1
  PRINT #1, "cd \somedir"
  PRINT #1, "someprog";
CLOSE
CALL StuffBuffer("MYBAT")
END

You can also have the batch file re-run the BASIC program by entering its
name as the last line in the batch file.  In that case you would include
the semicolon at the end of that line, instead of the line that runs the
program.  Note that StuffBuffer is an ideal replacement for BASIC's SHELL
command, because with SHELL your BASIC program remains in memory while the
subsequent program is run.  Using StuffBuffer with a batch file removes the
BASIC program entirely, thus freeing up all available system memory for the
program being run.
     Understand that StuffBuffer cannot be used to activate a TSR or other
program that monitors keyboard interrupt 9.  This limitation also extends
to the special key sequences that enable the Turbo mode on some PC
compatibles, and simulating Ctrl-Esc to activate the DOS compatibility box
of OS/2.  Programs that look for these special keys insert themselves into
the keyboard chain *before* the keyboard buffer, and act on them before the
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BIOS has the chance to store them in the buffer.
     Another BASIC limitation is that only 15 files may be open at one
time.  In truth, this is really a DOS limitation, and indeed, the fix
requires a DOS interrupt service.  It is also possible to reduce the number
of files open at once by combining data.  For example, the BASIC PDS ISAM
file manager uses this technique to store both the data and its indexes all
in the same file.  But doing that requires more complication than many
programmers are willing to put up with.
     The program below shows how to increase the number of files that DOS
will let you open.  Be aware that the DOS service that performs this magic
requires at least version 3.3, and this program tests for that.
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DEFINT A-Z
DECLARE SUB Interrupt (IntNum, InRegs AS ANY, OutRegs AS ANY)
DECLARE SUB MoreFiles (NumFiles)
DECLARE FUNCTION DOSVer% ()

TYPE RegType
  AX    AS INTEGER
  BX    AS INTEGER
  CX    AS INTEGER
  DX    AS INTEGER
  BP    AS INTEGER
  SI    AS INTEGER
  DI    AS INTEGER
  Flags AS INTEGER
END TYPE
DIM SHARED InRegs AS RegType, OutRegs AS RegType

ComSpec$ = ENVIRON$("COMSPEC")
BootDrive$ = LEFT$(ComSpec$, 2)
OPEN BootDrive$ + "\CONFIG.SYS" FOR INPUT AS #1
  DO WHILE NOT EOF(1)
    LINE INPUT #1, Work$
    Work$ = UCASE$(Work$)
    IF LEFT$(Work$, 6) = "FILES=" THEN
      FilesVal = VAL(MID$(Work$, 7))
      EXIT DO
    END IF
  LOOP
CLOSE

INPUT "How many files? ", NumFiles
NumFiles = NumFiles + 5
IF NumFiles > FilesVal THEN
  PRINT "Increase the FILES= setting in CONFIG.SYS"
  END
END IF

IF DOSVer% >= 330 THEN
  CALL MoreFiles(NumFiles)
ELSE
  PRINT "Sorry, DOS 3.3 or later is required."
  END
END IF

FOR X = 1 TO NumFiles
  OPEN "FTEST" + LTRIM$(STR$(X)) FOR RANDOM AS #X
NEXT
CLOSE
KILL "FTEST*."
END

FUNCTION DOSVer% STATIC
  InRegs.AX = &H3000
  CALL Interrupt(&H21, InRegs, OutRegs)
  Major = OutRegs.AX AND &HFF
  Minor = OutRegs.AX \ &H100
  DOSVer% = Minor + 100 * Major
END FUNCTION

SUB MoreFiles (NumFiles) STATIC
  InRegs.AX = &H6700
  InRegs.BX = NumFiles
  CALL Interrupt(&H21, InRegs, OutRegs)
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END SUB

As with the TEXTFIND program, this also uses CALL Interrupt and therefore
requires QB.LIB and QB.QLB to compile or run in the QuickBASIC environment
respectively.  Even though DOS allows you to increase the number of files
past the default 15, an appropriate FILES= statement must also be added to
the PC's CONFIG.SYS file.  In fact, the FILES= value must be five greater
than the desired number of files, because DOS reserves the first five for
itself.  The reserved files [devices] are PRN, AUX, STDIN, STDOUT, and
STDERR.  PRN is of course the printer connected to LPT1, AUX is the first
COM port, and the remaining devices are all part of the CON console device.
     In order to find the CONFIG.SYS file this program uses the ENVIRON$
function to retrieve the current COMSPEC= setting.  Unless someone has
changed it on purpose, the COMSPEC environment variable holds the drive and
path from which the PC was booted, and the file name "COMMAND.COM".  Then
each line in CONFIG.SYS is examined for the string "FILES=", to ensure that
enough file entries were specified.  This program makes only a minimal
attempt to identify the "FILES=" string, so if there are extra spaces such
as "FILES = 30" the test will fail.
     Next the DOS version is tested to ensure that it is version 3.3 or
later.  The DOSVer function is designed to return the DOS version as an
integer value 100 times higher than the actual version number.  That is,
DOS 2.14 is returned as 214, and DOS 3.30 is instead 330.  This eliminates
the floating point math required to return a value such as 2.14 or 3.3,
resulting in less code and faster operation.
     Assuming the FILES= setting is sufficiently high and the DOS version
is at least 3.30, the program creates and then deletes the specified number
of files just to show it worked.  You should be aware that the BASIC editor
must also open files when it saves your program.  I mention this because it
is possible to be experimenting with a program such as this one, and not be
able to save your work because the maximum allowable number of files are
already open.  In that case BASIC issues a "Too many files" error message,
and refuses to let you save.  The solution is to press F6 to go to the
Immediate window, and then type CLOSE.
     A similar situation happens when you try to shell to DOS from the
BASIC editor, because shelling requires BASIC to open COMMAND.COM.  But an
unsuccessful shell results in an "Illegal function call" error.  That
message is particularly exasperating when BASIC's SHELL fails, because the
failure is usually caused by insufficient memory or because COMMAND.COM
cannot be located.  Why Microsoft chose to return "Illegal function call"
rather than "Out of memory", "File not found", or "Too many files" is
anyone's guess.
     Another important BASIC limitation that can be overcome only with
clever trickery is its inability to "map" multiple variables to the same
memory address.  This is an important feature of the C language, and it has
some important applications.  For example, if you are frequently accessing
a group of characters in the middle of a string, you must use MID$ each
time you assign or retrieve them.  Unfortunately, MID$ is very slow because
it always extracts a copy of the specified characters, even if you are
merely printing them.  If only BASIC would let you create a new string that
always referred to that group of characters in the first string, the access
speed could be greatly improved.
     The FIELD statement lets you do exactly this, and each time a new
FIELD statement is encountered the same area of memory is referred to.  The
short example below shows the tremendous speed improvement possible only
when two variables can occupy the same address.  An additional trick used
here is to open the DOS reserved "\DEV\NUL" device.  This eliminates any
disk access, and avoids also having to create an empty file just to
implement the FIELD statement.



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 192   -

DEFINT A-Z

OPEN "\DEV\NUL" FOR RANDOM AS #1 LEN = 30
FIELD #1, 10 AS First$, 10 AS Middle$, 10 AS Last$
FIELD #1, 30 AS Entire$
LSET Entire$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234"
Start! = TIMER
FOR X = 1 TO 20000
  Temp = ASC(Middle$)
NEXT
Done! = TIMER
PRINT USING "##.### seconds for FIELD"; Done! - Start!
CLOSE

Entire$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234"
Start! = TIMER
FOR X = 1 TO 20000
  Temp = ASC(MID$(Entire$, 10, 10))
NEXT
Done! = TIMER
PRINT USING "##.### seconds for MID$"; Done! - Start!

As you can see, accessing Middle$ as defined in the FIELD statement is more
than three times faster than accessing the middle portion of Entire$ using
MID$.  There are no doubt other situations where it is useful to treat the
same area of memory as different variables, perhaps to provide different
views [such as numeric and string] of the same data.  We can only hope that
Microsoft will see fit to add this important capability to a future version
of BASIC.  [PowerBASIC offers this feature via the UNION command.]
     The NUL device has other important applications in conjunction with
FIELD.  One common programming problem that comes up frequently is being
able to format numbers to a controlled number of decimal places.  Although
BASIC's PRINT USING will format a number and write it to the screen, there
is no way to actually access the formatted value.  It is possible to have
PRINT USING write the value on the screen--perhaps in the upper left corner
with a color setting of black on black--and then read it character by
character with SCREEN.  But that method is clunky at best, and also very
slow.
     The short program below uses PRINT USING # to write to a fielded
buffer, and then LINE INPUT # to read the number back from the buffer.

Value# = 123.45678#

OPEN "\DEV\NUL" FOR RANDOM AS #1 LEN = 15
FIELD #1, 15 AS Format$
PRINT #1, USING "####.##"; Value#
LINE INPUT #1, Fmt$

PRINT "    Value:"; Value#
PRINT "Formatted:"; Fmt$

Notice that the field buffer must be long enough to receive the entire
formatted string, including the carriage return and line feed that BASIC
sends as part of the PRINT # statement.  This technique opens up many
exciting possibilities, especially when used in conjunction with PRINT #
USING's other extensive formatting options.
     [PDS includes the FORMAT$ function externally in Quick and regular
link libraries, and VB/DOS goes a step further by adding FORMAT$ to the
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language.  But FORMAT$ offers only a subset of what PRINT USING can do.]

ADVANCED DEVICE TECHNIQUES
==========================

As many tricks as there are for reading and writing files, there are just
as many for accessing devices.  Many devices such as printers and modems
are so much slower than BASIC that the techniques for sending large amounts
of data in one operation are not needed or useful.  But these devices offer
a whole new set of problems that just beg for clever programming solutions.
With that in mind, let's continue this tour and examine some of the less
obvious aspects of BASIC's device handling capabilities.

THE PRINTER DEVICE

All modern printers accept special control codes to enable and disable
underlining, boldfacing, italics, and sometimes even font changes.  Many
printers honor the standard Epson/IBM control codes, and some recognize
additional codes to control unique features available only with that brand
or model.  However, it is possible to print underline and boldface text
with most printers, without regard to the particular model.  The examples
shown below require that you open the printer as a device using "LPT1:BIN".
If you are using LPT2, of course, then you will open "LPT2:BIN" instead.
As I mentioned earlier, the BIN option tells BASIC not to interfere with
any control codes you send, and also not to add automatic line wrapping.
     Most programmers assume that every carriage return is always
accompanied by a corresponding line feed, and indeed, that is almost always
the case.  Even if you print a CHR$(13) carriage return followed by a
semicolon, BASIC steps in and appends a line feed for you.  But these are
separate characters, and each can be used separately to control a printer.
The example below prints a short string and a carriage return *without* a
line feed, and then prints a series of underlines beneath the string.

OPEN "LPT1:BIN" FOR OUTPUT AS #1
PRINT #1, "BASIC Techniques and Utilities"; CHR$(13);
PRINT #1, "      __________"
CLOSE

Similarly, you can also simulate boldfacing by printing the same string at
the same place on the paper two or three times.  While this won't work with
a laser printer, it is very effective on dot matrix printers.  Of course,
if you do know the correct control codes for the printer, then those can be
sent directly.  Be sure, however, to always include a trailing semicolon as
part of the print statement, to avoid also sending an unwanted return and
line feed.  For example, to advance a printer to the start of the next page
you would use either PRINT #1, CHR$(12); or LPRINT CHR$(12);.  In this
case, a normal LPRINT will work because you are not sending a CHR$(13) or
CHR$(10).
     Most printers also accept a CHR$(8) to indicate a backspace, which may
simplify underlining in some cases.  That is, instead of printing a
CHR$(13) to go the start of the line, you would print the string, and
simply back up the print head the appropriate number of columns.  BASIC's
STRING$ function is ideal for this, using LPRINT STRING$(Count, 8); to send
Count backspace characters to the printer.
     You can also send a complete font file to a printer with the CopyFile
program shown earlier.  Simply give the font file's name as the source, and
the string "LPT1:BIN" as the destination.

THE SCREEN DEVICE
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As with printers, there are a number of ways to manipulate the display
screen by printing special control characters.  Where a CHR$(12) can be
used to advance the printer to the top of the next page, this same
character will clear the screen and place the cursor at the upper left
corner.  Printing a CHR$(11) will home the cursor only, and printing a
CHR$(7) beeps the speaker.
     Another useful screen control character is CHR$(9), which advances to
the next tab stop.  Tab stops are located at every eighth column, with the
first at column 9, the second at column 17, and so forth.  As with a
printer that has not been opened using the BIN option, printing either a
CHR$(10) or a CHR$(13)--even with a semicolon--always sends the cursor to
the beginning of the next line.  There is unfortunately no way to separate
the actions of a carriage return and line feed.
     The last four control characters that are useful with the screen are
CHR$(28), CHR$(29), CHR$(30), and CHR$(31).  These move the cursor forward,
backward, up a line (if possible) and down a line (if possible).  Although
LOCATE can be used to move the cursor, these commands allow you to do it
relative to the current location.  To do the same with LOCATE would require
code like this: IF POS(0) > 1 THEN LOCATE , POS(0) - 1.  Obviously, the
control characters will result in less generated code, because they avoid
the IF test and repeated calls to BASIC's POS(0) function.
     BASIC PDS includes a series of stub files named TSCNIOxx.OBJ that
eliminate support for all graphics statements, and also ignore the control
characters listed above.  Because each character must be tested
individually by BASIC as it looks for these control codes, using these stub
files will increase the speed of your program's display output.
     All versions of Microsoft BASIC have always included the WIDTH
statement for controlling the number of columns on the screen.  With the
introduction of QuickBASIC 3.0, SCREEN was expanded to also allow setting
the number of rows on EGA and VGA monitors.  The statement WIDTH , 43 puts
the screen into the 43-line text mode, and may be used with an EGA or VGA
display.  WIDTH , 50 is valid for VGA monitors only, and as you can
imagine, it switches the display to the 50-line text mode.
     In many cases it is necessary to know if the display screen is color
or monochrome, and also if it is capable of supporting the EGA or VGA
graphics modes.  The simplest way to detect a color monitor is to look at
the display adapter's port address in low memory.  The short code fragment
below shows how this is done.

DEF SEG = 0
IF PEEK(&H463) = &HB4 THEN
  '---- it's a monochrome monitor
ELSE
  '---- it's a color monitor
END IF

This information is important if you plan to BLOAD a screen image directly
into video memory.  If the display adapter is reported as monochrome, then
you would use DEF SEG to set the segment to &HB000.  A color monitor in
text mode instead uses segment &HB800.  Knowing if a monitor has color
capabilities also helps you to choose appropriate color values, and tells
you if it can support graphics.  But you will need to know which video
modes the display adapter is capable of.
     Detecting an EGA or VGA is more complex than merely distinguishing
between monochrome and color, because it requires calling a video interrupt
service routine located on the display adapter card.  A Hercules monitor is
also difficult to detect, because that requires a timing loop to see if the
Hercules video status port changes.  All of this is taken into account in
the example and function that follows.
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DEFINT A-Z

DECLARE SUB Interrupt (IntNum, InRegs AS ANY, OutRegs AS ANY)
DECLARE FUNCTION Monitor% (Segment)

TYPE RegType
  AX    AS INTEGER
  BX    AS INTEGER
  CX    AS INTEGER
  DX    AS INTEGER
  BP    AS INTEGER
  SI    AS INTEGER
  DI    AS INTEGER
  Flags AS INTEGER
END TYPE
DIM SHARED InRegs AS RegType, OutRegs AS RegType

SELECT CASE Monitor%(Segment)
  CASE 1
    PRINT "Monochrome";
  CASE 2
    PRINT "Hercules";
  CASE 3
    PRINT "CGA";
  CASE 4
    PRINT "EGA";
  CASE 5
    PRINT "VGA";
  CASE ELSE
    PRINT "Unknown";
END SELECT
PRINT " monitor at segment &H"; HEX$(Segment)

FUNCTION Monitor% (Segment) STATIC

  DEF SEG = 0                 'first see if it's color or mono
  Segment = &HB800            'assume color

  IF PEEK(&H463) = &HB4 THEN  'it's monochrome

    Segment = &HB000          'assign the monochrome segment
    Status = INP(&H3BA)       'get the current video status
    FOR X = 1 TO 30000        'test for a Hercules 30000 times
      IF INP(&H3BA) <> Status THEN
        Monitor% = 2          'the port changed, it's a Herc
        EXIT FUNCTION         'all done
      END IF
    NEXT
    Monitor% = 1              'it's a plain monochrome

  ELSE                        'it's some sort of color monitor

    InRegs.AX = &H1A00        'first test for VGA
    CALL Interrupt(&H10, InRegs, OutRegs)
    IF (OutRegs.AX AND &HFF) = &H1A THEN
      Monitor% = 5            'it's a VGA
      EXIT FUNCTION           'all done
    END IF

    InRegs.AX = &H1200        'now test for EGA
    InRegs.BX = &H10
    CALL Interrupt(&H10, InRegs, OutRegs)
    IF (OutRegs.BX AND &HFF) = &H10 THEN



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 196   -

      Monitor% = 3            'if BL is still &H10 it's a CGA
    ELSE
      Monitor% = 4            'otherwise it's an EGA
    END IF

  END IF

END FUNCTION

The Monitor function returns both the type of monitor that is active, as
well as the video segment that is used when displaying text.  EGA and VGA
displays use segment &HA000 for graphics, which is a different issue
altogether.  Monitor is particularly valuable when you need to know what
SCREEN modes a given display adapter can support.  The *only* alternative
is to use ON ERROR and try each possible SCREEN value in a loop starting
from the highest resolution.  When SCREEN finally reaches a low enough
value to succeed, then you know what modes are legal.  Since BASIC knows
the type of monitor installed, it seems inconceivable to me that this
information is not made available to your program.  [PowerBASIC uses an
internal variable to hold the display type, and that variable is available
to the programmer.]
     Notice that the Registers TYPE variable is dimensioned in the example
portion of this program, and not in the Monitor function itself.  Each time
a TYPE or fixed-length string variable is dimensioned in a STATIC
subprogram or function, new memory is allocated permanently to hold it.  In
this short program the Registers TYPE variable is used only once.  But in a
real program that incorporates many of the routines from this chapter,
memory can be saved by using DIM SHARED in the main program.  Then, each
subroutine can use the same variable for its own use.
     Once you know the type of monitor, you will also know what color
combinations are valid and readable.  A color monitor can of course use any
combination of foreground and background colors, but a monochrome is
limited to the choices shown in Table 6-3.  Combinations not listed will
result in text that is unreadable on a many monochrome monitors.

Color as Displayed                 COLOR Values
--------------------------------   ------------
White on Black                     COLOR 7, 0
Bright White on Black              COLOR 15, 0
Black on White                     COLOR 0, 7
White Underlined on Black          COLOR 1, 0
Bright White Underlined on Black   COLOR 9, 0

Table 6-3: Valid Color Combinations For Use With a Monochrome Monitor.

It is important to point out that some computers employ a CGA display
adapter connected to a monochrome monitor.  For example, the original
Compaq portable PC used this arrangement.  Many laptop computers also have
a monochrome display connected to a CGA, EGA, or VGA adapter.  Since it is
impossible for a program to look beyond the adapter hardware through to the
monitor itself, you will need to provide a way for users with that kind of
hardware to alert your program.
     The BASIC editor recognizes a /b command line switch to indicate black
and white operation, and I suggest that you do something similar.  Indeed,
many commercial programs offer a way for the user to indicate that color
operation is not available or desired.
     The last video-related issue I want to cover is saving and loading
text and graphics images.  As you probably know, the memory organization of
a display adapter when it is in one of the graphics modes is very different
than when it is in text mode.  In the text mode, each character and its
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corresponding color byte are stored in contiguous memory locations in the
appropriate video segment.  All of the color text modes store the
characters and their colors at segment &HB800, while monochrome displays
use segment &HB000.
     The character in the upper left corner of the screen is at address 0
in the video segment, and its corresponding color is at address 1.  The
character currently at screen location (1, 2) is stored at address 2, and
its color is at address 3, and so forth.  The brief program fragment below
illustrates this visually by using POKE to write a string of characters and
colors directly to display memory.
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DEFINT A-Z

CLS
LOCATE 20
PRINT "Keep pressing a key to continue"

DEF SEG = 0
IF PEEK(&H463) = &HB4 THEN
  DEF SEG = &HB000
ELSE
  DEF SEG = &HB800
END IF

Test$ = "Hello!"
Colr = 9                        'bright blue or underlined

FOR X = 1 TO LEN(Test$)         'walk through the string
  Char = ASC(MID$(Test$, X, 1)) 'get this character
  POKE Address, Char            'poke it to display memory
  WHILE LEN(INKEY$) = 0: WEND   'pause for a keypress
  POKE Address + 1, Colr        'now poke the color
  Address = Address + 2         'bump to the next address
  WHILE LEN(INKEY$) = 0: WEND   'pause for a keypress
NEXT
END

The initial CLS command stores blank spaces and the current BASIC color
settings in every memory address pair.  Assuming you have not changed the
color previously, a character value of 32 is stored by CLS into every even
address, and a color value of 7 in every odd one.  Once the correct video
segment is known and assigned using DEF SEG, a simple loop pokes each
character in the string to the display starting at address 0.  (Since
Address was never assigned initially, it holds a value of zero.)
     Saving and loading graphics images is of necessity somewhat more
complex, because you need to know not only the appropriate segment from
which to save, but also how many bytes.  The example program below creates
a simple graphic image in CGA screen mode 1, saves the image, and then
after clearing the screen loads it again.
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DEFINT A-Z
SCREEN 1

DEF SEG = 0
PageSize = PEEK(&H44C) + 256 * PEEK(&H44D)

FOR X = 1 TO 10
  CIRCLE (140, 95), X * 10, 2
NEXT

DEF SEG = &HB800
BSAVE "CIRCLES.CGA", 0, PageSize
PRINT "The screen was just saved, press a key."
WHILE LEN(INKEY$) = 0: WEND

CLS
PRINT "Now press a key to load the screen."
WHILE LEN(INKEY$) = 0: WEND
BLOAD "CIRCLES.CGA", 0

Notice the use of PEEK to retrieve the current video page size at addresses
&H44C and &H44D.  This is a handy value that the BIOS maintains in low
memory, and it tells you how many bytes are occupied by the screen whatever
its current mode.  In truth, this value is often slightly higher than the
actual screen dimensions would indicate, since it is rounded up to the next
even video page boundary.  For example, the 320 by 200 screen mode used
here occupies 16000 bytes of display memory, yet the page size is reported
as 16384.  But this value is needed to calculate the appropriate address
when saving video pages other than page 0.  That is, page 0 begins at
address 0 at segment &HB800, and page 1 begins at address 16384.
     Note that many early CGA video adapters contain only 16K of memory,
and thus do not support multiple screen pages.  Also note that there is a
small quirk in Hercules adapters that causes the page size to always be
reported as 16384, even when the screen is in text mode.  I have found this
word to be unreliable in the EGA and VGA graphics mode.
     Although you might think that the pixels on a CGA graphics screen
occupy contiguous memory addresses, they do not.  Although each horizontal
line is in fact contiguous, the lines are interlaced.  Running the short
program below shows how the first half of the video addresses contains the
even rows (starting at row zero), and the second half holds the odd rows.

SCREEN 1
DEF SEG = &HB800
FOR X = 1 TO 15999
  POKE X, 255
NEXT

EGA and VGA displays add yet another level of complexity, because they use
a separate video memory *plane* to store each color.  Four planes are used
for EGA and VGA, with one each to hold the red, blue, green, and intensity
(brightness) information.  Each plane is identified using the same segment
and address, and OUT instructions are needed to select which is to be made
currently active.  This is called *bank switching*, because multiple,
parallel banks of memory are switched in and out of the CPU's address
space.  When the red plane is active, reading and writing those memory
locations affects only the red information on the screen.  And when the
intensity plane is made active, only the brightness for a given pixel on
the screen is considered.
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     Bank switching is needed to accommodate the enormous amount of
information that an EGA or VGA screen can contain.  For example, in EGA
screen mode 9, each plane occupies 28,000 bytes, for a total of 112,000
bytes of memory.  This far exceeds the amount of memory the designers of
the original IBM PC anticipated would ever be needed for display purposes.
There simply aren't enough addresses available in the PC for video use.
Therefore, the only way to deal with that much information is to provide
additional memory in the EGA and VGA adapters themselves.  When a program
needs to access a memory plane, it must do that one bank at a time so it
can be read or written by the CPU.
     The program below expands slightly on the earlier example, and shows
how to save and load EGA and VGA screens by manipulating each video plane
individually.
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DEFINT A-Z
DECLARE SUB EgaBSave (FileName$)
DECLARE SUB EgaBLoad (FileName$)

SCREEN 9
LOCATE 25, 1
PRINT "Press a key to stop, and save the screen.";

'---- clever video effects by Brian Giedt
WHILE LEN(INKEY$) = 0
  T = (T MOD 150) + 1
  C = (C + 1) MOD 16
  LINE (T, T)-(300 - T, 300 - T), C, B
  LINE (300 + T, T)-(600 - T, 300 - T), C, B
WEND

LOCATE 25, 1
PRINT "Thank You!"; TAB(75);
CALL EgaBSave("SCREEN9")

CLS
LOCATE 25, 1
PRINT "Now press a key to read the screen.";
WHILE LEN(INKEY$) = 0: WEND
LOCATE 25, 1
PRINT TAB(75);

CALL EgaBLoad("SCREEN9")

SUB EgaBLoad (FileName$) STATIC

    'UnREM the KILL statements to erase the saved images after they
    ' have been loaded.

    DEF SEG = &HA000
    OUT &H3C4, 2: OUT &H3C5, 1
    BLOAD FileName$ + ".BLU", 0
    'KILL FileName$ + ".BLU"

    OUT &H3C4, 2: OUT &H3C5, 2
    BLOAD FileName$ + ".GRN", 0
    'KILL FileName$ + ".GRN"

    OUT &H3C4, 2: OUT &H3C5, 4
    BLOAD FileName$ + ".RED", 0
    'KILL FileName$ + ".RED"

    OUT &H3C4, 2: OUT &H3C5, 8
    BLOAD FileName$ + ".INT", 0
    'KILL FileName$ + ".INT"
    OUT &H3C4, 2: OUT &H3C5, 15

END SUB

SUB EgaBSave (FileName$) STATIC

    DEF SEG = &HA000
    Size& = 28000       'use 38400 for VGA SCREEN 12

    OUT &H3CE, 4: OUT &H3CF, 0
    BSAVE FileName$ + ".BLU", 0, Size&

    OUT &H3CE, 4: OUT &H3CF, 1
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    BSAVE FileName$ + ".GRN", 0, Size&

    OUT &H3CE, 4: OUT &H3CF, 2
    BSAVE FileName$ + ".RED", 0, Size&

    OUT &H3CE, 4: OUT &H3CF, 3
    BSAVE FileName$ + ".INT", 0, Size&

    OUT &H3CE, 4: OUT &H3CF, 0

END SUB

In the EGABLoad and EGABSave subroutines, two OUT statements are actually
needed to switch planes.  The first gets the EGA adapter's attention, to
tell it that a subsequent byte is coming.  That second value then indicates
which memory plane to make currently available.

THE KEYBOARD DEVICE

The last device to consider is the keyboard.  BASIC offers several commands
and functions for accessing the keyboard, and these are INPUT, LINE INPUT,
INPUT$, and INKEY$.  Further, the "KYBD:" device may be opened as a file,
and read using the file versions of the first three statements.
     As with the file versions, INPUT reads numbers or text up to a
terminating comma or Enter character.  LINE INPUT is for strings only, and
it ignores commas and requires Enter to be pressed to indicate the end of
the line.  INPUT$ waits until the specified number of characters have been
typed before returning, without regard to what characters are entered.
INKEY$ returns to the program immediately, even if no key was pressed.
     Few serious programmers ever use INPUT or LINE INPUT for accepting
entire lines of text, unless the program is very primitive or will be used
only occasionally.  The major problem with INPUT and LINE INPUT is that
there's no way to control how many characters the operator enters.  Once
you use INPUT or LINE INPUT, you have lost control entirely until the user
presses Enter.  Worse, when INPUT is used to enter numeric variables, an
erroneous entry causes BASIC to print its infamous "Redo from start"
message.  Either of these can spoil the appearance of a carefully designed
data entry screen.
     Therefore, the only reasonable way to accept user input is to use
INKEY$ to read the keys one by one, and act on them individually.  If a
character key is pressed, the cursor is advanced and the character is added
to the string.  If the back space key is detected, the cursor is moved to
the left one column and the current character is erased.  A series of IF or
CASE statements is often used for this purpose, to handle every key that
needs to be recognized.
     The Editor input routine below provides exactly this service, and also
allows tells you how editing was terminated.  Besides being able to control
the size of the input editing field, Editor also handles the Insert and
Delete keys, and recognizes Home and End to jump the beginning and end of
the field.  A single COLOR statements lets you control the editing field
color independently of the rest of the screen.  The first portion of the
code shows how Editor is set up and called.
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DEFINT A-Z
DECLARE SUB Editor (Text$, LeftCol, RightCol, KeyCode)

COLOR 7, 1                      'clear to white on blue
CLS

Text$ = "This is a test"        'make some sample text
LeftCol = 20                    'set the left column
RightCol = 60                   'and the right column
LOCATE 10                       'set the line number
COLOR 0, 7                      'set the field color

DO                              'edit until Enter or Esc
   CALL Editor(Text$, LeftCol, RightCol, KeyCode)
LOOP UNTIL KeyCode = 13 OR KeyCode = 27

SUB Editor (Text$, LeftCol, RightCol, KeyCode)

  '----- Find the cursor's size.
  DEF SEG = 0
  IF PEEK(&H463) = &HB4 THEN
     CsrSize = 12               'mono uses 13 scan lines
  ELSE
     CsrSize = 7                'color uses 8
  END IF

  '----- Work with a temporary copy.
  Edit$ = SPACE$(RightCol - LeftCol + 1)
  LSET Edit$ = Text$

  '----- See where to begin editing and print the string.
  TxtPos = POS(0) - LeftCol + 1
  IF TxtPos < 1 THEN TxtPos = 1
  IF TxtPos > LEN(Edit$) THEN TxtPos = LEN(Edit$)

  LOCATE , LeftCol
  PRINT Edit$;

  '----- This is the main loop for handling key presses.
  DO
     LOCATE , LeftCol + TxtPos - 1, 1

     DO
       Ky$ = INKEY$
     LOOP UNTIL LEN(Ky$)        'wait for a keypress

     IF LEN(Ky$) = 1 THEN       'create a key code
       KeyCode = ASC(Ky$)       'regular character key
     ELSE                       'extended key
       KeyCode = -ASC(RIGHT$(Ky$, 1))
     END IF

     '----- Branch according to the key pressed.
     SELECT CASE KeyCode

       '----- Backspace: decrement the pointer and the
       '      cursor, but ignore if in the first column.
       CASE 8
         TxtPos = TxtPos - 1
         LOCATE , LeftCol + TxtPos - 1, 0
         IF TxtPos > 0 THEN
           IF Insert THEN
             MID$(Edit$, TxtPos) = MID$(Edit$, TxtPos + 1) + " "
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           ELSE
             MID$(Edit$, TxtPos) = " "
           END IF
             PRINT MID$(Edit$, TxtPos);
         END IF

       '----- Enter or Escape: this block is optional in
       '      case you want to handle these separately.
       CASE 13, 27
         EXIT DO                'exit the subprogram

       '----- Letter keys: turn off the cursor to hide
       '      the printing, handle Insert mode as needed.
       CASE 32 TO 254
         LOCATE , , 0
         IF Insert THEN         'expand the string
           MID$(Edit$, TxtPos) = Ky$ + MID$(Edit$, TxtPos)
           PRINT MID$(Edit$, TxtPos);
         ELSE                   'else insert character
           MID$(Edit$, TxtPos) = Ky$
           PRINT Ky$;
         END IF
         TxtPos = TxtPos + 1    'update position counter

       '----- Left arrow: decrement the position counter.
       CASE -75
         TxtPos = TxtPos - 1

       '----- Right arrow: increment position counter.
       CASE -77
         TxtPos = TxtPos + 1

       '----- Home: jump to the first character position.
       CASE -71
         TxtPos = 1

       '----- End: search for the last non-blank, and
       '      make that the current editing position.
       CASE -79
         FOR N = LEN(Edit$) TO 1 STEP -1
           IF MID$(Edit$, N, 1) <> " " THEN EXIT FOR
         NEXT
         TxtPos = N + 1
         IF TxtPos > LEN(Edit$) THEN TxtPos = LEN(Edit$)

       '----- Insert key: toggle the Insert state and
       '      adjust the cursor size.
       CASE -82
         Insert = NOT Insert
         IF Insert THEN
           LOCATE , , , CsrSize \ 2, CsrSize
         ELSE
           LOCATE , , , CsrSize - 1, CsrSize
         END IF

       '----- Delete: delete the current character and
       '      reprint what remains in the string.
       CASE -83
         MID$(Edit$, TxtPos) = MID$(Edit$, TxtPos + 1) + " "
         LOCATE , , 0
         PRINT MID$(Edit$, TxtPos);

       '---- All other keys: exit the subprogram
       CASE ELSE
         EXIT DO
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     END SELECT

  '----- Loop until the cursor moves out of the field.
  LOOP UNTIL TxtPos < 1 OR TxtPos > LEN(Edit$)

  Text$ = RTRIM$(Edit$)         'trim the text

END SUB

Most of the details in this subprogram do not require much explanation, and
the code should prove simple enough to be self-documenting.  However, I
would like to discuss INKEY$ as it is used here.
     Each time INKEY$ is used it examines the keyboard buffer, to see if a
key is pending.  If not, a null string is returned.  If a key is present in
the buffer INKEY$ removes it, and returns either a 1- or 2-byte string,
depending on what type of key it is.  Normal character keys and control
keys (entered by pressing the Ctrl key in conjunction with a regular key)
are returned as a 1-byte string.  Some special keys such as Enter and
Escape are also returned as a 1-byte string, because they are in fact
control keys.  For example, Enter is the same as Ctrl-M, and Escape is
identical to the Ctrl-[ key.
     The IBM PC offers additional keys and key combinations that are not
defined by the ASCII standard, and these are returned as a 2-byte string so
your program can identify them.  Extended keys include the function keys,
Home and End and the other cursor control keys, and Alt key combinations.
When an extended key is returned the first character is always CHR$(0), and
the second character corresponds to the extended key's code using a method
defined by IBM.  Therefore, you can determine if a key is extended either
by looking for a length of two, or by examining the first character to see
if it is a CHR$(0) zero byte.
     There are three ways to accomplish this, and which is best depends on
the compiler you are using.  The brief program fragment below shows each
method, and the number of bytes that are generated by both compilers.

IF LEN(X$) = 2 THEN             '17 for QB4, 7 for PDS

IF ASC(X$) THEN                 '16 for QB4, 13 for PDS

IF LEFT$(X$, 1) = CHR$(0) THEN  '33 for QB4, 30 for PDS

The references to QB 4 are valid for both QuickBASIC 4.0 and 4.5.  The
BASIC PDS byte counts reflect that compiler's improved code optimization,
however this improvement is available only with near strings.  When far
strings are used the LEN test requires the same 13 bytes as the ASC test.
[I'll presume that VB/DOS, with its support for only far strings, also uses
the longer byte count.]
     As you can see, the test that uses BASIC's ASC function is slightly
better than the one that uses LEN if you are using QuickBASIC.  But if you
have BASIC PDS the LEN test is quite a bit shorter.  Comparing the first
character in the string is much worse for either compiler, because
individual calls must be made to BASIC's LEFT$, CHR$, and string comparison
routines.
     Even though the length and address of a QuickBASIC string is stored in
the string's descriptor and is easily available to the compiler, the BC
compiler that comes with QuickBASIC still calls a LEN routine.  Where the
compiler *could* use CMP WORD PTR [DescriptorAddress], 2 to see if the
string length is 2, it instead passes the address of the string descriptor
on the stack, calls the LEN routine, and compares the result LEN returns.
Fortunately, this optimization was added in BASIC PDS when near strings are
used.  Likewise, SADD when used with PDS near strings directly retrieves
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the string's address from the descriptor as well, instead of calling a
library routine as QuickBASIC does.
     The Editor subprogram uses the LEN method to determine the type of key
that was pressed, which is most efficient if you are using BASIC PDS.
Because integer comparisons are faster and generate less code than the
equivalent operation with strings, ASC is then used to obtain either the
ASCII value of the key, or the value of the extended key code.  The result
is assigned to the variable KeyCode as either a positive number to indicate
a regular ASCII key, or a negative value that corresponds to an extended
key's code.  This method helps to reduce the size of the subprogram, by
eliminating string comparisons in each CASE statement.
     One important warning when using ASC is that it will generate an
"Illegal function call" error if you pass it a null string.  Therefore, in
many cases you must include an additional test just for that:

IF LEN(Work$) THEN
  IF ASC(Work$) THEN
    ...
    ...
  END IF
END IF

One solution is to create your own function--perhaps called ASCII%()--that
does this for you.  Since calling a BASIC function requires no more code
than when BASIC calls its own routines (assuming you are using the same
number of arguments, of course), this can also help to reduce the size of
your programs.  I like to use a return value of -1 to indicate a null
string, as shown below.

FUNCTION ASCII%(This$)
  IF LEN(This$) THEN
    ASCII% = ASC(This$)
  ELSE
    ASCII% = -1
  END IF
END FUNCTION

Now you can simply use code such as IF ASCII%(Any$) = Whatever THEN...
confident that no error will occur and the returned value will still be
valid.

Redirection

One clever DOS feature that many programmers are not aware of is its
ability to redirect a program's normal input and output to a file.  When a
program is redirected, print statements go to a specified file, keyboard
input is read from a file, or both.  The actual redirection commands are
entered by the user of your program, and your program has no idea that this
has happened.  This is really more a DOS issue than a BASIC concern, but
it's a powerful feature and you should understand how it works.
     Redirection is useful for capturing a program's output to a disk file,
or feeding keystrokes to a program using a predefined sequence contained in
a file.  For example, the output of the DOS DIR command can be redirected
to a file with this command:

     dir *.* > anyfile

Redirecting a program's input can be equally valuable.  If you often format
several diskettes at once you might create a file that contains the answer
Y followed by an Enter character, and then run format using this:
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     format < yesfile

This way the file will provide the response to "Format another (Y/N)?".
     To redirect a program's output, start it from the DOS command line and
place a *greater than* symbol and the output file name at the end of the
command line:

     program > filename

Similarly, using a *less than* sign tells DOS to replace the program's
requests for keyboard input with the contents of the specified file, thus:

     program < filename

You can combine both redirected input and output at the same time, and the
order in which they are given does not matter.  It is important to
understand that redirecting a program's output to a file is similar to
opening that file for output.  That is, it is created if it didn't yet
exist, or truncated to a length of zero if it did.  However, DOS also lets
you append to a file when redirecting output, using two symbols in a row:

     program >> filename

Please be aware that you can hang a PC completely when redirecting a
program's input, if the necessary characters are not present.  For example,
this would happen when redirecting a program that uses LINE INPUT from a
file that has no terminating CHR$(13) Enter character.  Even pressing Ctrl-
Break will have no effect, and your only recourse is to reboot, or close
down the DOS session if you are using Windows.

SUMMARY
=======

This chapter has presented an enormous amount of information about both
files and devices in BASIC.  If began with a brief overview of how DOS
allocates disk storage using sectors and clusters, and continued with an
explanation of file buffers.  By understanding the relationship between
BASIC's own buffers and their impact on string memory, you gain greater
control over your program's speed and memory requirements.
     This then led to a comparison of files and devices, and showed how
they can be controlled by similar BASIC statements.  In particular, you
learned how the same block of code can be used to send information to
either, simplifying the design of reports and other programming output
chores.
     The section that described file access methods compared all of the
available options, and explained when each is appropriate and why.  You
learned that all DOS files are really just a continuous stream of binary
data, and the various OPEN methods merely let you indicate to BASIC how
that data is to be handled.
     You also learned that the best way to improve a program's file access
speed is to read and write data in large blocks.  Several complete
subprograms and functions were shown to illustrate this technique, and most
are general enough to be useful when included within your own programs.
     Numerous tips and tricks were presented to determine the type of
display adapter installed, run .COM programs and .BAT files, obtain
formatted numbers by combining PRINT USING # with FIELD and INPUT #, and
many more.  You were also introduced to the possibility of calling BASIC's
internal library routines as a way to circumvent many otherwise arbitrary
limitations in the language.
     Finally, video memory organization was revealed for all of the popular
screen modes, and example programs were provided to show how they may be
saved and loaded.
     In the next chapter I will continue this discussion of files with
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detailed explanations of writing database programs.  Chapter 7 will also
describe how to write programs that operate on a network, as well as how to
access data that uses the popular dBASE file format.

                                CHAPTER 7

                    NETWORK AND DATABASE PROGRAMMING

   In Chapter 6 you learned the principles of accessing files with BASIC,
and saw the advantages and disadvantages of each of the various methods.
This chapter continues the coverage of file handling in BASIC by discussing
the concepts of database application programming.  In particular, this
chapter will cover database file structures--including fixed and variable
length records--as well as the difference between code- and data-driven
applications.
   This chapter also provides an in-depth look at the steps needed to write
applications that can run on a network.  This is an important topic that
is fast becoming even more important, and very little information is
available for programmers using BASIC.  I will discuss the various file
access schemes and record locking techniques, and also how to determine if
a program is currently running on a network and if so which one.
   This chapter examines common database file formats including the one
used by dBASE III Plus, and utility programs are provided showing how to
access these files.  I will explain some of the fundamental issues of
database design, including relationships between files.  Also presented is
a discussion of the common indexing techniques available, and a comparison
of the relative advantages and disadvantages of each.  You will also learn
about the Structured Query Language (SQL) data access method, and
understand the advantages it offers in an application programming context.
Finally, several third-party add-on products that facilitate database
application programming will be described.

DATA FILES VERSUS DATA MANAGEMENT
=================================

Almost every application you create will require some sort of file access,
if only to store configuration information.  Over time, programmers have
developed hundreds of methods for storing information including sequential
files, random files, and so forth.  However, this type of data file
management must not be confused with database management in the strict
sense.  Database management implies repeated data structures and
relationships, with less importance given to the actual data itself.
   In Chapter 6 you learned two common methods for defining the structure
of a random access data file.  But whether you use FIELD or TYPE, those
examples focused on defining a record layout that is known in advance.
When the data format will not change, defining a file structure within your
program as FIELD or TYPE statements makes the most sense--a single
statement can directly read or write any record in the file very quickly.
But this precludes writing a general purpose database program such as
dBASE, DataEase, or Paradox.  In programs such as these, the user must be
allowed to define each field and thus the record structure.
   The key to the success of these commercial programs is therefore in
their flexibility.  If you need to write routines for forms processing,
expression evaluation, file sorting, reports, and so forth, you should
strive to make them reusable.  For example, if you intend to print a report
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from a data file whose records have 100 fields, do you really want to use
100 explicit PRINT statements?  The ideal approach is to create a generic
report module that uses a loop to print each selected field in each of the
selected records.  This is where the concept of data-driven programming
comes into play.

DATA-DRIVEN PROGRAMMING

Data-driven programming, as its name implies, involves storing your data
definitions as files, rather then as explicit statements in the program's
BASIC source code.  The advantage to this method of database programming
lies in its flexibility and reusability.  By storing the data definitions
on disk, you can use one block of code to perform the same operations on
completely different sets of data.
   There are two general methods of storing data definitions on a disk--in
the same file as the actual data or in a separate file.  Storing the record
definition in a separate file is the simplest approach, because it allows
the main data file to be comprised solely of identical-length records.
Keeping both the record layout and the data itself in a single file
requires more work on your part, but with the advantage of slightly less
disk clutter.  In either case, some format must be devised to identify the
number of fields in each data record and their type.
   The example below shows a typical field layout definition, along with
code to determine the number of fields in each record.  Please understand
that the random access file considered here is a file of field definitions,
and not actual record data.

TYPE FldRec
  FldName AS STRING * 15
  FldType AS STRING * 1
  FldOff  AS INTEGER
  FldLen  AS INTEGER
END TYPE

OPEN "CUST.FLD" FOR BINARY AS #1
TotalFields% = LOF(1) \ 20
DIM FldStruc(1 TO TotalFields%) AS FldRec

RecLength% = 0
FOR X% = 1 TO TotalFields%
  GET #1, , FldStruc(X%)
  RecLength% = RecLength% + FldStruc(X%).FldLen
NEXT
CLOSE #1

In this program fragment, 15 characters are set aside for each field's
name, a single byte is used to hold a field type code (1 = string, 2 =
currency, or whatever), and integer offset and length values show how far
into the record each field is located and how long it is.  Once the field
definitions file has been opened, the number of fields is easily determined
by dividing the file size by the known 20-byte length of each entry.  From
the number of you fields you can then dimension an array and read in the
parameters of each field as shown here.
   Notice that the record length is accumulated as each field description
in read from the field definition file.  In a real program, two field
lengths would probably be required: the length of the field as it appears
on the screen and the number of bytes it will actually require in the
record.  For example, a single precision number is stored on disk in only
four bytes, even though as many as seven digits plus a decimal point could
be displayed on the data entry screen.  Therefore, the method shown in this
simple example to accumulate the record lengths would be slightly more
involved in practice.
   Once the number and size of each field is known, it is a simple matter
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to assign a string to the correct length to hold a single data record.  Any
record could then be retrieved from the file, and its contents displayed
as shown following.

OPEN "CUST.DAT" FOR RANDOM AS #1 LEN = RecLength%
Record$ = SPACE$(RecLength%)
GET #1, 1, Record$
CLOSE #1

FOR X% = 1 TO TotalFields%
  FldText$ = MID$(Record$, FldStruc(X%).FldOff, FldStruc(X%).FldLen)
  PRINT FldStruc(X%).FldName; ": "; FldText$
NEXT

Here, the first record in the file is read, and then the function form of
MID$ is used to extract each data field from that record.  Assigning
individual fields is just as easy, using the complementary statement form
of MID$:

MID$(Record$, FldStruc(FldNum).FldOff, FldStruc(FldNum).FldLen) = NewText$

Understand that the entire point of this exercise is to show how a generic
routine to access files can be written, and without having to establish the
record structure when you write the program.  Although you could use FIELD
instead of MID$ to assign and retrieve the information from each field,
that works only when the field information is kept in a separate file.  If
the field definitions are in the same file as the data, you will have to
use purely binary file access, to account for the fixed header offset at
the start of the file.
   When you tell BASIC to open a file for random access, it uses the record
length to determine where each record begins in the file.  But if a header
portion is at the beginning of the file, a fixed offset must be added to
skip over the header.  Since BASIC does not accommodate specifying an
offset this way, it is up to you to handle that manually.  However, the
added complexity is not really that difficult, as you will see shortly in
the routines that create and access dBASE files.
   dBASE--and indeed, most commercial database products--store the field
information in the same file that contains the data.  This has the primary
advantage of consolidating information for distribution purposes.  [For
example, if your company sells a database of financial information, this
minimizes the number of separate files your users will have to deal with.]
Modern header structures are variable length, which allows for a greater
optimization of disk space.  In fact, most header structures mimic the
record array shown above, but also store information such as the length
of the header and the number of fields.  This is needed because the number
of fields cannot be determined from the file size alone, when the file also
holds the data.

THE DBASE III FILE STRUCTURE

The description of the dBASE file structure that follows serves two
important purposes:  First, it shows you how such a data file is
constructed using a real world example.  Second, this information allows
you to directly access dBASE files in programs of your own.  If you
presently write commercial software--or if you aspire to--being compatible
with the dBASE standard can give your product a definite advantage in the
marketplace.  Table 7-1 identifies each component of the dBASE file header.
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Offset  Contents
------  --------------------------------------------------

    1   dBASE version (3, or &H83 if there's a memo file)
    2   Year of last update
    3   Month of last update
    4   Day of last update
  5-8   Total number of records in the file (long integer)
 9-10   Number of bytes in the header (integer)
11-12   Length of records in the file (integer)
13-32   Reserved

   The remainder of the header holds the field definitions, built from a
   repeating group of 32-byte blocks structured as follows:

33-42   Field name, padded with CHR$(0) null bytes
   43   Always zero
   44   Field type (C, D, L, M, or N)
45-48   Reserved
   49   Field width
   50   Number of decimal places (Numeric fields only)
51-64   Reserved

Notes:

1. The end of the header is marked with a byte value of 13.
2. The possible field types at byte 44 are Character, Date, Yes/No, Memo,
and Numeric.

Table 7.1: The Structure of a dBASE III File Header
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To obtain any item of information from the header you will use the binary
form of GET #.  For example, to read the number of data records in the file
you would do this:

OPEN "CUST.DBF" FOR BINARY AS #1
GET #1, 5, NumRecords&
CLOSE #1

And to determine the length of each data record you will instead use this:

OPEN "CUST.DBF" FOR BINARY AS #1
GET #1, 1, RecordLength%
CLOSE #1
PRINT "The length of each record is "; RecordLength%

In the first example, GET # is told to seek to the fifth byte in the file
and read the four-byte long integer stored there.  The second example is
similar, except it seeks to the 11th byte in the file and reads the integer
record length field.  One potential limitation you should be aware of is
BASIC does not offer a byte-sized variable type.  Therefore, to read a byte
value such as the month you must create a one-character string, read the
byte with GET #, and finally use the ASC function to obtain its value:

Month$ = " "
GET #1, 3, Month$
PRINT "The month is "; ASC(Month$)

Likewise, you will use CHR$ to assign a new byte value prior to writing a
one-character string:

Month$ = CHR$(NewMonth%)
PUT #1, 3, Month$

With this information in hand, it is a simple matter to open a dBASE file,
and by reading the header determine everything your program needs to know
about the structure of the data in that file.  The simplest way to do this
is by defining a TYPE variable for the first portion of the header, and a
TYPE array to hold the information about each field.  Since both the record
and field header portions are each 32 bytes in length, you can open the
file for Random access.  A short program that does this is shown below.
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TYPE HeadInfo
  Version  AS STRING * 1
  Year     AS STRING * 1
  Month    AS STRING * 1
  Day      AS STRING * 1
  TRecs    AS LONG
  HLen     AS INTEGER
  RecLen   AS INTEGER
  Padded   AS STRING * 20
END TYPE

TYPE FieldInfo
  FName AS STRING * 10
  Junk1 AS STRING * 1
  FType AS STRING * 1
  Junk2 AS STRING * 4
  FLen  AS STRING * 1
  Dec   AS STRING * 1
  Junk3 AS STRING * 14
END TYPE

DIM Header AS HeadInfo

OPEN "CUST.DBF" FOR RANDOM AS #1 LEN = 32
GET #1, 1, Header
TFields% = (Header.HLen - 32) \ 32
REDIM FInfo(1 TO TFields%) AS FieldInfo

FOR X% = 2 TO TFields%
  GET #1, X%, FInfo(X%)
NEXT
CLOSE #1

DBASE FILE ACCESS TOOLS

The programs that follow are intended as a complete set of toolbox
subroutines that you can add to your own programs.  The first program
contains the core routines that do all of the work, and the remaining
programs illustrate their use in context.  Routines are provided to create,
open, and close dBASE files, as well as read and write data records.
Additional functions are provided to read the field information from the
header, and also determine if a record has been marked as deleted.
   The main file that contains the dBASE access routines is DBACCESS.BAS,
and several demonstration programs are included that show the use of these
routines in context.  In particular, DBEDIT.BAS exercises all of the
routines, and you should study that program very carefully.
   There are two other example programs that illustrate the use of the
dbAccess routines.  DBCREATE.BAS creates an empty dBASE file containing a
header with field information only, DBEDIT.BAS lets you browse, edit, and
add records to a file, and DBSTRUCT.BAS displays the structure of an
existing file.  There is also a program to pack a database file to remove
deleted records named, appropriately enough, DBPACK.BAS.
   When you examine these subroutines, you will notice that all of the
data--regardless of the field type--is stored as strings.  As you learned
in earlier chapters, storing data as strings instead of in their native
format usually bloats the file size, and always slows down access to the
field values.  This is but one of the fundamental limitations of the dBASE
file format.  Note that using strings alone is not the problem; rather, it
is storing the numeric values as ASCII data.
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'********** DBACCESS.BAS, module for access to DBF files

'Copyright (c) 1991 Ethan Winer

DEFINT A-Z

'$INCLUDE: 'dbf.bi'
'$INCLUDE: 'dbaccess.bi'

SUB CloseDBF (FileNum, TRecs&) STATIC

  Temp$ = PackDate$
  PUT #FileNum, 2, Temp$
  PUT #FileNum, 5, TRecs&
  CLOSE #FileNum

END SUB

SUB CreateDBF (FileName$, FieldArray() AS FieldStruc) STATIC

  TFields = UBOUND(FieldArray)
  HLen = TFields * 32 + 33
  Header$ = SPACE$(HLen + 1)
  Memo = 0

  FldBuf$ = STRING$(32, 0)
  ZeroStuff$ = FldBuf$
  FldOff = 33
  RecLen = 1

  FOR X = 1 TO TFields
    MID$(FldBuf$, 1) = FieldArray(X).FName
    MID$(FldBuf$, 12) = FieldArray(X).FType
    MID$(FldBuf$, 17) = CHR$(FieldArray(X).FLen)
    MID$(FldBuf$, 18) = CHR$(FieldArray(X).Dec)
    MID$(Header$, FldOff) = FldBuf$
    LSET FldBuf$ = ZeroStuff$
    FldOff = FldOff + 32
    IF FieldArray(X).FType = "M" THEN Memo = -1
    RecLen = RecLen + FieldArray(X).FLen
  NEXT

  IF Memo THEN Version = 131 ELSE Version = 3
  MID$(Header$, 1) = CHR$(Version)
  Today$ = DATE$
  Year = VAL(RIGHT$(Today$, 2))
  Day = VAL(MID$(Today$, 4, 2))
  Month = VAL(LEFT$(Today$, 2))

  MID$(Header$, 2) = PackDate$
  MID$(Header$, 5) = MKL$(0)
  MID$(Header$, 9) = MKI$(HLen)
  MID$(Header$, 11, 2) = MKI$(RecLen)
  MID$(Header$, FldOff) = CHR$(13)
  MID$(Header$, FldOff + 1) = CHR$(26)

  OPEN FileName$ FOR BINARY AS #1
  PUT #1, 1, Header$
  CLOSE #1
END SUB

FUNCTION Deleted% (Record$) STATIC
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  Deleted% = 0
  IF LEFT$(Record$, 1) = "*" THEN Deleted% = -1
END FUNCTION

FUNCTION GetField$ (Record$, FldNum, FldArray() AS FieldStruc) STATIC
  GetField$ = MID$(Record$, FldArray(FldNum).FOff, FldArray(FldNum).FLen)
END FUNCTION

FUNCTION GetFldNum% (FieldName$, FldArray() AS FieldStruc) STATIC
  FOR X = 1 TO UBOUND(FldArray)
    IF FldArray(X).FName = FieldName$ THEN
      GetFldNum% = X
      EXIT FUNCTION
    END IF
  NEXT
END FUNCTION

SUB GetRecord (FileNum, RecNum&, Record$, Header AS DBFHeadStruc) STATIC
  RecOff& = ((RecNum& - 1) * Header.RecLen) + Header.FirstRec
  GET FileNum, RecOff&, Record$
END SUB

SUB OpenDBF (FileNum, FileName$, Header AS DBFHeadStruc, FldArray() AS _
  FieldStruc) STATIC

  OPEN FileName$ FOR BINARY AS FileNum
  GET FileNum, 9, HLen
  Header.FirstRec = HLen + 1
  Buffer$ = SPACE$(HLen)

  GET FileNum, 1, Buffer$
  Header.Version = ASC(Buffer$)
  IF Header.Version = 131 THEN
    Header.Version = 3
    Header.Memo = -1
  ELSE
    Header.Memo = 0
  END IF

  Header.Year = ASC(MID$(Buffer$, 2, 1))
  Header.Month = ASC(MID$(Buffer$, 3, 1))
  Header.Day = ASC(MID$(Buffer$, 4, 1))
  Header.TRecs = CVL(MID$(Buffer$, 5, 4))
  Header.RecLen = CVI(MID$(Buffer$, 11, 2))
  Header.TFields = (HLen - 33) \ 32

  REDIM FldArray(1 TO Header.TFields) AS FieldStruc
  OffSet = 2
  BuffOff = 33
  Zero$ = CHR$(0)

  FOR X = 1 TO Header.TFields
    FTerm = INSTR(BuffOff, Buffer$, Zero$)
    FldArray(X).FName = MID$(Buffer$, BuffOff, FTerm - BuffOff)
    FldArray(X).FType = MID$(Buffer$, BuffOff + 11, 1)
    FldArray(X).FOff = OffSet
    FldArray(X).FLen = ASC(MID$(Buffer$, BuffOff + 16, 1))
    FldArray(X).Dec = ASC(MID$(Buffer$, BuffOff + 17, 1))
    OffSet = OffSet + FldArray(X).FLen
    BuffOff = BuffOff + 32
  NEXT
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END SUB

FUNCTION PackDate$ STATIC
  Today$ = DATE$
  Year = VAL(RIGHT$(Today$, 2))
  Day = VAL(MID$(Today$, 4, 2))
  Month = VAL(LEFT$(Today$, 2))
  PackDate$ = CHR$(Year) + CHR$(Month) + CHR$(Day)
END FUNCTION

FUNCTION Padded$ (Fld$, FLen) STATIC
  Temp$ = SPACE$(FLen)
  LSET Temp$ = Fld$
  Padded$ = Temp$
END FUNCTION

SUB SetField (Record$, FText$, FldNum, FldArray() AS FieldStruc) STATIC
  FText$ = Padded$(FText$, FldArray(FldNum).FLen)
  MID$(Record$, FldArray(FldNum).FOff, FldArray(FldNum).FLen) = FText$
END SUB

SUB SetRecord (FileNum, RecNum&, Record$, Header AS DBFHeadStruc) STATIC
  RecOff& = ((RecNum& - 1) * Header.RecLen) + Header.FirstRec
  PUT FileNum, RecOff&, Record$
END SUB

Each of the routines listed above performs a different useful service to
assist you in accessing dBASE files, and the following section describes
the operation and use of each routine.  Please understand that these
routines are intended to be loaded as a module, along with your own main
program.  To assist you, a file named DBACCESS.BI is provided, which
contains appropriate DECLARE statements for each routine.  You should
therefore include this file in your programs that use these routines.
   A second include file named DBF.BI is also provided, and it contains
TYPE definitions for the header and field information.  You may notice that
these definitions vary slightly from the actual format of a dBASE file.
For efficiency, the OpenDBF routine calculates and saves key information
about the file to use later.  As an example, the offset of the first
record's field information is needed by GetRecord and SetRecord.  Rather
than require those procedures to calculate the information repeatedly each
time, OpenDBF does it once and stores the result in the Header TYPE
variable.
   Similarly, the field definition header used by these routines does not
parallel exactly the format of the information in the file.  The modified
structures defined in DBF.BI are as follows:
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'********** DBF.BI - Record declarations for the dbAccess routines

TYPE DBFHeadStruc
  Version  AS INTEGER
  Memo     AS INTEGER
  Year     AS INTEGER
  Month    AS INTEGER
  Day      AS INTEGER
  FirstRec AS INTEGER
  TRecs    AS LONG
  RecLen   AS INTEGER
  TFields  AS INTEGER
END TYPE

TYPE FieldStruc
  FName AS STRING * 10
  FType AS STRING * 1
  FOff  AS INTEGER
  FLen  AS INTEGER
  Dec   AS INTEGER
END TYPE

CreateDBF

CreateDBF accepts the name of the file to create and a field definition
array, and then creates the header portion of a dBASE file based on the
field information in the array.  The file that is created has no data
records in it, but all of the header information is in place.  The calling
program must have dimensioned the field information TYPE array, and filled
it with appropriate information that describes the structure of the records
in the file.  The DBCREATE.BAS program shows an example of how to set up
and call CreateDBF.

OpenDBF And CloseDBF

OpenDBF is used to open a DBF file, and to make information about its
structure available to the calling program.  It fills a TYPE variable with
information from the data file header, and also fills the field definition
array with information about each field.  When you call it you will pass
a BASIC file number you want to be used for later access, the full name of
the file, a TYPE variable that receives the header information, and a TYPE
array.  The array is redimensioned within OpenDBF, and then filled with
information about each field in the file.
   CloseDBF is called when you want to close the file, and it is also
responsible for updating the date and number of records information in the
file header.

GetRecord And SetRecord

GetRecord and SetRecord retrieve and write individual records respectively.
The calling program must specify the file and record numbers, and also pass
a string that will receive the actual record data.  GetRecord assumes that
you have already created the string that is to receive data from the file.
A Header variable is also required, so GetRecord and SetRecord will know
the length of each record.  Both GetRecord and SetRecord require the file
to have already been opened using OpenDBF.
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GetField, GetFldNum, SetField, and Padded

These routines are used to retrieve and assign the actual field data within
a record string.  The dbAccess routines cannot use a TYPE variable to
define the records, since they must be able to accommodate any type of
file.  Therefore, the Record$ variable is created dynamically, and assigned
and read as necessary.  However, this also means that you may not refer to
the fields by name as would be possible with a TYPE variable.
   GetField returns the contents of the specified field, based on the field
number; the complementary function GetFldName returns the field number
based on the field name.  SetField is the opposite of GetField, and it
assigns a field into the Record$ variable.  Padded$ serves as an assistant
to SetField, and it ensures that the field contents are padded to the
correct length with trailing blanks.

Deleted

Deleted is an integer function that returns a value of -1 to indicate that
the record string passed to it holds a deleted record, or 0 if the record
is not deleted.  The very first byte in each dBASE record is reserved just
to indicate if the record has been deleted.  An asterisk (*) in that
position means the record is deleted; otherwise the field is blank.  Using
a function for this purpose lets you directly test a record using code such
as IF Deleted%(Record$) THEN or IF NOT Deleted%(Record$) THEN.
   Marking deleted records is a common technique in database programming,
because the amount of overhead needed to actually remove a record from a
file is hardly ever justified.  The lost space is recovered in one of two
ways: the most common is to copy the data from one file to another.
Another, more sophisticated method instead keeps track of which records
have been deleted.  Then as new data is added, it is stored in the space
that was marked as abandoned, thus overwriting the old data.  The
DBPACK.BAS program described later in this chapter uses the copy method,
but uses a trick to avoid having to create a second file.

DBASE UTILITY PROGRAMS

Several programs are presented to show the various dbAccess routines in
context, and each is described individually below.  DBSTRUCT.BAS displays
the header structure of any dBASE file, DBCREATE.BAS creates an empty
database file with header information only, and DBEDIT.BAS lets you browse,
edit, and add records to an existing data file.  These programs are simple
enough to understand, even without excessive comments.  However, highlights
of each program's operation is given.

DBSTRUCT.BAS

DBSTRUCT.BAS begins by including the DBF.BI file which defines the Header
TYPE variable and the FldStruc() TYPE array.  A short DEF FN-style function
is used to simplify formatting when the file date is printed later in the
program.  Once you enter the name of the dBASE file to be displayed, a call
is made to OpenDBF.  OpenDBF accepts the incoming file number and name, and
returns information about the file in Header and FldStruc().  The remainder
of the program simply reports that information on the display screen.



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 219   -

'********* DBSTRUCT.BAS, displays a dBASE file's structure

DEFINT A-Z
'$INCLUDE: 'dbf.bi'
'$INCLUDE: 'dbaccess.bi'

DEF FnTrim$ (DateInfo) = LTRIM$(STR$(DateInfo))
DIM Header AS DBFHeadStruc
REDIM FldStruc(1 TO 1) AS FieldStruc

CLS
LINE INPUT "Enter the DBF file name: ", DBFName$
IF INSTR(DBFName$, ".") = 0 THEN
  DBFName$ = DBFName$ + ".DBF"
END IF

CALL OpenDBF(1, DBFName$, Header, FldStruc())
CLOSE #1

PRINT "Structure of " + DBFName$
PRINT

PRINT "Version:     "; Header.Version
PRINT "Last Update: "; FnTrim$(Header.Month);
PRINT "/" + FnTrim$(Header.Day);
PRINT "/" + FnTrim$(Header.Year)
PRINT "# Records:   "; Header.TRecs
PRINT "Rec Length:  "; Header.RecLen
PRINT "# Fields:    "; Header.TFields
PRINT
PRINT "Name", "Type", "Offset", "Length", "# Decimals"
PRINT "----", "----", "------", "------", "----------"

FOR X = 1 TO Header.TFields
  PRINT FldStruc(X).FName,
  PRINT FldStruc(X).FType,
  PRINT FldStruc(X).FOff,
  PRINT FldStruc(X).FLen,
  PRINT FldStruc(X).Dec
NEXT
END
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DBCREATE.BAS

The DBCREATE.BAS program accepts the name of a data file to create, and
then asks how many fields it is to contain.  Once the number of fields is
known, a TYPE array is dimensioned to hold the information, and you are
prompted for each field's characteristics one by one.  As you can see by
examining the program source listing, the information you enter is
validated to prevent errors such as illegal field lengths, more decimal
digits than the field can hold, and so forth.
   As each field is defined in the main FOR/NEXT loop, the information you
enter is stored directly into the FldStruc TYPE array.  At the end of the
loop, CreateDBF is called to create an empty .DBF data file.
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'********** DBCREATE.BAS, creates a DBF file

DEFINT A-Z

'$INCLUDE: 'dbf.bi'
'$INCLUDE: 'dbaccess.bi'

CLS
LOCATE , , 1

LINE INPUT "Enter DBF name: "; DBFName$
IF INSTR(DBFName$, ".") = 0 THEN
  DBFName$ = DBFName$ + ".DBF"
END IF

DO
  INPUT "Enter number of fields"; TFields
  IF TFields <= 128 THEN EXIT DO
  PRINT "Only 128 fields are allowed"
LOOP

REDIM FldStruc(1 TO TFields) AS FieldStruc

FOR X = 1 TO TFields
  CLS
  DO
    PRINT "Field #"; X
    LINE INPUT "Enter field name: ", Temp$
    IF LEN(Temp$) <= 10 THEN EXIT DO
    PRINT "Field names are limited to 10 characters"
  LOOP
  FldStruc(X).FName = Temp$

  PRINT "Enter field type (Char, Date, Logical, Memo, ";
  PRINT "Numeric (C,D,L,M,N): ";
  DO
    Temp$ = UCASE$(INKEY$)
  LOOP UNTIL INSTR(" CDLMN", Temp$) > 1
  PRINT
  FldStruc(X).FType = Temp$
  FldType = ASC(Temp$)

  SELECT CASE FldType
    CASE 67                     'character
      DO
        INPUT "Enter field length: ", FldStruc(X).FLen
        IF FldStruc(X).FLen <= 255 THEN EXIT DO
        PRINT "Character field limited to 255 characters"
      LOOP

    CASE 78                     'numeric
      DO
        INPUT "Enter field length: ", FldStruc(X).FLen
        IF FldStruc(X).FLen <= 19 THEN EXIT DO
        PRINT "Numeric field limited to 19 characters"
      LOOP
      DO
        INPUT "Number of decimal places: ", FldStruc(X).Dec
        IF FldStruc(X).Dec < FldStruc(X).FLen THEN EXIT DO
        PRINT "Too many decimal places"
      LOOP

    CASE 76                     'logical
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        FldStruc(X).FLen = 1

    CASE 68                     'date
        FldStruc(X).FLen = 8

    CASE 77
        FldStruc(X).FLen = 10

    END SELECT
NEXT

CALL CreateDBF(DBFName$, FldStruc())
PRINT DBFName$; " created"
END

DBEDIT.BAS

DBEDIT.BAS is the main demonstration program for the dbAccess subroutines.
It prompts you for the name of the dBASE file to work with, and then calls
OpenFile to open it.  Once the file has been opened you may view records
forward and backward, edit existing records, add new records, and delete
and undelete records.  Each of these operations is handled by a separate
CASE block, making the code easy to understand.
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'********** DBEDIT.BAS, edits a record in a DBF file

DEFINT A-Z
'$INCLUDE: 'dbf.bi'
'$INCLUDE: 'dbaccess.bi'

DIM Header AS DBFHeadStruc
REDIM FldStruc(1 TO 1) AS FieldStruc

CLS
LINE INPUT "Enter .DBF file name: ", DBFName$
IF INSTR(DBFName$, ".") = 0 THEN
  DBFName$ = DBFName$ + ".DBF"
END IF

CALL OpenDBF(1, DBFName$, Header, FldStruc())

Record$ = SPACE$(Header.RecLen)
RecNum& = 1
RecChanged = 0

GOSUB GetTheRecord

DO
  PRINT "What do you want to do (Next, Prior, Edit, ";
  PRINT "Delete, Undelete, Add, Quit)? ";
  SELECT CASE UCASE$(INPUT$(1))
    CASE "N"
      IF RecChanged THEN
        CALL SetRecord(1, RecNum&, Record$, Header)
      END IF
      RecNum& = RecNum& + 1
      IF RecNum& > Header.TRecs THEN
        RecNum& = 1
      END IF
      GOSUB GetTheRecord

    CASE "P"
      IF RecChanged THEN
        CALL SetRecord(1, RecNum&, Record$, Header)
      END IF
      RecNum& = RecNum& - 1
      IF RecNum& < 1 THEN
        RecNum& = Header.TRecs
      END IF
      GOSUB GetTheRecord

    CASE "E"
Edit:
      PRINT
      INPUT "Enter the field number:"; Fld
      DO
        PRINT "New "; FldStruc(Fld).FName;
        INPUT Text$
        IF LEN(Text$) <= FldStruc(Fld).FLen THEN EXIT DO
        PRINT "Too long, only "; FldStruc(Fld).FLen
      LOOP
      CALL SetField(Record$, Text$, Fld, FldStruc())
      RecChanged = -1
      GOSUB DisplayRec

    CASE "D"
      MID$(Record$, 1) = "*"
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      RecChanged = -1
      GOSUB DisplayRec

    CASE "U"
      MID$(Record$, 1, 1) = " "
      RecChanged = -1
      GOSUB DisplayRec

    CASE "A"
      Header.TRecs = Header.TRecs + 1
      RecNum& = Header.TRecs
      LSET Record$ = ""
      GOTO Edit

    CASE ELSE
      EXIT DO
  END SELECT
LOOP

IF RecChanged THEN
  CALL SetRecord(1, RecNum&, Record$, Header)
END IF

CALL CloseDBF(1, Header.TRecs)
END

GetTheRecord:
  CALL GetRecord(1, RecNum&, Record$, Header)

DisplayRec:
  CLS
  PRINT "Record "; RecNum&; " of "; Header.TRecs;
  IF Deleted%(Record$) THEN PRINT " (Deleted)";

  PRINT
  PRINT
  FOR Fld = 1 TO Header.TFields
    FldText$ = GetField$(Record$, Fld, FldStruc())
    PRINT FldStruc(Fld).FName, FldText$
  NEXT
  PRINT

RETURN
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DBPACK.BAS

DBPACK.BAS is the final dBASE utility, and it shows how to write an
optimized packing program.  Since there is no reasonable way to actually
erase a record from the middle of a file, dBASE (and indeed, most database
programs) reserve a byte in each record solely to show if it has been
deleted.  The DBPACK.BAS utility program is intended to be run
periodically, to actually remove the deleted records.
   Most programs perform this maintenance by creating a new file, copying
only the valid records to that file, and then deleting the original data
file.  In fact, this is what dBASE does.  The approach taken by DBPACK is
much more intelligent in that it works through the file copying good
records on top of deleted ones.  When all that remains at the end of the
file is data that has been deleted or abandoned copies of records, the file
is truncated to a new, shorter length.  The primary advantage of this
approach is that it saves disk space.  This is superior to the copy method
that of course requires you to have enough free space for both the original
data and the copy.  Because the actual data file is manipulated instead of
a copy, be sure to have a recent backup in case a power failure occurs
during the packing process.
   DBPACK.BAS is fairly quick, but it could be improved if records were
processed in groups, rather than one at a time.  This would allow more of
the swapping to take place in memory, rather than on the disk.  However,
DBPACK was kept simple on purpose, to make its operation clearer.
   There is no BASIC or DOS command that specifically truncates a file, so
this program uses a little-known trick.  If a program calls DOS telling it
to write zero bytes to a file, DOS truncates the file at the current seek
location.  Since BASIC does not allow you to write zero bytes, CALL
Interrupt must be used to perform the DOS call.  Note that you can also use
this technique to extend a file beyond its current length.  This will be
described in more detail in Chapter 11, which describes using CALL
Interrupt to access DOS and BIOS services.
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'********* DBPACK.BAS, removes deleted records from a file

'NOTE: Please make a copy of your DBF file before running this program.
'      Unlike dBASE that works with a copy of the data file, this program
'      packs, swaps records, and then truncates the original data file.

DEFINT A-Z
'$INCLUDE: 'dbf.bi'
'$INCLUDE: 'dbaccess.bi'
'$INCLUDE: 'regtype.bi'

DIM Registers AS RegType
DIM Header AS DBFHeadStruc
REDIM FldStruc(1 TO 1) AS FieldStruc

LINE INPUT "Enter the dBASE file name: ", DBFName$
IF INSTR(DBFName$, ".") = 0 THEN
  DBFName$ = DBFName$ + ".DBF"
END IF

CALL OpenDBF(1, DBFName$, Header, FldStruc())

Record$ = SPACE$(Header.RecLen)
GoodRecs& = 0

FOR Rec& = 1 TO Header.TRecs
  CALL GetRecord(1, Rec&, Record$, Header)
  IF NOT Deleted%(Record$) THEN
    CALL SetRecord(1, GoodRecs& + 1, Record$, Header)
    GoodRecs& = GoodRecs& + 1
  END IF
NEXT

'This trick truncates the file
RecOff& = (GoodRecs& * Header.RecLen) + Header.FirstRec
Eof$ = CHR$(26)
PUT #1, RecOff&, Eof$
SEEK #1, RecOff& + 1

Registers.AX = &H4000          'service to write to a file
Registers.BX = FILEATTR(1, 2)  'get the DOS handle
Registers.CX = 0               'write 0 bytes to truncate
CALL Interrupt(&H21, Registers, Registers)
CALL CloseDBF(1, GoodRecs&)

PRINT "All of the deleted records were removed from ";
PRINT DBFName$
PRINT GoodRecs&; "remaining records"
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LIMITATIONS OF THE DBASE III STRUCTURE

The primary limitation of the DBF file format is it does not allow complex
data types.  With support for only five basic field types--Character, Date,
Logical, Memo, and Numeric--it is very limited when compared to what BASIC
allows.  However, you can easily add new data types to the programs you
write using extensions to the standard field format.  Since a byte is used
to store the field type in the dBASE file header, as many as 256 different
types are possible (0 through 255).  You would simply define additional
code numbers for field types such as Money or Time, or perhaps other
Logical field types such as M and F (Male and Female).
   Another useful enhancement would be to store numeric values in their
native fixed-length format, instead of using the much slower ASCII format
that dBASE uses.  You could also modify the header structure itself, to
improve the performance of your programs.  Since BASIC does not offer a
single byte numeric data type, it would make sense to replace the STRING
* 1 variables with integers.  This would eliminate repeated use of ASC and
CHR$ when reading and assigning single byte strings.  You could also change
the date storage method to pack the date fields to three characters--one
for the year, one for the month, and another for the day.  Of course, if
you do change the header or data format, then your files will no longer be
compatible with the dBASE standard.

INDEXING TECHNIQUES
===================

At some point, the number of records in a database file will grow to the
point where it takes longer and longer to locate information in the file.
This is where indexing can help.  Some of the principles of indexed file
access were already described in Chapter 5, in the section that listed the
BASIC PDS ISAM compiler switches.  In this section I will present more
details on how indexing works, and also show some simple methods you can
create yourself.  Although there are nearly as many indexing systems as
there are programmers, one of the most common is the sorted list.

SORTED LISTS

A sorted list is simply a parallel TYPE array that holds the key field and
a record number that corresponds to the data in the main file.  By
maintaining the array in sorted order based on the key field information,
the entire database may be accessed in sorted, rather than sequential
order.  A typical TYPE array used as a sorted list for indexing would look
like this:

TYPE IndexType
  LastName AS STRING * 15
  RecNum   AS LONG
END TYPE
REDIM IArray(1 TO TotalRecords) AS IndexType

Assuming each record in the data file has a corresponding element in the
TYPE array, locating a given record is as simple as searching the array for
a match.  Since array searches in memory are much faster than reading a
disk file, this provides an enormous performance boost when compared to
reading each record sequentially.  To conserve memory and also further
improve searching speed, you might use a shorter string portion for the
last name.
   The following short program shows how such an index array could be
sorted.
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FOR X% = MaxEls TO 1 STEP -1
  FOR Y% = 1 TO X% - 1
    IF IArray(Y%).LastName > IArray(Y% + 1).LastName THEN
      SWAP IArray(Y%), IArray(Y% + 1)
    END IF
  NEXT
NEXT

Here, the sorting is based on the last name portion of the TYPE elements.
Once the array is sorted, the data file may be accessed in order by walking
through the record numbers contained in the RecNum portion of each element:

DIM RecordVar AS IndexType
FOR X% = 1 TO MaxEls
  GET #1, IArray(X%).RecNum, RecordVar
  PRINT RecordVar.LastName
NEXT

Likewise, to find a given name you would search the index array based on
the last name, and then use the record number from the same element once
it is found:

Search$ = "Cramer"
FOR X% = 1 TO MaxEls
  IF IArray(X%).LastName = Search$ THEN
    Record% = IArray(X%).RecNum
    GET #1, Record%, RecordVar
    PRINT "Found "; Search$; " at record number"; Record%
    EXIT FOR
  END IF
NEXT

Chapter 8 will discuss sorting and searching in detail using more
sophisticated algorithms than those shown here, and you would certainly
want to use those for your program.  However, one simple improvement you
could make is to reduce the number of characters in each index entry.  For
example, you could keep only the first four characters of each last name.
Although this might seem to cause a problem--searching for Jackson would
also find Jack--you would have the same problem if there were two Jacksons.
The solution, therefore, is to retrieve the entire record if a partial
match is found, and compare the complete information in the record with the
search criteria.
   Inserting an entry into a sorted list requires searching for the first
entry that is greater than or equal to the one you wish to insert, moving
the rest of the entries down one notch and inserting the new entry.  The
code for such a process might look something like this:

FOR X% = 2 TO NumRecs%
  IF Item.LastName <= Array(X%).LastName THEN
    IF Item.LastName >= Array(X% - 1).LastName THEN
      FOR Y% = NumRecs% TO X% STEP -1
        SWAP Array(Y%), Array(Y% + 1)
      NEXT
      Array(X%) = Item
      EXIT FOR
    END IF
  END IF
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NEXT

Understand that this code is somewhat simplified.  For example, it will
not correctly handle inserting an element before the first existing entry
or after the last.  Equally important, unless you are dealing with less
than a few hundred entries, this code will be extremely slow.  The loop
that inserts an element by swapping all of the elements that lie beyond the
insertion point will never be as efficient as a dedicated subroutine
written in assembly language.  Commercial toolbox products such as Crescent
Software's QuickPak Professional include memory moving routines that are
much faster than one written using BASIC.
   Finally, you must have dimensioned the array to at least one more
element than there are records, to accommodate the inserted element.  Many
programs that use in-memory arrays for indexing dimension the arrays to
several hundred extra elements to allow new data to be entered during the
course of the session.  Since BASIC 7.1 offers the REDIM PRESERVE command,
that too could be used to extend an array as new data is added.

EXPRESSION EVALUATION

Expression evaluation, in the context of data management, is the process
of evaluating a record on the basis of some formula.  Its uses include the
creation of index keys, reports, and selection criteria.  This is where the
application of independent file structures such as the dBASE example shows
a tremendous advantage.  For example, if the user wants to be able to view
the file sorted first by zip code and then by last name, some means of
performing a multi-key sort is required.
   Another example of expression evaluation is when multiple conditions
using AND and OR logic are needed.  You may want to select only those
records where the balance due is greater than $100 *and* the date of last
payment is more than 30 days prior to the current date.  Admittedly,
writing an expression parser is not trivial; however, the point is that
data-driven programming is much more suitable than code-driven programming
in this case.
   Without some sort of look-up table in which you can find the field names
and byte offsets, you are going to have a huge number of SELECT CASE
statements, none of which are reusable in another application.  Indeed,
one of the most valuable features of AJS Publishing's db/LIB add-on
database library is the expression evaluator it includes.  This routine
lets you maintain the data structure in a file, and the same code can be
used to process all file search operations.

RELATIONAL DATABASES
====================

Most programmers are familiar with traditional random access files, where
a fixed amount of space is set aside in each record to hold a fixed amount
of information.  For very simple applications this method is sensible, and
allows for fast access to each record provided you know the record number.
As you learned earlier in this chapter, indexing systems can eliminate the
need to deal with record numbers, instead letting you locate records based
on the information they contain.  Relational databases take this concept
one step further, and let you locate records in one file based on
information contained in another file.  As you will see, this lets you
create applications that are much more powerful than those created using
standard file handling methods.
   Imagine you are responsible for creating an order entry program for an
auto parts store.  At the minimum, three sets of information must be
retained in such a system: the name, address, and phone number of each
customer; a description of each item that is stocked and its price; and the
order detail for each individual sale.  A simplistic approach would be to
define the records in a single database with fields to hold the customer
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information and the products purchased, with a new record used for each
transaction.  A TYPE definition for these records might look like this:
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TYPE RecordType
  InvoiceNum AS INTEGER
  CustName   AS STRING * 32
  CustStreet AS STRING * 32
  CustCity   AS STRING * 15
  CustState  AS STRING * 2
  CustZip    AS STRING * 5
  CustPhone  AS STRING * 10
  Item1Desc  AS STRING * 15
  Item1Price AS SINGLE
  Quantity1  AS INTEGER
  Item2Desc  AS STRING * 15
  Item2Price AS SINGLE
  Quantity2  AS INTEGER
  Item3Desc  AS STRING * 15
  Item3Price AS SINGLE
  Quantity3  AS INTEGER
  Item4Desc  AS STRING * 15
  Item4Price AS SINGLE
  Quantity4  AS INTEGER
  TaxPercent AS SINGLE
  InvoiceTot AS SINGLE
END TYPE

As sensible as this may seem at first glance, there are a number of
problems with this record structure.  The primary limitation is that each
record can hold only four purchase items.  How could the sales clerk
process an order if someone wanted to buy five items?  While room could be
set aside for ten or more items, that would waste disk space for sales of
fewer items.  Worse, that still doesn't solve the inevitable situation when
someone needs to buy eleven or more items at one time.
   Another important problem is that the customer name and address will be
repeated for each sale, further wasting space when the same customer comes
back a week later.  Yet another problem is that the sales personnel are
responsible for knowing all of the current prices for each item.  If they
have to look up the price in a printout each time, much of the power and
appeal of a computerized system is lost.  Solving these and similar
problems is therefore the purpose of a relational database.
   In a relational database, three separate files would be employed.  One
file will hold only the customer names and addresses, a second will hold
just the item information, and a third is used to store the details of each
invoice.  In order to bind the three files together, a unique number must
be assigned in each record.  This is shown as a list of field names in
Figure 7-1 below.
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          CUSTOMER.DAT                   PRODUCTS.DAT
   +-------------------------+    +------------------------+
+--+-> Customer Number       ¦    ¦   Product Number <-----+-+
¦  ¦   Customer Name         ¦    ¦   Product Name         ¦ ¦
¦  ¦   Customer Address      ¦    ¦   Product Price        ¦ ¦
¦  ¦   Customer Zip          ¦    ¦   Quantity on Hand     ¦ ¦
¦  ¦   Customer Phone        ¦    +------------------------+ ¦
¦  ¦   Available Credit      ¦                               ¦
¦  +-------------------------+                               ¦
¦                                                            ¦
¦                                                            ¦
¦                         INVOICE.DAT                        ¦
¦               +----------------------------+               ¦
+---------------+-> Customer Number          ¦               ¦
                ¦   Invoice Number           ¦               ¦
                ¦   Product Number <---------+---------------+
                ¦   Product Quantity         ¦
                ¦   Product Price            ¦
                ¦   Tax Percent              ¦
                +----------------------------+

Figure 7-1: How a relational database ties related data in separate files
using a unique value in each record.

Now, when Bob Jones goes into the store to buy a radiator cap and a case
of motor oil, the clerk can enter the names Jones and see if Bob is already
a customer.  If so, the order entry program will retrieve Bob's full name
and address from the customer file and display it on the screen.  Otherwise
it would prompt the clerk to enter Bob's name and address.  When Bob tells
the clerk what he wants to buy, the clerk would enter the part number or
name, and the program will automatically look up the price in the products
file.  (A smart program would even subtract the number of radiator caps
from the "Quantity on Hand" field, so a report run at the end of each day
can identify items that need to be ordered.)  Once the sale is finalized,
two new records will be written to the invoice file--one for the radiator
cap and one for the motor oil.
   Each invoice record would store Bob's customer number, a program-
generated sequential invoice number, the product number, the quantity of
this product sold, and the unit price.  There's no need to store the
subtotal, since that information could be recreated at any time from the
quantity and unit price fields.  If sales tax is charged, that field could
hold just the rate.  Again the actual tax amount could be computed at any
time.  The beauty of this organization is that there is never a need to
store duplicated information, and thus there is no wasted disk space.
   The relational aspect of this system becomes clear when it is time to
produce a report.  To print an invoice, the program searches the invoice
file for every record with the unique invoice number.  From the customer
number field the customer's name and address are available, by searching
for a match between the customer number in the invoice record and that same
unique number in the customer file.  And from the part number field the
part name can be retrieved, based on finding the same part number in the
products file.  Thus, the term relational is derived from the ability to
relate information in one file to information in a different file, based
on unique identifying values.  In this case, those values are the invoice
number, the customer number, and the part number.

SQL: THE BLACK BOX

An important current trend in data processing is the use of Structured
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Query Language (SQL).  The appeal of SQL is that it eliminates explicit
coding in a conventional high-level language such as BASIC.  Instead, SQL
is an even higher-level language that performs most of the low-level
details for you.  SQL is based on passing SQL commands--called requests--
as strings, which are evaluated by the SQL engine.  The short example
program below shows some typical SQL commands in context.

select lastname, firstname, accountcode, phone
from customers
where unpaid > credit * .75
  and today - duedate > 30
order by accountcode

When these commands are sent to the SQL server, the server responds by
filling in an array with the resultant data.  The beauty of SQL, therefore,
is that it eliminates the SELECT CASE statements that you would have to
write, and that would be specific to a given data file.  In SQL, the data
fields are accessed by name instead of by numeric offsets.  The SQL program
does not have to specify which data is double precision, and which is text,
and so forth.  Rather, all that is needed is the name of the data being
reported on, the selection criteria, and the order in which the data is to
be returned.
   This program asks to report on the lastname, firstname, accountcode, and
phone fields of the data set (file) named customers.  It then specifies
that only those customers who owe more than 75 percent of their available
credit and are more than 30 days overdue should be listed.  Finally, the
customers are to be listed in order based on their customer account code
number.
   As a further example of the power of the SQL language, imagine you have
written an application to manage a publishing business.  In this
hypothetical situation, three of the tables in your database are Stores,
Titles, and Sales, which hold the names of each retail store, the book
titles offered for sale, and the details of each sale.
   Now, consider the problem of producing a report showing the total sales
in dollars, with individual subtotals for each store.  This would first
require you generate a list of stores from the Stores table.  You would
then have to examine each sale in the Sales table, and each entry there
would refer to a title which must be looked up in the Titles file to
determine the price.  You would then multiply this price by the quantity
and add that to a running total being kept for each store, perhaps storing
the result in a multi-dimensional array.
   As you can see, this is potentially a lot of coding if you attempt to
tackle the job using BASIC.  While the sequence of SQL commands necessary
to retrieve this information is not trivial either, it is certainly less
work than writing an equivalent report in BASIC.  Here are the SQL commands
that perform the store sales report described above:

select stores.storename, sum(sales.qty * titles.price)
from stores, titles, sales
where stores.store_id = sales.store_id
  and titles.title_id = sales.title_id
group by storename

As you can see from these short examples, SQL is a simple and intuitive
language, and it may well be worth your effort to learn if you specialize
in database programming or plan to.  One excellent product you may wish to
become familiar with is DataEase, a popular PC database product.  One of
the earliest adopters of SQL-style methods, DataEase lets even the novice
user create sophisticated data entry forms and reports in a very short
time.  Contrast that with procedural languages such as that used by dBASE
which require as much effort as programming in BASIC.
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   There are several good books that go into far greater detail about SQL
than can possibly be offered here.  One I recommend is "The Practical SQL
Handbook: Using Structured Query Language" by Emerson, Darnovsky, and
Bowman; Addison-Wesley Publishing Company; 1989.  This book is clearly
written, avoids the use of jargon, and contains numerous good explanations
of what SQL is all about without getting bogged down in esoteric details.

PROGRAMMING FOR A NETWORK
=========================

Although network file access has been supported since QuickBASIC version
1.0, many programmers do not fully understand how to use this important
feature.  However, the concepts are simple once you know the commands.  In
the earlier auto parts store example, it was assumed that only one computer
would be used to enter sales information.  But when there are many sales
people entering information all at once, some means is needed to let each
computer access simultaneously a single group of files from a remote file
server.
   In this section I will discuss two methods for sharing files--one which
is supported by BASIC, and the other supported only indirectly.  I will
also discuss methods for protecting data across the network and detecting
which type of network is being used.

FILE SHARING AND LOCKING

BASIC offers three commands to allow multiple programs to share files from
a central, remote computer: OPEN, LOCK, and UNLOCK.  Chapter 6 discussed
the OPEN command in great detail, but mentioned the various file sharing
options only briefly.  OPEN provides four variations that let you specify
what other processes have access to the file being opened.  For simplicity,
the discussions that follow assume the files are being opened for random
access; this is the most common access method when writing databases.  But
only very slight changes are needed to adapt this information for use with
binary file access as shown in the earlier dBASE examples.
   When you add SHARED to the list of OPEN arguments, you are telling the
operating system that any other program may also open the file while you
are using it.  [Without SHARED, another program that tries to open a file
you have opened will receive an "Access denied" error message.]  Once the
other programs have opened the file they may freely read from it or write
to it.  If you need to restrict what operations other programs may perform,
you would replace SHARED with either LOCK READ, LOCK WRITE, or LOCK READ
WRITE.  LOCK READ prevents other program from reading the file while you
have it open, although they could write to it.  Likewise, LOCK WRITE lets
another process read from the file but not write to it.  LOCK READ WRITE
of course prevents another program from either reading or writing the file.
   Because of these complications and limitations, you will most likely use
SHARED to allow full file sharing.  Then, the details of who writes what
and when can be handled by logic in your program, or by locking individual
records.
   Note that with most networks you cannot open a file for shared access,
unless you have previously loaded SHARE.EXE that comes with DOS 3.0 and
later versions.  SHARE.EXE is a TSR (terminate and stay resident) program
that manages *lock tables* for your machine.  These tables comprise a list
showing which portions of what files are currently locked.  A short utility
that reports if SHARE.EXE is installed is presented later in this chapter.
Some networks, however, require SHARE to be installed only on the computer
that is acting as the file server.

RECORD LOCKING

The most difficult problem you will encounter when writing a program that
runs on a network is arbitrating when each user will be allowed to read and
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write data.  Since more than one operator may call up a given record at the
same time, it is possible--even likely--that changes made by one person
will be overwritten later by another.  Imagine that two operators have just
called up the same customer record on their screens.  Further, one operator
has just changed the customer's address and the other has just changed the
phone number.  Then the first operator then saves the record with the new
address, but two seconds later the second operator saves the same record
with a new phone number.  In this case, the second disk write stores the
old address on top of the same record that was saved two seconds earlier!
   To prevent this from happening requires some type of file locking,
whereby the second operator is prevented from even loading the record; the
program instead gives them a message saying the record is already in use.
There are two primary ways to do this.  A *hard lock* is implemented using the
BASIC LOCK statement, and it causes the network operating system to deny
access to the record if the first program has locked it.  A *soft lock* is
similar, except it uses program logic that you design to determine if the
file is already in use.  Let's take a closer at each of these locking
methods.

Hard Locks

A hard lock is handled by the network software, and is controlled by the
BASIC LOCK and UNLOCK statements.  Hard locks may be specified for all or
just a part of a file.  When a program imposes a hard lock, all other
programs are prevented from either reading or writing that portion of the
file.  You may lock either one record or a range of records: LOCK #1, 3
locks record 3, and UNLOCK #1, 1 TO 10 unlocks records 1 through 10.  Files
that have been opened for binary access may also be locked, by specifying
a range of bytes instead of one or more record numbers.
   Because access to the specified record or range of records is denied to
all other applications, it is important to unlock the records as soon as
you are done with them.  A code fragment that shows how to manipulate a
record using hard locking would look like this:

OPEN "CUST.DAT" SHARED AS #1 LEN = RecordLength%
LOCK #1, RecNum%
GET #1, RecNum%, RecData

'allow the user to edit the record here

PUT #1, RecNum%, RecData
UNLOCK #1, RecNum%
CLOSE #1

There are several fundamental problems with hard locks you must be aware
of.  First, they prevent another application from even looking at the data
that is locked.  If a record is tied up for a long period of time, this
prevents another program from reporting on that data.  Another is that all
locks must be removed before the file is closed.  The BASIC PDS language
reference manual warns, "Be sure to remove all locks with an UNLOCK
statement before closing a file or terminating your program.  Failing to
remove locks produces unpredictable results."  [As in "Yo, get out the
Norton disk doctor".]
   Yet another problem is that each LOCK must have an exactly corresponding
UNLOCK statement.  It is therefore up to your program to know exactly which
record or range of records were locked earlier, and unlock the exact same
records later on.
   Finally, the last problem with hard locking is that it requires you to
use ON ERROR.  If someone else has locked a record and you attempt to read
it, BASIC will generate a "Permission denied" error that must be trapped.
Since there's no way for you to know ahead of time if a record is available
or locked you must be prepared to handle the inevitable errors.  Similarly,
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if you attempt to lock a record when it has already been locked by another
program, BASIC will create an error.  It is possible to lock and unlock
records behind BASIC's back using CALL Interrupt and detect those errors
manually; however, soft locks often provide an even better solution.

Soft Locks

A soft lock is implemented using logic you design, which has the decided
advantage of letting you customize that logic to your exact needs.  Most
programs implement a soft lock by reserving a single byte at the beginning
of each data record.  This is similar to the method dBASE uses to identify
deleted records.  Understand that the one important limitation of soft
locks is that all programs must agree on the method being used.  Unless you
wrote (or at least control) all of the other programs that are sharing the
file, soft locks will probably not be possible.
   One way to implement a soft lock is to use a special character--perhaps
the letter "L"--to indicate that a record is in use and may not be written
to.  Therefore, to lock a record you would first retrieve it, and then
check to be sure it isn't already locked.  If it is not currently locked
you would assign an "L" to the field reserved for that purpose, and finally
write the record back to disk.  Thereafter, any other program can tell that
the record is locked by simply examining that first byte.
   If someone tries to access a record that is locked, the program can
display the message "Record in use" or something along those lines.  A
simple enhancement to this would store a user identification number in the
lock field, rather than just a locked identifier.  This way the program
could also report who is using the record, and not just that it is locked.
This is shown in context below.
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GET #1, RecNum%, RecData$
Status$ = LEFT$(RecData$, 1)
SELECT CASE Status$
  CASE " "          'Record is okay to write, lock it now
    MID$(RecData$, 1) = CHR$(UserID)
    PUT #1, RecNum%, RecData$
    GOTO EditRecord
  CASE "*"          'Record is deleted, say so
    PRINT "Record number"; RecNum%; " is deleted."
    GOTO SelectAnotherRecord
  CASE ELSE         'Status$ contains the user number
    PRINT "Record already in use by user: "; Status$
    GOTO ReadOnly
END SELECT
  ...
  ...
SaveRecord:
  MID$ (RecData$, 1) = " "     'clear the lock status
  PUT #1, RecNum%, RecData$    'save the new data to disk

ADDITIONAL NETWORK CONSIDERATIONS

Many networks require that SHARE.EXE be installed before a file may be
opened for shared access, you can avoid runtime errors by being able to
determine ahead of time if this file is loaded.  The following short
function and example returns either -1 or 0 to indicate if SHARE is
currently loaded or not, respectively.
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DEFINT A-Z
DECLARE FUNCTION ShareThere% ()

'$INCLUDE: 'regtype.bi'

FUNCTION ShareThere% STATIC

  DIM Registers AS RegType
  ShareThere% = -1              'assume Share is loaded
  Registers.AX = &H1000         'service 10h
  CALL Interrupt(&H2F, Registers, Registers)
  AL = Registers.AX AND 255     'isolate the result in AL
  IF AL <> &HFF THEN ShareThere% = 0

END FUNCTION

Then, at the start of your program you would invoke ShareThere, and display
an error message if SHARE has not been run:

IF NOT ShareThere% () THEN
  PRINT "SHARE.EXE is not installed"
  END
END IF

OPERATING SYSTEM CONFIRMATION

Another feature of a well-behaved network application is to determine if
the correct network operating system is installed.  In most cases, unless
you are writing a commercial application for others to use, you'll already
know which operating system is expected.  However, it is possible to
determine with reasonable certainty what network software is currently
running.  The three functions that follow must be invoked in the order
shown, and they help you determine the brand of network your program is
running under.
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'********** NETCHECK.BAS, identifies the network brand

DEFINT A-Z
'$INCLUDE: 'regtype.bi'

DECLARE FUNCTION NWThere% ()
DECLARE FUNCTION BVThere% ()
DECLARE FUNCTION MSThere% ()
DIM SHARED Registers AS RegType

PRINT "I think the network is ";
IF NWThere% THEN
  PRINT "Novell Netware"
ELSEIF BVThere% THEN
  PRINT "Banyon Vines"
ELSEIF MSThere% THEN
  PRINT "Lantastic or other MS compatible"
ELSE
  PRINT "Something I don't recognize, or no network"
END IF
END

FUNCTION BVThere% STATIC
     BVThere% = -1
     Registers.AX = &HD701
     CALL Interrupt(&H2F, Registers, Registers)
     AL = Registers.AX AND 255
     IF AL <> 0 THEN BVThere% = 0
END FUNCTION

FUNCTION MSThere% STATIC
  MSThere% = -1
  Registers.AX = &HB800
  CALL Interrupt(&H2F, Registers, Registers)
  AL = Registers.AX AND 255
  IF AL = 0 THEN MSThere% = 0
END FUNCTION

FUNCTION NWThere% STATIC
  NWThere% = -1
  Registers.AX = &H7A00
  CALL Interrupt(&H2F, Registers, Registers)
  AL = Registers.AX AND 255
  IF AL <> &HFF THEN NWThere% = 0
END FUNCTION
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THIRD-PARTY DATABASE TOOLS
==========================

There are several tools on the market that can help you to write database
applications.  Although BASIC includes many of the primitive services
necessary for database programming, there are several limitations.  Four
such products are described briefly below, and all are written in assembly
language for fast performance and small code size.  You should contact the
vendors directly for more information on these products.

AJS Publishing's db/LIB

This is one of the most popular database add-on products for use with
BASIC, and rightfully so.  db/LIB comes in both single- and multi-user
versions, and handles all aspects of creating, updating, and indexing
relational database files.  db/LIB uses the dBASE III+ file format which
lets you access files from many different applications.  Besides its
database handling routines, db/LIB includes a sophisticated expression
evaluator that lets you select records based on multiple criteria.
Compared to many other database libraries, db/LIB is extremely fast, and
is also very easy to use.

db/LIB
AJS Publishing, Inc.
P.O. Box 83220
Los Angeles, CA  90083
213-215-9145

Novell's Btrieve

Btrieve has been around for a very long time, and like db/LIB it lets you
easily manipulate all aspects of a relational database.  Unlike db/LIB,
however, Btrieve can be used with nearly any programming language.  The
downside is that Btrieve is more complicated to use with BASIC.  Also, a
special TSR program must be run before your program can call its routines,
further complicating matters for your customers.  But Btrieve has a large
and loyal following, and if you write programs using more than one language
it is certainly a product to consider.

Btrieve
Novell, Inc.
122 East 1700 SOuth
Provo, UT  84606
801-429-7000

CDP Consultants' Index Manager

Index Manager is an interesting and unique product, because it handles
only the indexing portion of a database program.  Where most of the other
database add-ons take over all aspects of file creation and updating, Index
Manager lets you use any file format you want.  Each time a record is to
be retrieved based on a key field, a single call obtains the appropriate
record number.  Index Manager is available in single- and multi-user
versions, and is designed to work with compiled BASIC only.

Index Manager
CDP Consultants
1700 Circo del Cielo Drive
El Cajon, CA  92020
619-440-6482
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Ocelot

Ocelot is unique in that it uses SQL commands instead of the more
traditional approach used by the other products mentioned.  Ocelot supports
both standalone and networked access, and it is both fast and flexible.
Although Ocelot is meant for use with several different programming
languages, the company provides full support for programmers using BASIC.

Ocelot
Ocelot Computer Services
#1502, 10025-106 Street
Edmonton, Alberta
Canada  T5J 1G7
403-421-4187

SUMMARY
=======

In this chapter you learned the principles of data-driven programming, and
the advantages this method offers.  Unlike the TYPE definition method that
Microsoft recommends, storing record and field information as variables
allows your programs to access any type of data using the same set of
subroutines.
   You also learned how to create and access data using the popular dBASE
file format, which has the decided advantage of being compatible with a
large number of already successful commercial products.  A complete set of
dBASE file access tools was presented, which may be incorporated directly
into your own programs.
   This chapter also explained indexing methods, to help you quickly locate
information stored in your data files.  Besides providing fast access,
indexes help to maintain your data in sorted order, facilitating reports
on that data.  Relational databases were described in detail, using
examples to show the importance of maintaining related information in
separate files.  As long as a unique key value is stored in each record,
the information can be joined together at any time for reporting and
auditing purposes.  SQL was also mentioned, albeit briefly, to provide a
glimpse into the future direction that database programming is surely
heading.
   In the section about programming for a network, a comparison of the
various file sharing and locking methods was given.  You learned the
importance of preventing one program from overwriting data from another,
and examined specific code fragments showing two different locking
techniques.
   Finally, several third-party library products were mentioned.  In many
situations it is more important to get the job done than to write all of
the code yourself.  When the absolute fastest performance is necessary, a
well written add-on product can often be the best solution to a complex
data management problem.
   The next chapter discusses searching and sorting data both in memory and
on disk, and provides a logical extension to the information presented
here.  In particular, there are a number of ways that you can speed up
index searches using either smarter algorithms, assembly language, or both.

                                CHAPTER 8

                          SORTING AND SEARCHING
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Two fundamental operations required of many applications are searching and
sorting the data they operate on.  Many different types of data are
commonly sorted, such as customer names, payment due dates, or even a list
of file names displayed in a file selection menu.  If you are writing a
programmer's cross reference utility, you may need to sort a list of
variable names without regard to capitalization.  In some cases, you may
want to sort several pieces of related information based on the contents
of only one of them.  One example of that is a list of names and addresses
sorted in ascending zip code order.
   Searching is equally important; for example, to locate a customer name
in an array or disk file.  In some cases you may wish to search for a
complete match, while in others a partial match is needed.  If you are
searching a list of names for, say, Leonard, you probably would want to
ignore Leonardo.  But when searching a list of zip codes you may need to
locate all that begin with the digits 068.  There are many different ways
sorting and searching can be accomplished, and the subject is by no means
a simple one.
   Most programmers are familiar with the Bubble Sort, because it is the
simplest to understand.  Each adjacent pair of items is compared, and then
exchanged if they are out of order.  This process is repeated over and
over, until the entire list has been examined as many times as there are
items.  Unfortunately, these repeated comparisons make the Bubble Sort an
extremely poor performer.  Similarly, code to perform a linear search that
simply examines each item in succession for a match is easy to grasp, but
it will be painfully slow when there are many items.
   In this chapter you will learn how sophisticated algorithms that handle
these important programming chores operate.  You will also learn how to
sort data on more than one key.  Often, it is not sufficient to merely sort
a list of customers by their last name.  For example, you may be expected
to sort first by last name, then by first name, and finally by balance due.
That is, all of the last names would first be sorted.  Then within all of
the Smiths you would sort again by first name, and for all of the John
Smiths sort that subgroup based on how much money is owed.
   For completeness I will start each section by introducing sorting and
searching methods that are easy to understand, and then progress to the
more complex algorithms that are much more effective.  Specifically, I will
show the Quick Sort and Binary Search algorithms.  When there are many
thousands of data items, a good algorithm can make the difference between
a sort routine that takes ten minutes to complete, and one that needs only
a few seconds.
   Finally, I will discuss both BASIC and assembly language sort routines.
As important as the right algorithm is for good performance, an assembly
language implementation will be even faster.  Chapter 12 describes how
assembly language routines are written and how they work, and in this
chapter I will merely show how to use the routines included with this book.

SORTING FUNDAMENTALS
====================

Although there are many different ways to sort an array, the simplest
sorting algorithm is the Bubble Sort.  The name Bubble is used because a
FOR/NEXT loop repeatedly examines each adjacent pair of elements in the
array, and those that have higher values rise to the top like bubbles in
a bathtub.  The most common type of sort is ascending, which means that "A"
comes before "B", which comes before "C", and so forth.  Figure 8-1 shows
how the name Zorba ascends to the top of a five-item list of first names.
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Initial array contents:

  Element 4    Kathy
  Element 3    Barbara
  Element 2    Cathy
  Element 1    Zorba <

      After 1 pass:

        Element 4    Kathy
        Element 3    Barbara
        Element 2    Zorba <
        Element 1    Cathy

            After 2 passes:

              Element 4    Kathy
              Element 3    Zorba <
              Element 2    Barbara
              Element 1    Cathy

                After 3 passes:

                  Element 4    Zorba <
                  Element 3    Kathy
                  Element 2    Barbara
                  Element 1    Cathy

Figure 8.1: Data ascending a list during a bubble sort.

The Bubble Sort routine that follows uses a FOR/NEXT loop to repeatedly
examine an array and exchange elements as necessary, until all of the items
are in the correct order.
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DEFINT A-Z
DECLARE SUB BubbleSort (Array$())

CONST NumItems% = 20
CONST False% = 0
CONST True% = -1

DIM Array$(1 TO NumItems%)
FOR X = 1 TO NumItems%
  READ Array$(X)
NEXT

CALL BubbleSort(Array$())

CLS
FOR X = 1 TO NumItems%
  PRINT Array$(X)
NEXT

DATA Zorba, Cathy, Barbara, Kathy, Josephine
DATA Joseph, Joe, Peter, Arnold, Glen
DATA Ralph, Elli, Lucky, Rocky, Louis
DATA Paula, Paul, Mary Lou, Marilyn, Keith
END

SUB BubbleSort (Array$()) STATIC

DO
  OutOfOrder = False%                 'assume it's sorted
  FOR X = 1 TO UBOUND(Array$) - 1
    IF Array$(X) > Array$(X + 1) THEN
      SWAP Array$(X), Array$(X + 1)   'if we had to swap
      OutOfOrder = True%              'we may not be done
    END IF
  NEXT
LOOP WHILE OutOfOrder

END SUB
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This routine is simple enough to be self-explanatory, and only a few things
warrant discussing.  One is the OutOfOrder flag variable.  When the array
is nearly sorted to begin with, fewer passes through the loop are needed.
The OutOfOrder variable determines when no more passes are necessary.  It
is cleared at the start of each loop, and set each time two elements are
exchanged.  If, after examining all of the elements in one pass no
exchanges were required, then the sorting is done and there's no need for
the DO loop to continue.
   The other item worth mentioning is that the FOR/NEXT loop is set to
consider one element less than the array actually holds.  This is necessary
because each element is compared to the one above it.  If the last element
were included in the loop, then BASIC would issue a "Subscript out of
range" error on the statement that examines Array$(X + 1).
   There are a number of features you can add to this Bubble Sort routine.
For example, you could sort without regard to capitalization.  In that case
"adams" would come before "BAKER", even though the lowercase letter "a" has
a higher ASCII value than the uppercase letter "B".  To add that capability
simply use BASIC's UCASE$ (or LCASE$) function as part of the comparisons:

   IF UCASE$(Array$(X)) > UCASE$(Array$(X + 1)) THEN

And to sort based on the eight-character portion that starts six bytes
into each string you would use this:

   IF MID$(Array$(X), 5, 8) > MID$(Array$(X + 1), 5, 8) THEN

Although the comparisons in this example are based on just a portion of
each string, the SWAP statement must exchange the entire elements.  This
opens up many possibilities as you will see later in this chapter.
   If there is a chance that the strings may contain trailing blanks that
should be ignored, you can use RTRIM$ on each pair of elements:

   IF RTRIM$(Array$(X)) > RTRIM$(Array$(X + 1)) THEN

Of course, you can easily combine these enhancements to consider only the
characters in the middle after they have been converted to upper or lower
case.
   Sorting in reverse (descending) order is equally easy; you'd simply
replace the greater-than symbol (>) with a less-than symbol (<).
   Finally, you can modify the routine to work with any type of data by
changing the array type identifier.  That is, for every occurrence of
Array$ you will change that to Array% or Array# or whatever is appropriate.
If you are sorting a numeric array, then different modifications may be in
order.  For example, to sort ignoring whether the numbers are positive or
negative you would use BASIC's ABS (absolute value) function:

   IF ABS(Array!(X)) > ABS(Array!(X + 1)) THEN

It is important to point out that all of the simple modifications described
here can also be applied to the more sophisticated sort routines we will
look at later in this chapter.

INDEXED SORTS

Besides the traditional sorting methods--whether a Bubble Sort or Quick
Sort or any other type of sort--there is another category of sort routine
you should be familiar with.  Where a conventional sort exchanges elements
in an array until they are in order, an Index Sort instead exchanges
elements in a parallel numeric array of *pointers*.  The original data is left
intact, so it may still be accessed in its natural order.  However, the
array can also be accessed in sorted order by using the element numbers
contained in the index array.
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   As with a conventional sort, the comparisons in an indexed sort routine
examine each element in the primary array, but based on the element numbers
in that index array.  If it is determined that the data is out of order,
the routine exchanges the elements in the index array instead of the
primary array.  A modification to the Bubble Sort routine to sort using an
index is shown below.
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DEFINT A-Z
DECLARE SUB BubbleISort (Array$(), Index())

CONST NumItems% = 20
CONST False% = 0
CONST True% = -1

DIM Array$(1 TO NumItems%)  'this holds the string data
DIM Ndx(1 TO NumItems%)     'this holds the index

FOR X = 1 TO NumItems%
  READ Array$(X)            'read the string data
  Ndx(X) = X                'initialize the index array
NEXT

CALL BubbleISort(Array$(), Ndx())

CLS
FOR X = 1 TO NumItems%
  PRINT Array$(Ndx(X))      'print based on the index
NEXT

DATA Zorba, Cathy, Barbara, Kathy, Josephine
DATA Joseph, Joe, Peter, Arnold, Glen
DATA Ralph, Elli, Lucky, Rocky, Louis
DATA Paula, Paul, Mary lou, Marilyn, Keith

SUB BubbleISort (Array$(), Index()) STATIC

DO
  OutOfOrder = False%                 'assume it's sorted
  FOR X = 1 TO UBOUND(Array$) - 1
    IF Array$(Index(X)) > Array$(Index(X + 1)) THEN
      SWAP Index(X), Index(X + 1)     'if we had to swap
      OutOfOrder% = True%             'we're not done yet
    END IF
  NEXT
LOOP WHILE OutOfOrder%

END SUB

In this indexed sort, all references to the data are through the index
array.  And when a swap is necessary, it is the index array elements that
are exchanged.  Note that an indexed sort requires that the index array be
initialized to increasing values--even if the sort routine is modified to
be descending instead of ascending.  Therefore, when BubbleISort is called
Ndx(1) must hold the value 1, Ndx(2) is set to 2, and so forth.
   In this example the index array is initialized by the caller.  However,
it would be just as easy to put that code into the subprogram itself.
Since you can't pass an array that hasn't yet been dimensioned, it makes
the most sense to do both steps outside of the subprogram.  Either way, the
index array must be assigned to these initial values.
   As I mentioned earlier, one feature of an indexed sort is that it lets
you access the data in both its original and sorted order.  But there are
other advantages, and a disadvantage as well.  The disadvantage is that
each comparison takes slightly longer, because of the additional overhead
required to first look up the element number in the index array, to
determine which elements in the primary array will be compared.  In some
cases, though, that can be more than offset by requiring less time to
exchange elements.
   If you are sorting an array of 230-byte TYPE variables, the time needed
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for SWAP to exchange the elements can become considerable.  Every byte in
both elements must be read and written, so the time needed increases
linearly as the array elements become longer.  Contrast that with the fixed
two bytes in the integer index array that are swapped.
   Another advantage of an indexed sort is that it lends itself to sorting
more data than can fit in memory.  As you will see later in the section
that shows how to sort files, it is far easier to manipulate an integer
index than an entire file.  Further, sorting the file data using multiple
passes requires twice as much disk space as the file already occupies.

DATA MANIPULATION TECHNIQUES

Before I show the Quick Sort algorithm that will be used as a basis for
the remaining sort examples in this chapter, you should also be aware of
a few simple tricks that can help you maintain and sort your data.  One was
described in Chapter 6, using a pair of functions that pack and unpack
dates such that the year is stored before the month, which in turn is
before the day.  Thus, date strings are reduced to only three characters
each, and they can be sorted directly.
   Another useful speed-up trick is to store string data as integers or
long integers.  If you had a system of four-digit account numbers you could
use an integer instead of a string.  Besides saving half the memory and
disk space, the integer comparisons in a sort routine will be many times
faster than a comparison on string equivalents.  Zip codes are also suited
to this, and could be stored in a long integer.  Even though the space
savings is only one byte, the time needed to compare the values for sorting
will be greatly reduced.
   This brings up another important point.  As you learned in Chapter 2,
all conventional (not fixed-length) strings require more memory than might
be immediately apparent.  Besides the amount of memory needed to hold the
data itself, four additional bytes are used for a string descriptor, and
two more beyond those for a back pointer.  Therefore, a zip code stored as
a string will actually require eleven bytes rather than the five you might
expect.  With this in mind, you may be tempted to think that using a fixed-
length string to hold the zip codes will solve the problem.  Since fixed-
length strings do not use either descriptors or back pointers, they do not
need the memory they occupy.  And that leads to yet another issue.
   Whenever a fixed-length string or the string portion of a TYPE variable
is compared, it must first be converted to a regular descriptored string.
BASIC has only one string comparison routine, and it expects the addresses
for two conventional string descriptors.  Every time a fixed-length string
is used as an argument for comparison, BASIC must create a temporary copy,
call its comparison routine, and then delete the copy.  This copying adds
code and wastes an enormous amount of time; in many cases the copying will
take longer than the comparison itself.  Therefore, using integers and long
integers for numeric data where possible will provide more improvement than
just the savings in memory use.
   In some cases, however, you must use fixed-length string or TYPE arrays.
In particular, when sorting information from a random access disk file it
is most sensible to load the records into a TYPE array.  And as you learned
in Chapter 2, the string components of a TYPE variable or array element are
handled by BASIC as a fixed-length string.  So how can you effectively sort
fixed-length string arrays without incurring the penalty BASIC's overhead
imposes?  With assembly language subroutines, of course!
   Rather than ask BASIC to pass the data using its normal methods,
assembly language routines can be invoked passing the data segments and
addresses directly.  When you use SEG, or a combination of VARSEG and
VARPTR with fixed-length and TYPE variables, BASIC knows that you want the
segmented address of the variable or array element.  Thus, you are tricking
BASIC into not making a copy as it usually would when passing such data.
An assembly language subroutine or function can be designed to accept data
addresses in any number of ways.  As you will see later when we discuss
sorting on multiple keys, extra trickery is needed to do the same thing in
a BASIC procedure.
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   The three short assembly language functions that follow compare two
portions of memory, and then return a result that can be tested by your
program.
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;COMPARE.ASM - compares two ranges of memory

.Model Medium, Basic

.Code

Compare Proc Uses DS ES DI SI, SegAdr1:DWord, _
  SegAdr2:DWord, NumBytes:Word

    Cld                ;compare in the forward direction
    Mov  SI,NumBytes   ;get the address for NumBytes%
    Mov  CX,[SI]       ;put it into CX for comparing below

    Les  DI,SegAdr1    ;load ES:DI with the first
                       ;  segmented address
    Lds  SI,SegAdr2    ;load DS:SI with the second
                       ;  segmented address

    Repe Cmpsb         ;do the compare
    Mov  AX,0          ;assume the bytes didn't match
    Jne  Exit          ;we were right, skip over
    Dec  AX            ;wrong, decrement AX down to -1

Exit:
    Ret                ;return to BASIC

Compare Endp
End
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;COMPARE2.ASM - compares memory case-insensitive

.Model Medium, Basic

.Code

Compare2 Proc Uses DS ES DI SI, SegAdr1:DWord, _
  SegAdr2:DWord, NumBytes:Word

    Cld                ;compare in the forward direction
    Mov  BX,-1         ;assume the ranges are the same

    Mov  SI,NumBytes   ;get the address for NumBytes%
    Mov  CX,[SI]       ;put it into CX for comparing below
    Jcxz Exit          ;if zero bytes were given, they're
                       ;  the same
    Les  DI,SegAdr1    ;load ES:DI with the first address
    Lds  SI,SegAdr2    ;load DS:SI with the second address

Do:
    Lodsb              ;load the current character from
                       ;  DS:SI into AL
    Call Upper         ;capitalize as necessary
    Mov  AH,AL         ;copy the character to AH

    Mov  AL,ES:[DI]    ;load the other character into AL
    Inc  DI            ;point at the next one for later
    Call Upper         ;capitalize as necessary

    Cmp  AL,AH         ;now, are they the same?
    Jne  False         ;no, exit now and show that
    Loop Do            ;yes, continue
    Jmp  Short Exit    ;if we get this far, the bytes are
                       ;  all the same
False:
    Inc  BX            ;increment BX to return zero

Exit:
    Mov  AX,BX         ;assign the function output
    Ret                ;return to BASIC

Upper:
    Cmp  AL,"a"        ;is the character below an "a"?
    Jb   Done          ;yes, so we can skip it
    Cmp  AL,"z"        ;is the character above a "z"?
    Ja   Done          ;yes, so we can skip that too
    Sub  AL,32         ;convert to upper case

Done:
    Retn               ;do a near return to the caller

Compare2 Endp
End
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;COMPARE3.ASM - case-insensitive, greater/less than

.Model Medium, Basic

.Code

Compare3 Proc Uses DS ES DI SI, SegAdr1:DWord, _
  SegAdr2:DWord, NumBytes:Word

    Cld               ;compare in the forward direction
    Xor  BX,BX        ;assume the ranges are the same

    Mov  SI,NumBytes  ;get the address for NumBytes%
    Mov  CX,[SI]      ;put it into CX for comparing below
    Jcxz Exit         ;if zero bytes were given, they're
                      ;  the same
    Les  DI,SegAdr1   ;load ES:DI with the first address
    Lds  SI,SegAdr2   ;load DS:SI with the second address

Do:
    Lodsb             ;load the current character from
                      ;  DS:SI into AL
    Call Upper        ;capitalize as necessary, remove for
                      ;  case-sensitive
    Mov  AH,AL        ;copy the character to AH

    Mov  AL,ES:[DI]   ;load the other character into AL
    Inc  DI           ;point at the next character for later
    Call Upper        ;capitalize as necessary, remove for
                      ;  case-sensitive

    Cmp  AL,AH        ;now, are they the same?
    Loope Do          ;yes, continue
    Je   Exit         ;we exhausted the data and they're
                      ;  the same
    Mov  BL,1         ;assume block 1 was "greater"
    Ja   Exit         ;we assumed correctly
    Dec  BX           ;wrong, bump BX down to -1
    Dec  BX

Exit:
    Mov  AX,BX        ;assign the function output
    Ret               ;return to BASIC

Upper:
    Cmp  AL,"a"       ;is the character below an "a"?
    Jb   Done         ;yes, so we can skip it
    Cmp  AL,"z"       ;is the character above a "z"?
    Ja   Done         ;yes, so we can skip that too
    Sub  AL,32        ;convert to upper case

Done:
    Retn              ;do a near return to the caller

Compare3 Endp
End

The first Compare routine above simply checks if all of the bytes are
identical, and returns -1 (True) if they are, or 0 (False) if they are not.
By returning -1 or 0 you can use either

   IF Compare%(Type1, Type2, NumBytes%) THEN
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or
   IF NOT Compare%(Type1, Type2, NumBytes%) THEN

depending on which logic is clearer for your program.  Compare2 is similar
to Compare, except it ignores capitalization.  That is, "SMITH" and Smith"
are considered equal.  The Compare3 function also compares memory and
ignores capitalization, but it returns either -1, 0, or 1 to indicate if
the first data range is less than, equal to, or greater than the second.
   The correct declaration and usage for each of these routines is shown
below.  Note that Compare and Compare2 are declared and used in the same
fashion.

Compare and Compare2:

   DECLARE FUNCTION Compare%(SEG Type1 AS ANY, SEG Type2 AS ANY, _
     NumBytes%)
   Same = Compare%(Type1, Type2, NumBytes%)

or

   DECLARE FUNCTION Compare%(BYVAL Seg1%, BYVAL Adr1%, BYVAL Seg2%, _
     BYVAL Adr2%, NumBytes%)
   Same = Compare%(Seg1%, Adr1%, Seg2%, Adr2%, NumBytes%)

Here, Same receives -1 if the two TYPE variables or ranges of memory are
the same, or 0 if they are not.  NumBytes% tells how many bytes to compare.

Compare3:

   DECLARE FUNCTION Compare3%(SEG Type1 AS ANY, SEG Type2 AS ANY, _
     NumBytes%)
   Result = Compare3%(Type1, Type2, NumBytes%)

or
   DECLARE FUNCTION Compare3%(BYVAL Seg1%, BYVAL Adr1%, BYVAL Seg2%, _
     BYVAL Adr2%, NumBytes%)
   Result = Compare3%(Seg1%, Adr1%, Seg2%, Adr2%, NumBytes%)

Result receives 0 if the two type variables or ranges of memory are the
same, -1 if the first is less when compared as strings, or 1 if the first
is greater.  NumBytes% tells how many bytes are to be to compared.  In the
context of a sort routine you could invoke Compare3 like this:

IF Compare3%(TypeEl(X), TypeEl(X + 1), NumBytes%) = 1 THEN
  SWAP TypeEl(X), TypeEl(X + 1)
END IF

As you can see, these routines may be declared in either of two ways.
When used with TYPE arrays the first is more appropriate and results in
slightly less setup code being generated by the compiler.  When comparing
fixed-length strings or arbitrary blocks of memory (for example, when one
of the ranges is on the display screen) you should use the second method.
Since SEG does not work correctly with fixed-length strings, if you want
to use that more efficient version you must create a dummy TYPE comprised
solely of a single string portion:

TYPE FixedLength
  Something AS STRING * 35
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END TYPE

Then simply use DIM to create a single variable or an array based on this
or a similar TYPE, depending on what your program needs.  The requirement
to create a dummy TYPE was discussed in Chapter 2, and I won't belabor the
reasons again here.  These comparison routines will be used extensively in
the sort routines presented later in this chapter; however, their value in
other, non-sorting situations should also be apparent.
   Although these routines are written in assembly language, they are
fairly simple to follow.  It is important to understand that you do not
need to know anything about assembly language to use them.  All of the
files you need to add these and all of the other routines in this book are
contained on the accompanying diskette [here, in the same ZIP file as this
text].  Chapter 12 discusses assembly language in great detail, and you can
refer there for further explanation of the instructions used.
   If you plan to run the programs that follow in the QuickBASIC editor,
you must load the BASIC.QLB Quick Library as follows:

   qb program /l basic

Later when you compile these or other programs you must link with the
parallel BASIC.LIB file:

   bc program [/o];
   link program , , nul , basic;

If you are using BASIC PDS start QBX using the BASIC7.QLB file, and then
link with BASIC7.LIB to produce a stand-alone .EXE program.  [VB/DOS users
will also use the BASIC7 version.]

THE QUICK SORT ALGORITHM
========================

It should be obvious to you by now that a routine written in assembly
language will always be faster than an equivalent written in BASIC.
However, simply translating a procedure to assembly language is not always
the best solution.  Far more important than which language you use is
selecting an appropriate algorithm.  The best sorting method I know is the
Quick Sort, and a well-written version of Quick Sort using BASIC will be
many times faster than an assembly language implementation of the Bubble
Sort.
   The main problem with the Bubble Sort is that the number of comparisons
required grows exponentially as the number of elements increases.  Since
each pass through the array exchanges only a few elements, many passes are
required before the entire array is sorted.  The Quick Sort was developed
by C.A.R. (Tony) Hoare, and is widely recognized as the fastest algorithm
available.  In some special cases, such as when the data is already sorted
or nearly sorted, the Quick Sort may be slightly slower than other methods.
But in most situations, a Quick Sort is many times faster than any other
sorting algorithm.
   As with the Bubble Sort, there are many different variations on how a
Quick Sort may be coded.  (You may have noticed that the Bubble Sort shown
in Chapter 7 used a nested FOR/NEXT loop, while the one shown here uses a
FOR/NEXT loop within a DO/WHILE loop.)  A Quick Sort divides the array into
sections--sometimes called partitions--and then sorts each section
individually.  Many implementations therefore use recursion to invoke the
subprogram from within itself, as each new section is about to be sorted.
However, recursive procedures in any language are notoriously slow, and
also consume stack memory at an alarming rate.
   The Quick Sort version presented here avoids recursion, and instead uses
a local array as a form of stack.  This array stores the upper and lower
bounds showing which section of the array is currently being considered.
Another refinement I have added is to avoid making a copy of elements in
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the array.  As a Quick Sort progresses, it examines one element selected
arbitrarily from the middle of the array, and compares it to the elements
that lie above and below it.  To avoid assigning a temporary copy this
version simply keeps track of the selected element number.
   When sorting numeric data, maintaining a copy of the element is
reasonable.  But when sorting strings--especially strings whose length is
not known ahead of time--the time and memory required to keep a copy can
become problematic.  For clarity, the generic Quick Sort shown below uses
the copy method.  Although this version is meant for sorting a single
precision array, it can easily be adapted to sort any type of data by
simply changing all instances of the "!" type declaration character.
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'******** QSORT.BAS, Quick Sort algorithm demonstration

'Copyright (c) 1991 Ethan Winer

DEFINT A-Z
DECLARE SUB QSort (Array!(), StartEl, NumEls)

RANDOMIZE TIMER         'generate a new series each run

DIM Array!(1 TO 21)             'create an array
FOR X = 1 TO 21                 'fill with random numbers
  Array!(X) = RND(1) * 500      'between 0 and 500
NEXT

FirstEl = 6                     'sort starting here
NumEls = 10                     'sort this many elements

CLS
PRINT "Before Sorting:"; TAB(31); "After sorting:"
PRINT "==============="; TAB(31); "=============="

FOR X = 1 TO 21                 'show them before sorting
  IF X >= FirstEl AND X <= FirstEl + NumEls - 1 THEN
    PRINT "==>";
  END IF
  PRINT TAB(5); USING "###.##"; Array!(X)
NEXT

CALL QSort(Array!(), FirstEl, NumEls)

LOCATE 3
FOR X = 1 TO 21                 'print them after sorting
  LOCATE , 30
  IF X >= FirstEl AND X <= FirstEl + NumEls - 1 THEN
    PRINT "==>";                'point to sorted items
  END IF
  LOCATE , 35
  PRINT USING "###.##"; Array!(X)
NEXT

SUB QSort (Array!(), StartEl, NumEls) STATIC

REDIM QStack(NumEls \ 5 + 10)  'create a stack array

First = StartEl                'initialize work variables
Last = StartEl + NumEls - 1

DO
  DO
    Temp! = Array!((Last + First) \ 2)  'seek midpoint
    I = First
    J = Last

    DO     'reverse both < and > below to sort descending
      WHILE Array!(I) < Temp!
        I = I + 1
      WEND
      WHILE Array!(J) > Temp!
        J = J - 1
      WEND
      IF I > J THEN EXIT DO
      IF I < J THEN SWAP Array!(I), Array!(J)
      I = I + 1
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      J = J - 1
    LOOP WHILE I <= J

    IF I < Last THEN
      QStack(StackPtr) = I              'Push I
      QStack(StackPtr + 1) = Last       'Push Last
      StackPtr = StackPtr + 2
    END IF

    Last = J
  LOOP WHILE First < Last

  IF StackPtr = 0 THEN EXIT DO          'Done
  StackPtr = StackPtr - 2
  First = QStack(StackPtr)              'Pop First
  Last = QStack(StackPtr + 1)           'Pop Last
LOOP

ERASE QStack               'delete the stack array

END SUB

Notice that I have designed this routine to allow sorting only a portion
of the array.  To sort the entire array you'd simply omit the StartEl and
NumEls parameters, and assign First and Last from the LBOUND and UBOUND
element numbers.  That is, you will change these:

   First = StartEl
and
   Last = StartEl + NumEls - 1

to these:

   First = LBOUND(Array!)
and
   Last = UBOUND(Array!)

As I mentioned earlier, the QStack array serves as a table of element
numbers that reflect which range of elements is currently being considered.
You will need to dimension this array to one element for every five
elements in the primary array being sorted, plus a few extra for good
measure.  In this program I added ten elements, because one stack element
for every five main array elements is not enough for very small arrays.
For data arrays that have a large amount of duplicated items, you will
probably need to increase the size of the stack array.
   Note that this ratio is not an absolute--the exact size of the stack
that is needed depends on how badly out of order the data is to begin with.
Although it is possible that one stack element for every five in the main
array is insufficient in a given situation, I have never seen this formula
fail.  Because the stack is a dynamic integer array that is stored in far
memory, it will not impinge on near string memory.  If this routine were
designed using the normal recursive method, BASIC's stack would be used
which is in near memory.
   Each of the innermost DO loops searches the array for the first element
in each section about the midpoint that belongs in the other section.  If
the elements are indeed out of order (when I is less than J) the elements
are exchanged.  This incrementing and comparing continues until I and J
cross.  At that point, assuming the variable I has not exceeded the upper
limits of the current partition, the partition bounds are saved and Last
is assigned to the top of the next inner partition level.  When the entire
partition has been processed, the previous bounds are retrieved, but as a
new set of First and Last values.  This process continues until no more
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partition boundaries are on the stack.  At that point the entire array is
sorted.
   On the accompanying disk you will find a program called SEEQSORT.BAS
that contains an enhanced version of the QSort demo and subprogram.  This
program lets you watch the progress of the comparisons and exchanges as
they are made, and actually see this complex algorithm operate.  Simply
load SEEQSORT.BAS into the BASIC editor and run it.  A constant named
Delay! is defined at the beginning of the program.  Increasing its value
makes the program run more slowly; decreasing it causes the program to run
faster.

AN ASSEMBLY LANGUAGE QUICK SORT

As fast as the BASIC QuickSort routine is, we can make it even faster.
The listing below shows an assembly language version that is between ten
and twenty percent faster, depending on which compiler you are using and
if the BASIC PDS /fs (far strings) option is in effect.
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;SORT.ASM - sorts an entire BASIC string array

.Model Medium, Basic

.Data
    S          DW 0
    F          DW 0
    L          DW 0
    I          DW 0
    J          DW 0
    MidPoint   DW 0

.Code
    Extrn B$SWSD:Proc   ;this swaps two strings
    Extrn B$SCMP:Proc   ;this compares two strings

Sort Proc Uses SI DI ES, Array:Word, Dir:Word

    Cld                 ;all fills and compares are forward
    Push DS             ;set ES = DS for string compares
    Pop  ES

    Xor  CX,CX          ;clear CX
    Mov  AX,7376h       ;load AL and AH with the opcodes
                        ;  Jae and Jbe in preparation for
                        ;  code self-modification
    Mov  BX,Dir         ;get the sorting direction
    Cmp  [BX],CX        ;is it zero (ascending sort)?
    Je   Ascending      ;yes, skip ahead
    Xchg AL,AH          ;no exchange the opcodes

Ascending:
    Mov  CS:[X1],AH     ;install correct comparison opcodes
    Mov  CS:[X2],AL     ;  based on the sort direction

    Mov  BX,Array       ;load the array descriptor address
    Mov  AX,[BX+0Eh]    ;save the number of elements
    Dec  AX             ;adjust the number to zero-based
    Jns  L0             ;at least 1 element, continue
    Jmp  L4             ;0 or less elements, get out now!

L0:
    Mov  BX,Array       ;reload array descriptor address
    Mov  BX,[BX]        ;Array$(LBOUND) descriptor address
    Mov  S,SP           ;StackPtr = 0 (normalized to SP)
    Mov  F,CX           ;F = 0
    Mov  L,AX           ;L = Size%

;----- calculate the value of MidPoint
L1:
    Mov  DI,L           ;MidPoint = (L + F) \ 2
    Add  DI,F
    Shr  DI,1
    Mov  MidPoint,DI

    Mov  AX,F           ;I = F
    Mov  I,AX

    Mov  AX,L           ;J = L
    Mov  J,AX

;----- calculate the offset into the descriptor table for Array$(MidPoint)
L1_2:
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    Shl  DI,1           ;multiply MidPoint in DI times 4
    Shl  DI,1           ;now DI holds how far beyond Array$(Start)
                        ;  Array$(MidPoint)'s descriptor is
    Add  DI,BX          ;add the array base address to produce the final
                        ;  address for Array$(MidPoint)

;----- calculate descriptor offset for Array$(I)
L2:
    Mov  SI,I           ;put I into SI
    Shl  SI,1           ;as above
    Shl  SI,1           ;now SI holds how far beyond Array$(Start)
                        ;  Array$(I)'s descriptor is
    Add  SI,BX          ;add the base to produce the final descriptor
                        ;  address

    ;IF Array$(I) < Array$(MidPoint) THEN I = I + 1: GOTO L2
    Push BX             ;save BX because B$SCMP trashes it
    Push SI
    Push DI
    Call B$SCMP         ;do the compare
    Pop  BX             ;restore BX

X1 Label Byte           ;modify the code below to "Jbe" if descending sort
    Jae  L2_1           ;Array$(I) isn't less, continue on

    Inc  Word Ptr I     ;I = I + 1
    Jmp  Short L2       ;GOTO L2

;----- calculate descriptor offset for Array$(J)
L2_1:
    Mov  SI,J           ;put J into SI
    Shl  SI,1           ;as above
    Shl  SI,1           ;now SI holds how far beyond Array$(Start)
                        ;  Array$(J)'s descriptor is
    Add  SI,BX          ;add the base to produce the final descriptor
                        ;  address

    ;IF Array$(J) > Array$(MidPoint) THEN J = J - 1: GOTO L2.1
    Push BX             ;preserve BX
    Push SI
    Push DI
    Call B$SCMP         ;do the compare
    Pop  BX             ;restore BX

X2 Label Byte           ;modify the code below to "Jae" if descending sort
    Jbe  L2_2           ;Array$(J) isn't greater, continue on

    Dec  Word Ptr J     ;J = J - 1
    Jmp  Short L2_1     ;GOTO L2.1

L2_2:
    Mov  AX,I           ;IF I > J GOTO L3
    Cmp  AX,J
    Jg   L3             ;J is greater, go directly to L3
    Je   L2_3           ;they're the same, skip the swap

    ;Swap Array$(I), Array$(J)
    Mov  SI,I           ;put I into SI
    Mov  DI,J           ;put J into DI

    Cmp  SI,MidPoint    ;IF I = MidPoint THEN MidPoint = J
    Jne  No_Mid1        ;not equal, skip ahead
    Mov  MidPoint,DI    ;equal, assign MidPoint = J
    Jmp  Short No_Mid2  ;don't waste time comparing again



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 261   -

No_Mid1:
    Cmp  DI,MidPoint    ;IF J = MidPoint THEN MidPoint = I
    Jne  No_Mid2        ;not equal, skip ahead
    Mov  MidPoint,SI    ;equal, assign MidPoint = I

No_Mid2:
    Mov  SI,I           ;put I into SI
    Shl  SI,1           ;multiply times four for the
    Shl  SI,1           ;  for the descriptors
    Add  SI,BX          ;add address for first descriptor

    Mov  DI,J           ;do the same for J in DI
    Shl  DI,1
    Shl  DI,1
    Add  DI,BX

    Push BX             ;save BX because B$SWSD destroys it
    Call B$SWSD         ;and swap 'em good
    Pop  BX

L2_3:
    Inc  Word Ptr I     ;I = I + 1
    Dec  Word Ptr J     ;J = J - 1

    Mov  AX,I           ;IF I <= J GOTO L2
    Cmp  AX,J
    Jg   L3             ;it's greater, skip to L3
    Mov  DI,MidPoint    ;get MidPoint again
    Jmp  L1_2           ;go back to just before L2

L3:
    Mov  AX,I           ;IF I < L THEN PUSH I: PUSH L
    Cmp  AX,L
    Jnl  L3_1           ;it's not less, so skip Pushes

    Push I              ;Push I
    Push L              ;Push L

L3_1:
    Mov  AX,J           ;L = J
    Mov  L,AX

    Mov  AX,F           ;IF F < L GOTO L1
    Cmp  AX,L
    Jnl  L3_2           ;it's not less, jump ahead to L3_2
    Jmp  L1             ;it's less, go to L1

L3_2:
    Cmp  S,SP           ;IF S = 0 GOTO L4
    Je   L4

    Pop  L              ;Pop L
    Pop  F              ;Pop F
    Jmp  L1             ;GOTO L1

L4:
    Ret                 ;return to BASIC

Sort Endp
End

Besides being faster than the BASIC version, the assembly language Sort
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routine is half the size.  This version also supports sorting either
forward or backward, but not just a portion of an array.  The general
syntax is:

   CALL Sort(Array$(), Direction)

Where Array$() is any variable-length string array, and Direction is 0 for
ascending, or any other value for descending.  Note that this routine calls
upon BASIC's internal services to perform the actual comparing and
swapping; therefore, the exact same code can be used with either QuickBASIC
or BASIC PDS.  Again, I refer you forward to Chapter 12 for an explanation
of the assembly language commands used in SORT.ASM.

SORTING ON MULTIPLE KEYS

In many situations, sorting based on one key is sufficient.  For example,
if you are sorting a mailing list to take advantage of bulk rates you must
sort all of the addresses in order by zip code.  When considering complex
data such as a TYPE variable, it is easy to sort the array based on one
component of each element.  The earlier Bubble Sort example showed how MID$
could be used to consider just a portion of each string, even though the
entire elements were exchanged.  Had that routine been designed to operate
on a TYPE array, the comparisons would have examined just one component,
but the SWAP statements would exchange entire elements:

   IF Array(X).ZipCode > Array(X + 1).ZipCode THEN
     SWAP Array(X), Array(X + 1)
   END IF

This way, each customer's last name, first name, street address, and so
forth remain connected to the zip codes that are being compared and
exchanged.
   There are several ways to sort on more than one key, and all are of
necessity more complex than simply sorting based on a single key.  One
example of a multi-key sort first puts all of the last names in order.
Then within each group of identical last names the first names are sorted,
and within each group of identical last and first names further sorting is
performed on yet another key--perhaps Balance Due.  As you can see, this
requires you to sort based on differing types of data, and also to compare
ranges of elements for the subgroups that need further sorting.
   The biggest complication with this method is designing a calling syntax
that lets you specify all of the information.  A table array must be
established to hold the number of keys, the type of data in each key
(string, double precision, and so forth), and how many bytes into the TYPE
element each key portion begins.  Worse, you can't simply use the name of
a TYPE component in the comparisons inside the sort routine--which would
you use: Array(X).LastName, Array(X).FirstName, or Array(X).ZipCode?
Therefore, a truly general multi-key sort must be called passing the
address where the array begins in memory, and a table of offsets beyond
that address where each component being considered is located.
   To avoid this added complexity I will instead show a different method
that has only a few minor restrictions, but is much easier to design and
understand.  This method requires you to position each TYPE component into
the key order you will sort on.  You will also need to store all numbers
that will be used for a sort key as ASCII digits.  To sort first on last
name, then first name, and then on balance due, the TYPE might be
structured as follows:

TYPE Customer
  LastName   AS STRING * 15
  FirstName  AS STRING * 15
  BalanceDue AS STRING * 9
  Street     AS STRING * 32
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  City       AS STRING * 15
  State      AS STRING * 2
  ZipCode    AS STRING * 5
  AnyNumber  AS DOUBLE
END TYPE

In most cases the order in which each TYPE member is placed has no
consequence.  When you refer to TypeVar.LastName, BASIC doesn't care if
LastName is defined before or after FirstName in the TYPE structure.
Either way it translates your reference to LastName into an address.
Having to store numeric data as strings is a limitation, but this is needed
only for those TYPE fields that will be used as a sort key.
   The key to sorting on multiple items simultaneously is by treating the
contiguous fields as a single long field.  Since assignments to the string
portion of a TYPE variable are handled internally by BASIC's LSET routine,
the data in each element will be aligned such that subsequent fields can
be treated as an extension of the primary field.  Figure 8-2 below shows
five TYPE array elements in succession, as they would be viewed by a string
comparison routine.  This data is defined as a subset of the name and
address TYPE shown above, using just the first three fields.  Notice that
the balance due fields must be right-aligned (using RSET) for the numeric
values to be considered correctly.

Type.LastName  Type.FirstName Type.BalanceDue
===============---------------=========
Munro          Jay              8000.00
Smith          John              122.03
Johnson        Alfred          14537.89
Rasmussen      Peter             100.90
Hudson         Cindy              21.22
^              ^              ^
Field 1        Field 2        Field 3
starts here    starts here    starts here

Figure 8-2: Multiple contiguous fields in a TYPE can be treated as a single
long field.

Thus, the sort routine would be told to start at the first field, and
consider the strings to be 15 + 15 + 9 = 39 characters long.  This way all
three fields are compared at one time, and treated as a single entity.
Additional fields can of course follow these, and they may be included in
the comparison or not at your option.
   The combination demonstration and subroutine below sorts such a TYPE
array on any number of keys using this method, and it has a few additional
features as well.  Besides letting you confine the sorting to just a
portion of the array, you may also specify how far into each element the
first key is located.  As long as the key fields are contiguous, they do
not have to begin at the start of each TYPE.  Therefore, you could sort
just on the first name field, or on any other field or group of fields.
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'TYPESORT.BAS - performs a multi-key sort on TYPE arrays

'Copyright (c) 1991 Ethan Winer

DEFINT A-Z
DECLARE FUNCTION Compare3% (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, _
  BYVAL Adr2, NumBytes)
DECLARE SUB SwapMem (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, BYVAL Adr2, _
  BYVAL Length)
DECLARE SUB TypeSort (Segment, Address, ElSize, Offset, KeySize, NumEls)

CONST NumEls% = 23              'this keeps it all on the screen

TYPE MyType
  LastName  AS STRING * 10
  FirstName AS STRING * 10
  Dollars   AS STRING * 6
  Cents     AS STRING * 2
END TYPE
REDIM Array(1 TO NumEls%) AS MyType

'---- Disable (REM out) all but one of the following blocks to test

Offset = 27                 'start sorting with Cents
ElSize = LEN(Array(1))      'the length of each element
KeySize = 2                 'sort on the Cents only

Offset = 21                 'start sorting with Dollars
ElSize = LEN(Array(1))      'the length of each element
KeySize = 8                 'sort Dollars and Cents only

Offset = 11                 'start sorting with FirstName
ElSize = LEN(Array(1))      'the length of each element
KeySize = 18                'sort FirstName through Cents

Offset = 1                  'start sorting with LastName
ElSize = LEN(Array(1))      'the length of each element
KeySize = ElSize            'sort based on all 4 fields

FOR X = 1 TO NumEls%        'build the array from DATA
  READ Array(X).LastName
  READ Array(X).FirstName
  READ Amount$              'format the amount into money
  Dot = INSTR(Amount$, ".")
  IF Dot THEN
    RSET Array(X).Dollars = LEFT$(Amount$, Dot - 1)
    Array(X).Cents = LEFT$(MID$(Amount$, Dot + 1) + "00", 2)
  ELSE
    RSET Array(X).Dollars = Amount$
    Array(X).Cents = "00"
  END IF
NEXT

Segment = VARSEG(Array(1))      'show where the array is
Address = VARPTR(Array(1))      '  located in memory
CALL TypeSort(Segment, Address, ElSize, Offset, KeySize, NumEls%)

CLS                             'display the results
FOR X = 1 TO NumEls%
  PRINT Array(X).LastName, Array(X).FirstName,
  PRINT Array(X).Dollars; "."; Array(X).Cents
NEXT
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DATA Smith, John, 123.45
DATA Cramer, Phil, 11.51
DATA Hogan, Edward, 296.08
DATA Cramer, Phil, 112.01
DATA Malin, Donald, 13.45
DATA Cramer, Phil, 111.3
DATA Smith, Ralph, 123.22
DATA Smith, John, 112.01
DATA Hogan, Edward, 8999.04
DATA Hogan, Edward, 8999.05
DATA Smith, Bob, 123.45
DATA Cramer, Phil, 11.50
DATA Hogan, Edward, 296.88
DATA Malin, Donald, 13.01
DATA Cramer, Phil, 111.1
DATA Smith, Ralph, 123.07
DATA Smith, John, 112.01
DATA Hogan, Edward, 8999.33
DATA Hogan, Edward, 8999.17
DATA Hogan, Edward, 8999.24
DATA Smith, John, 123.05
DATA Cramer, David, 1908.80
DATA Cramer, Phil, 112
END

SUB TypeSort (Segment, Address, ElSize, Displace, KeySize, NumEls) STATIC

REDIM QStack(NumEls \ 5 + 10) 'create a stack array

First = 1                  'initialize working variables
Last = NumEls
Offset = Displace - 1      'decrement once now rather than
                           '  repeatedly later
DO
  DO
    Temp = (Last + First) \ 2   'seek midpoint
    I = First
    J = Last

    DO
      WHILE Compare3%(Segment, Address + Offset + (I - 1) * ElSize, Segment, _
        Address + Offset + (Temp-1) * ElSize, KeySize) = -1 '< 1 for descending
        I = I + 1
      WEND
      WHILE Compare3%(Segment, Address + Offset + (J - 1) * ElSize, Segment, _
        Address + Offset + (Temp-1)  * ElSize, KeySize) = 1 '< -1 for descending
        J = J - 1
      WEND
      IF I > J THEN EXIT DO
      IF I < J THEN
        CALL SwapMem(Segment, Address + (I - 1) * ElSize, Segment, _
          Address + (J - 1) * ElSize, ElSize)
        IF Temp = I THEN
          Temp = J
        ELSEIF Temp = J THEN
          Temp = I
        END IF
      END IF
      I = I + 1
      J = J - 1
    LOOP WHILE I <= J

    IF I < Last THEN
      QStack(StackPtr) = I              'Push I
      QStack(StackPtr + 1) = Last       'Push Last
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      StackPtr = StackPtr + 2
    END IF

    Last = J
  LOOP WHILE First < Last

  IF StackPtr = 0 THEN EXIT DO          'Done
  StackPtr = StackPtr - 2
  First = QStack(StackPtr)              'Pop First
  Last = QStack(StackPtr + 1)           'Pop Last
LOOP

ERASE QStack                    'delete the stack array

END SUB

As you can see, this version of the Quick Sort subprogram is derived from
the one shown earlier.  The important difference is that all of the
incoming information is passed as segments, addresses, and bytes, rather
than using an explicit array name.  But before describing the inner details
of the subprogram itself, I'll address the demonstration portion and show
how the routine is set up and called.
   As with some of the other procedures on the disk that comes with this
book, you will extract the TypeSort subprogram and add it to your own
programs by loading it as a module, and then using the Move option of
BASIC's View Subs menu.  You can quickly access this menu by pressing F2,
and then use Alt-M to select Move.  Once this is done you will unload
TYPESORT.BAS using the Alt-F-U menu selection, and answer *No* when asked
if you want to save the modified file.  You could also copy the TypeSort
subprogram into a separate file, and then load that file as a module in
each program that needs it.
   Although the example TYPE definition here shows only four components,
you may of course use any TYPE structure.  TypeSort expects six parameters
to tell it where in memory the array is located, how far into each element
the comparison routines are to begin, the total length of each element, the
length of the key fields, and the number of elements to sort.
   After defining MyType, the setup portion of TYPESORT.BAS establishes the
offset, element size, and key size parameters.  As you can see, four
different sample setups are provided, and you should add remarking
apostrophes to all but one of them.  If the program is left as is, the last
setup values will take precedence.
   The next section reads sample names, addresses and dollar amounts from
DATA statements, and formats the dollar amounts as described earlier.  The
dollar portion of the amounts are right justified into the Dollars field
of each element, and the Cents portion is padded with trailing zeros as
necessary to provide a dollars and cents format.  This way, the value 12.3
will be assigned as 12.30, and 123 will be formatted to 123.00 which gives
the expected appearance.
   The final setup step is to determine where the array begins in memory.
Since you specify the starting segment and address, it is simple to begin
sorting at any array element.  For example, to sort elements 100 through
200--even if the array is larger than that--you'd use VARSEG(Array(100))
and VARPTR(Array(100) instead of element 1 as shown in this example.
   In addition to the starting segment and address of the array, TypeSort
also requires you to tell it how many elements to consider.  If you are
sorting the entire array and the array starts with element 1, this will
simply be the UBOUND of the array.  If you are sorting just a portion of
the array then you give it only the number of elements to be sorted.  So
to sort elements 100 through 200, the number of elements will be 101.  A
general formula you can use for calculating this based on element numbers
is NumElements = LastElement - FirstElement + 1.
   Now let's consider the TypeSort subprogram itself.  Since it is more
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like the earlier QSort program than different, I will cover only the
differences here.  In fact, the primary difference is in the way
comparisons and exchanges are handled.  The Compare3 function introduced
earlier is used to compare the array elements with the midpoint.  Although
QSort made a temporary copy of the midpoint element, that would be
difficult to do here.  Since the routine is designed to work with any type
of data--and the size of each element can vary depending on the TYPE
structure--it is impractical to make a copy.
   While SPACE$ could be used to claim a block of memory into which the
midpoint element is copied, there's a much better way:  the Temp variable
is used to remember the element number itself.  The only complication is
that once elements I and J are swapped, Temp must be reassigned if it was
equal to either of them.  (This happens just below the call to SwapMem.)
But the simple integer IF test and assignment required adds far less code
and is much faster than making a copy of the element.
   TypeSort is designed to sort the array in ascending order, and comments
in the code show how to change it to sort descending instead.  If you
prefer to have one subprogram that can do both, you should add an extra
parameter, perhaps called Direction.  Near the beginning of the routine
before the initial outer DO you would add this:

   IF Direction = 0 THEN     'sort ascending
     ICompare = -1
     JCompare = 1
   ELSE                      'sort descending
     ICompare = 1
     JCompare = -1
   END IF

Then, where the results from Compare3 are compared to -1 and 1 replace
those comparisons (at the end of each WHILE line) to instead use ICompare
and JCompare:

   WHILE Compare3%(...) = ICompare
     I = I + 1
   WEND
   WHILE Compare3%(...) = JCompare
     J = J - 1
   WEND

This way, you are using variables to establish the sorting direction, and
those variables can be set either way each time TypeSort is called.
   The last major difference is that elements are exchanged using the
SwapMem routine rather than BASIC's SWAP statement.  While it is possible
to call SWAP by aliasing its name as shown in Chapter 5, it was frankly
simpler to write a new routine for this purpose.  Further, BASIC's SWAP is
slower than SwapMem because it must be able to handle variables of
different lengths, and also exchange fixed-length and conventional strings.
SwapMem is extremely simple, and it works very quickly.
   As I stated earlier, the only way to write a truly generic sort routine
is by passing segments and addresses and bytes, instead of array names.
Although it would be great if BASIC could let you declare a subprogram or
function using the AS ANY option to allow any type of data, that simply
wouldn't work.  As BASIC compiles your program, it needs to know the size
and type of each parameter.  When you reference TypeVar.LastName, BASIC
knows where within TypeVar the LastName portion begins, and uses that in
its address calculations.  It is not possible to avoid this limitation
other than by using addresses as is done here.
   Indeed, this is the stuff that C and assembly language programs are made
of.  In these languages--especially assembly language--integer pointer
variables are used extensively to show where data is located and how long
it is.  However, the formulas used within the Compare3 and SwapMem function
calls are not at all difficult to understand.
   The formula Address + Offset - (I - 1) * ElSize indicates where the key
field of element I begins.  Address holds the address of the beginning of
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the first element, and Offset is added to identify the start of the first
sort key.  (I - 1) is used instead of I because addresses are always zero-
based.  That is, the first element in the array from TypeSort's perspective
is element 0, even though the calling program considers it to be element
1.  Finally, the element number is multiplied times the length of each
element, to determine the value that must be added to the starting address
and offset to obtain the final address for the data in element I.  Please
understand that calculations such as these are what the compiler must do
each time you access an array element.
   Note that if you call TypeSort incorrectly or give it illegal element
numbers, you will not receive a "Subscript out of range" error from BASIC.
Rather, you will surely crash your PC and have to reboot.  This is the
danger--and fun--of manipulating pointers directly.
   As I stated earlier, the SwapMem routine that does the actual exchanging
of elements is very simple, and it merely takes a byte from one element and
exchanges it with the corresponding byte in the other.  This task is
greatly simplified by the use of the XCHG assembly language command, which
is similar to BASIC's SWAP statement.  Although XCHG cannot swap a word in
memory with another word in memory, it can exchange memory with a register.
SwapMem is shown in the listing below.
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;SWAPMEM.ASM, swaps two sections of memory

.Model Medium, Basic

.Code

SwapMem Proc Uses SI DI DS ES, Var1:DWord, Var2:DWord, NumBytes:Word

    Lds  SI,Var1      ;get the segmented address of the
                      ;  first variable
    Les  DI,Var2      ;and for the second variable
    Mov  CX,NumBytes  ;get the number of bytes to exchange
    Jcxz Exit         ;we can't swap zero bytes!

DoSwap:
    Mov  AL,ES:[DI]   ;get a byte from the second variable
    Xchg AL,[SI]      ;swap it with the first variable
    Stosb             ;complete the swap and increment DI
    Inc  SI           ;point to the next source byte
    Loop DoSwap       ;continue until done

Exit:
    Ret               ;return to BASIC

SwapMem Endp
End

INDEXED SORTING ON MULTIPLE KEYS

Earlier I showed how to modify the simple Bubble Sort routine to sort a
parallel index array instead of the primary array.  One important reason
you might want to do that is to allow access to the primary array in both
its original and sorted order.  Another reason, and one we will get to
shortly, is to facilitate sorting disk files.  Although a routine to sort
the records in a file could swap the actual data, it takes a long time to
read and write that much data on disk.  Further, each time you wanted to
access the data sorted on a different key, the entire file would need to
be sorted again.
   A much better solution is to create one or more sorted lists of record
numbers, and store those on disk each in a separate file.  This lets you
access the data sorted by name, or by zip code, or by any other field,
without ever changing the actual file.  The TypeISort subprogram below is
adapted from TypeSort, and it sorts an index array that holds the element
numbers of a TYPE array.
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'TYPISORT.BAS, indexed multi-key sort for TYPE arrays

DEFINT A-Z

DECLARE FUNCTION Compare3% (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, _
  BYVAL Adr2, NumBytes)
DECLARE SUB SwapMem (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, _
  BYVAL Adr2, BYVAL Length)
DECLARE SUB TypeISort (Segment, Address, ElSize, Offset, KeySize, _
  NumEls, Index())

CONST NumEls% = 23              'this keeps it all on the screen

TYPE MyType
  LastName  AS STRING * 10
  FirstName AS STRING * 10
  Dollars   AS STRING * 6
  Cents     AS STRING * 2
END TYPE
REDIM Array(1 TO NumEls%) AS MyType
REDIM Index(1 TO NumEls%)   'create the index array

Offset = 1                  'start sorting with LastName
ElSize = LEN(Array(1))      'the length of each element
KeySize = ElSize            'sort based on all 4 fields

FOR X = 1 TO NumEls%        'build the array from DATA
  READ Array(X).LastName
  READ Array(X).FirstName
  READ Amount$
   ...                      'this continues as already
   ...                      '  shown in TypeSort
NEXT

FOR X = 1 TO NumEls%            'initialize the index
  Index(X) = X - 1              'but starting with 0
NEXT

Segment = VARSEG(Array(1))      'show where the array is
Address = VARPTR(Array(1))      '  located in memory
CALL TypeISort(Segment, Address, ElSize, Offset, KeySize, NumEls%, Index())

CLS                             'display the results
FOR X = 1 TO NumEls%            '+ 1 adjusts to one-based
  PRINT Array(Index(X) + 1).LastName,
  PRINT Array(Index(X) + 1).FirstName,
  PRINT Array(Index(X) + 1).Dollars; ".";
  PRINT Array(Index(X) + 1).Cents
NEXT

DATA Smith, John, 123.45        'this continues as already
  ...                           '  shown in TypeSort
  ...

END

SUB TypeISort (Segment, Address, ElSize, Displace, KeySize, NumEls, _
  Index()) STATIC

REDIM QStack(NumEls \ 5 + 10) 'create a stack

First = 1                     'initialize working variables
Last = NumEls
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Offset = Displace - 1         'make zero-based now for speed later

DO
  DO
    Temp = (Last + First) \ 2 'seek midpoint
    I = First
    J = Last

    DO  'change -1 to 1 and 1 to -1 to sort descending
      WHILE Compare3%(Segment, Address + Offset + (Index(I) * ElSize), _
        Segment, Address + Offset + (Index(Temp) * ElSize), KeySize) = -1
        I = I + 1
      WEND
      WHILE Compare3%(Segment, Address + Offset + (Index(J) * ElSize), _
        Segment, Address + Offset + (Index(Temp) * ElSize), KeySize) = 1
        J = J - 1
      WEND
      IF I > J THEN EXIT DO
      IF I < J THEN
        SWAP Index(I), Index(J)
        IF Temp = I THEN
          Temp = J
        ELSEIF Temp = J THEN
          Temp = I
        END IF
      END IF
      I = I + 1
      J = J - 1
    LOOP WHILE I <= J

    IF I < Last THEN
      QStack(StackPtr) = I              'Push I
      QStack(StackPtr + 1) = Last       'Push Last
      StackPtr = StackPtr + 2
    END IF

    Last = J
  LOOP WHILE First < Last

  IF StackPtr = 0 THEN EXIT DO          'Done
  StackPtr = StackPtr - 2
  First = QStack(StackPtr)              'Pop First
  Last = QStack(StackPtr + 1)           'Pop Last
LOOP

ERASE QStack                    'delete the stack array

END SUB

As with TypeSort, TypeISort is entirely pointer based so it can be used
with any type of data and it can sort multiple contiguous keys.  The only
real difference is the addition of the Index() array parameter, and the
extra level of indirection needed to access the index array each time a
comparison is made.  Also, when a swap is required, only the integer index
elements are exchanged, which simplifies the code and reduces its size.
Like TypeSort, you can change the sort direction by reversing the -1 and
1 values used with Compare3, or add a Direction parameter to the list and
modify the code to use that.
   As with BubbleISort, the index array is initialized to increasing values
by the calling program; however, here the first element is set to hold a
value of 0 instead of 1.  This reduces the calculations needed within the
routine each time an address must be obtained.  Therefore, when TypeISort
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returns, the caller must add 1 to the element number held in each index
element.  This is shown within the FOR/NEXT loop that displays the sorted
results.

SORTING FILES

With the development of TypeISort complete, we can now use that routine
to sort disk files.  The sorting strategy will be to determine how many
records are in the file, to determine how many separate passes are needed
to process the entire file.  TypeISort and TypeSort are restricted to
working with arrays no larger than 64K (32K in the editing environment),
so there is a limit as to how much data may be loaded into memory at one
time.  These sort routines can accommodate more data when compiled because
address calculations that result in values larger than 32767 cause an
overflow error in the QB editor.  This overflow is in fact harmless, and
is ignored in a compiled program unless you use the /d switch.
   Although the routines could be modified to perform segment and address
arithmetic to accommodate larger arrays, that still wouldn't solve the
problem of having more records than can fit in memory at once.  Therefore,
separate passes must be used to sort the file contents in sections, with
each pass writing a temporary index file to disk.  A final merge pass then
reads each index to determine which pieces fits where, and then writes the
final index file.  The program FILESORT.BAS below incorporates all of the
sorting techniques shown so far, and includes a few custom BASIC routines
to improve its performance.
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'FILESORT.BAS, indexed multi-key random access file sort

DEFINT A-Z

DECLARE FUNCTION Compare3% (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, _
  BYVAL Adr2, NumBytes)
DECLARE FUNCTION Exist% (FileSpec$)
DECLARE SUB DOSInt (Registers AS ANY)
DECLARE SUB FileSort (FileName$, NDXName$, RecLength, Offset, KeySize)
DECLARE SUB LoadFile (FileNum, Segment, Address, Bytes&)
DECLARE SUB SaveFile (FileNum, Segment, Address, Bytes&)
DECLARE SUB SwapMem (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, BYVAL Adr2, _
  BYVAL Length)
DECLARE SUB TypeISort (Segment, Address, ElSize, Offset, KeySize, _
  NumEls, Index())

RANDOMIZE TIMER                 'create new data each run
DEF FnRand% = INT(RND * 10 + 1) 'returns RND from 1 to 10

TYPE RegType                    'used by DOSInt
  AX AS INTEGER
  BX AS INTEGER
  CX AS INTEGER
  DX AS INTEGER
  BP AS INTEGER
  SI AS INTEGER
  DI AS INTEGER
  FL AS INTEGER
  DS AS INTEGER
  ES AS INTEGER
END TYPE

DIM SHARED Registers AS RegType 'share among all subs
REDIM LastNames$(1 TO 10)       'we'll select names at
REDIM FirstNames$(1 TO 10)      '  random from these

NumRecords = 2988               'how many test records to use
FileName$ = "TEST.DAT"          'really original, eh?
NDXName$ = "TEST.NDX"           'this is the index file name

TYPE RecType
  LastName  AS STRING * 11
  FirstName AS STRING * 10
  Dollars   AS STRING * 6
  Cents     AS STRING * 2
  AnyNumber AS LONG         'this shows that only key
  OtherNum  AS LONG         '  information must be ASCII
END TYPE

FOR X = 1 TO 10             'read the possible last names
  READ LastNames$(X)
NEXT

FOR X = 1 TO 10             'and the possible first names
  READ FirstNames$(X)
NEXT

DIM RecordVar AS RecType    'to create the sample file
RecLength = LEN(RecordVar)  'the length of each record
CLS
PRINT "Creating a test file..."

IF Exist%(FileName$) THEN   'if there's an existing file



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 274   -

  KILL FileName$            'kill the old data from prior
END IF                      '  runs to start fresh

IF Exist%(NDXName$) THEN    'same for any old index file
  KILL NDXName$
END IF

'---- Create some test data and write it to the file
OPEN FileName$ FOR RANDOM AS #1 LEN = RecLength
  FOR X = 1 TO NumRecords
    RecordVar.LastName = LastNames$(FnRand%)
    RecordVar.FirstName = FirstNames$(FnRand%)
    Amount$ = STR$(RND * 10000)
    Dot = INSTR(Amount$, ".")
    IF Dot THEN
      RSET RecordVar.Dollars = LEFT$(Amount$, Dot - 1)
      RecordVar.Cents = LEFT$(MID$(Amount$, Dot + 1) + "00", 2)
    ELSE
      RSET RecordVar.Dollars = Amount$
      RecordVar.Cents = "00"
    END IF
    RecordVar.AnyNumber = X
    PUT #1, , RecordVar
  NEXT
CLOSE

'----- Created a sorted index based on the main data file
Offset = 1                  'start sorting with LastName
KeySize = 29                'sort based on first 4 fields
PRINT "Sorting..."
CALL FileSort(FileName$, NDXName$, RecLength, Offset, KeySize)

'----- Display the results
CLS
VIEW PRINT 1 TO 24
LOCATE 25, 1
COLOR 15
PRINT "Press any key to pause/resume";
COLOR 7
LOCATE 1, 1

OPEN FileName$ FOR RANDOM AS #1 LEN = RecLength
OPEN NDXName$ FOR BINARY AS #2
  FOR X = 1 TO NumRecords
    GET #2, , ThisRecord            'get next rec. number
    GET #1, ThisRecord, RecordVar   'then the actual data

    PRINT RecordVar.LastName;       'print each field
    PRINT RecordVar.FirstName;
    PRINT RecordVar.Dollars; ".";
    PRINT RecordVar.Cents

    IF LEN(INKEY$) THEN             'pause on a keypress
      WHILE LEN(INKEY$) = 0: WEND
    END IF
  NEXT
CLOSE

VIEW PRINT 1 TO 24                  'restore the screen
END

DATA Smith, Cramer, Malin, Munro, Passarelli
DATA Bly, Osborn, Pagliaro, Garcia, Winer
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DATA John, Phil, Paul, Anne, Jacki
DATA Patricia, Ethan, Donald, Tami, Elli
END

FUNCTION Exist% (Spec$) STATIC  'reports if a file exists

DIM DTA AS STRING * 44          'the work area for DOS
DIM LocalSpec AS STRING * 60    'guarantee the spec is in
LocalSpec$ = Spec$ + CHR$(0)    '  DGROUP for BASIC PDS

Exist% = -1                     'assume true for now

Registers.AX = &H1A00           'assign DTA service
Registers.DX = VARPTR(DTA)      'show DOS where to place it
Registers.DS = VARSEG(DTA)
CALL DOSInt(Registers)

Registers.AX = &H4E00           'find first matching file
Registers.CX = 39               'any file attribute okay
Registers.DX = VARPTR(LocalSpec)
Registers.DS = VARSEG(LocalSpec)
CALL DOSInt(Registers)          'see if there's a match

IF Registers.FL AND 1 THEN      'if the Carry flag is set
  Exist% = 0                    '  there were no matches
END IF

END FUNCTION

SUB FileSort (FileName$, NDXName$, RecLength, Displace, KeySize) STATIC

CONST BufSize% = 32767  'holds the data being sorted
Offset = Displace - 1   'make zero-based for speed later

'----- Open the main data file
FileNum = FREEFILE
OPEN FileName$ FOR BINARY AS #FileNum

'----- Calculate the important values we'll need
NumRecords = LOF(FileNum) \ RecLength
RecsPerPass = BufSize% \ RecLength
IF RecsPerPass > NumRecords THEN RecsPerPass = NumRecords

NumPasses = (NumRecords \ RecsPerPass) - ((NumRecords MOD RecsPerPass) _
  <> 0)
IF NumPasses = 1 THEN
  RecsLastPass = RecsPerPass
ELSE
  RecsLastPass = NumRecords MOD RecsPerPass
END IF

'----- Create the buffer and index sorting arrays
REDIM Buffer(1 TO 1) AS STRING * BufSize
REDIM Index(1 TO RecsPerPass)
IndexAdjust = 1

'----- Process all of the records in manageable groups
FOR X = 1 TO NumPasses

  IF X < NumPasses THEN         'if not the last pass
    RecsThisPass = RecsPerPass  'do the full complement
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  ELSE                          'the last pass may have
    RecsThisPass = RecsLastPass '  fewer records to do
  END IF

  FOR Y = 1 TO RecsThisPass     'initialize the index
    Index(Y) = Y - 1            'starting with value of 0
  NEXT

  '----- Load a portion of the main data file
  Segment = VARSEG(Buffer(1))   'show where the buffer is
  CALL LoadFile(FileNum, Segment, Zero, RecsThisPass * CLNG(RecLength))
  CALL TypeISort(Segment, Zero, RecLength, Displace, KeySize, _
    RecsThisPass, Index())

  '----- Adjust the zero-based index to record numbers
  FOR Y = 1 TO RecsThisPass
    Index(Y) = Index(Y) + IndexAdjust
  NEXT

  '----- Save the index file for this pass
  TempNum = FREEFILE
  OPEN "$$PASS." + LTRIM$(STR$(X)) FOR OUTPUT AS #TempNum
  CALL SaveFile(TempNum, VARSEG(Index(1)), Zero, RecsThisPass * 2&)
  CLOSE #TempNum

  '----- The next group of record numbers start this much higher
  IndexAdjust = IndexAdjust + RecsThisPass

NEXT

ERASE Buffer, Index             'free up the memory

'----- Do a final merge pass if necessary
IF NumPasses > 1 THEN

  NDXNumber = FREEFILE
  OPEN NDXName$ FOR BINARY AS #NDXNumber
  REDIM FileNums(NumPasses)        'this holds the file numbers
  REDIM RecordNums(NumPasses)      'this holds record numbers

  REDIM MainRec$(1 TO NumPasses)   'holds main record data
  REDIM Remaining(1 TO NumPasses)  'tracks index files

  '----- Open the files and seed the first round of data
  FOR X = 1 TO NumPasses
    FileNums(X) = FREEFILE
    OPEN "$$PASS." + LTRIM$(STR$(X)) FOR BINARY AS #FileNums(X)
    Remaining(X) = LOF(FileNums(X))   'this is what remains
    MainRec$(X) = SPACE$(RecLength)   'holds main data file

    GET #FileNums(X), , RecordNums(X)     'get the next record number
    RecOffset& = (RecordNums(X) - 1) * CLNG(RecLength) + 1
    GET #FileNum, RecOffset&, MainRec$(X) 'then get the data
  NEXT

  FOR X = 1 TO NumRecords

    Lowest = 1               'assume this is the lowest data in the group
    WHILE Remaining(Lowest) = 0 'Lowest can't refer to a dead index
      Lowest = Lowest + 1       'so seek to the next higher active index
    WEND

    FOR Y = 2 TO NumPasses      'now seek out the truly lowest element
      IF Remaining(Y) THEN      'consider only active indexes
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        IF Compare3%(SSEG(MainRec$(Y)), _    '<-- use VARSEG with QB
          SADD(MainRec$(Y)) + Offset,   _
          SSEG(MainRec$(Lowest)),       _    '<-- use VARSEG with QB
          SADD(MainRec$(Lowest)) + Offset, KeySize) = -1 THEN
           Lowest = Y
        END IF
      END IF
    NEXT

    PUT #NDXNumber, , RecordNums(Lowest)     'write the main index
    Remaining(Lowest) = Remaining(Lowest) - 2
    IF Remaining(Lowest) THEN                'if the index is still active
      GET #FileNums(Lowest), , RecordNums(Lowest)
      RecOffset& = (RecordNums(Lowest) - 1) * CLNG(RecLength) + 1
      GET #FileNum, RecOffset&, MainRec$(Lowest)
    END IF

  NEXT

ELSE
  '----- Only one pass was needed so simply rename the index file
  NAME "$$PASS.1" AS NDXName$
END IF

CLOSE                       'close all open files

IF Exist%("$$PASS.*") THEN  'ensure there's a file to kill
  KILL "$$PASS.*"           'kill the work files
END IF

ERASE FileNums, RecordNums  'erase the work arrays
ERASE MainRec$, Remaining

END SUB

SUB LoadFile (FileNum, Segment, Address, Bytes&) STATIC
  IF Bytes& > 32767 THEN Bytes& = Bytes& - 65536
  Registers.AX = &H3F00         'read from file service
  Registers.BX = FILEATTR(FileNum, 2) 'get the DOS handle
  Registers.CX = Bytes&         'how many bytes to load
  Registers.DX = Address        'and at what address
  Registers.DS = Segment        'and at what segment
  CALL DOSInt(Registers)
END SUB

SUB SaveFile (FileNum, Segment, Address, Bytes&) STATIC
  IF Bytes& > 32767 THEN Bytes& = Bytes& - 65536
  Registers.AX = &H4000         'write to file service
  Registers.BX = FILEATTR(FileNum, 2) 'get the DOS handle
  Registers.CX = Bytes&         'how many bytes to load
  Registers.DX = Address        'and at what address
  Registers.DS = Segment        'and at what segment
  CALL DOSInt(Registers)
END SUB

SUB TypeISort (....) STATIC     'as shown in TYPISORT.BAS

END SUB
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FILESORT.BAS begins by defining a function that returns a random number
between 1 and 10.  Although the earlier sort demonstrations simply read the
test data from DATA statements, that is impractical when creating thousands
of records.  Instead, two arrays are filled--one with ten last names and
another with ten first names--and these names are drawn from at random.
   The Registers TYPE variable that is defined is used by three of the
supporting routines in this program.  RegType is normally associated with
CALL Interrupt and InterruptX, but I have written a small-code replacement
to mimic InterruptX that works with DOS Interrupt &H21 only.  DOSInt
accepts just a single Registers argument, instead of the three parameters
that BASIC's Interrupt and InterruptX require.  Besides adding less code
each time it is used, the routine itself is smaller and simpler than
InterruptX.
   The remainder of the demonstration program should be easy to follow, so
I won't belabor its operation; the real action is in the FileSort
subprogram.
   Like TypeSort and TypeISort, FileSort is entirely pointer based, to
accommodate TYPE elements of any size and structure.  You provide the name
of the main data file to be sorted, the name of an index file to create,
and the length and offset of the keys within the disk records.  The
Displace parameter tells how far into the TYPE structure the key
information is located.  When calling TypeISort this value is should be
one-based, but in the final merge pass where Compare3 is used, a zero-based
number is required.  Therefore, a copy is made (Offset = Displace - 1) near
the beginning of the routine.  This way, both are available quickly without
having to calculate - 1 repeatedly slowing its operation.
   The initial steps FileSort performs are to determine how many records
are in the data file, and from that how many records can fit into memory
at one time.  Once these are known, the number of passes necessary can be
easily calculated.  An extra step is needed to ensure that RecsPerPass is
not greater than the number of records in the file.  Just because 200
records can fit into memory at once doesn't mean there are that many
records.  In most cases where multiple passes are needed the last pass will
process fewer records than the others.  If there are, say, 700 records and
each pass can sort 300, the last pass will sort only 100 records.
   Once the pass information is determined, a block of memory is created
to hold each portion of the file for sorting.  This is the purpose of the
Buffer array.  REDIM is used to create a 32K chunk of memory that doesn't
impinge on available string space.
   For each pass that is needed, the number of records in the current pass
is determined and the index array is initialized to increasing values.
Then, a portion of the main data file is read using the LoadFile
subprogram.  BASIC does not allow you to read records from a random access
file directly into a buffer specified by its address.  And even if it did,
we can load data much faster than pure BASIC by reading a number of records
all at once.
   Once the current block of records has been loaded, TypeISort is called
to sort the index array.  The index array is also saved very quickly using
SaveFile, which is the compliment to LoadFile.  A unique name is given to
each temporary index file such that the first one is named $$PASS.1, the
second $$PASS.2, and so forth.  By using dollar signs in the name it is
unlikely that the routine will overwrite an existing file from another
application.  Of course, you may change the names to anything else if you
prefer.
   Notice the extra step that manipulates the IndexAdjust variable.  This
adjustment is needed because each sort pass returns the index array holding
record numbers starting at 0.  The first time through, 1 must be added to
each element to reflect BASIC's use of record numbers that start at 1.  If
the first pass sorts, say, 250 records, then the index values 1 through 250
are saved to disk.  But the second pass is processing records 251 through
500, so an adjustment value of 251 must be added to each element prior to
writing it to disk.
   If the data file is small and only one pass was needed, the $$PASS.1
file is simply renamed to whatever the caller specified.  Otherwise, a
merge pass is needed to determine which record number is the next in
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sequence based on the results of each pass.  Believe it or not, this is the
trickiest portion of the entire program.  For the sake of discussion, we'll
assume that four passes were required to sort the file.
   Each of the four index files contains a sequence of record numbers, and
all of the records within that sequence are in sorted order.  However,
there is no relationship between the data records identified in one index
file and those in another.  Thus, each index file and corresponding data
record must be read in turn.  A FOR/NEXT loop then compares each of the
four records, to see which is truly next in the final sequence.  The
complication arises as the merge nears completion, because some of the
indexes will have become exhausted.  This possibility is handled by the
Remaining array.
   Elements in the Remaining array are initialized to the length of each
index file as the indexes are opened.  Then, as each index entry is read
from disk, the corresponding element is decremented by two to show that
another record number was read.  Therefore, the current Remaining element
must be checked to see if that index has been exhausted.  Otherwise, data
that was already processed might be considered in the merge comparisons.
   The final steps are to close all the open files, delete the temporary
index files, and erase the work arrays to free the memory they occupied.
   One important point to observe is the use of SSEG to show Compare3 where
the MainRec$ elements are located.  SSEG is for BASIC 7 only; if you are
using QuickBASIC you must change SSEG to VARSEG.  SSEG can be used with
either near or far strings in BASIC 7, but VARSEG works with near strings
only.  SSEG is used as the default, so an error will be reported if you are
using QuickBASIC.  The cursor will then be placed near the comment in the
program that shows the appropriate correction.

SEARCHING FUNDAMENTALS
======================

As with sorting, searching data effectively also requires that you select
an appropriate algorithm.  There are many ways to search data, and we will
look at several methods here.  The easiest to understand is a linear
search, which simply examines each item in sequence until a match is found:

FoundAt = 0                   'assume no match

FOR X = 1 TO NumElements      'search all elements
  IF Array$(X) = Sought$ THEN
    FoundAt = X               'remember where it is
    EXIT FOR                  'no need to continue
  END IF
NEXT

IF FoundAt THEN               'if it was found
  PRINT "Found at element"; FoundAt
ELSE
  PRINT "Not found"           'otherwise
END IF

For small arrays a linear search is effective and usually fast enough.
Also, integer and long integer arrays can be searched reasonably quickly
even if there are many elements.  But with string data, as the number of
elements that must be searched increases, the search time can quickly
become unacceptable.  This is particularly true when additional features
are required such as searching without regard to capitalization or
comparing only a portion of each element using MID$.  Indeed, many of the
same techniques that enhance a sort routine can also be employed when
searching.
   To search ignoring capitalization you would first capitalize Sought$
outside of the loop, and then use UCASE$ with each element in the
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comparisons.  Using UCASE$(Sought$) repeatedly within the loop is both
wasteful and unnecessary:

   Sought$ = UCASE$(Sought$)
    .
    .
   IF UCASE$(Array$(X)) = Sought$ THEN

Likewise, comparing only a portion of each string will require MID$ with
each comparison, after using MID$ initially to extract what is needed from
Sought$:

   Sought$ = MID$(Sought$, 12, 6)
    .
    .
   IF MID$(Array$(X), 12, 6) = Sought$ THEN

And again, as with sorting, these changes may be combined in a variety of
ways.  You could even use INSTR to see if the string being searched for
is within the array, when an exact match is not needed:

   IF INSTR(UCASE$(Array$(X)), Sought$) THEN

However, each additional BASIC function you use will make the searching
slower and slower.  Although BASIC's INSTR is very fast, adding UCASE$ to
each comparison as shown above slows the overall process considerably.
   There are three primary ways that searching can be speeded up.  One is
to apply simple improvements based on understanding how BASIC works, and
knowing which commands are fastest.  The other is to select a better
algorithm.  The third is to translate selected portions of the search
routine into assembly language.  I will use all three of these techniques
here, starting with enhancements to the linear search, and culminating with
a very fast binary search for use with sorted data.
   One of the slowest operations that BASIC performs is comparing strings.
For each string, its descriptor address must be loaded and passed to the
comparison routine.  That routine must then obtain the actual data address,
and examine each byte in both strings until one of the characters is
different, or it determines that both strings are the same.  As I mentioned
earlier, if one or both of the strings are fixed-length, then copies also
must be made before the comparison can be performed.
   There is another service that the string comparison routine must
perform, which is probably not obvious to most programmers and which also
impacts its speed.  BASIC frequently creates and then deletes temporary
strings without your knowing it.  One example is the copy it makes of
fixed-length strings before comparing them.  But there are other, more
subtle situations in which this can happen.
   For example, when you use IF X$ + Y$ > Z$ BASIC must create a temporary
string comprised of X$ + Y$, and then pass that to the comparison routine.
Therefore, that routine is also responsible for determining if the incoming
string is a temporary copy, and deleting it if so.  In fact, all of BASIC's
internal routines that accept string arguments are required to do this.
   Therefore, one good way to speed searching of conventional (not fixed-
length) string arrays is to first compare the lengths.  Since strings whose
lengths are different can't possibly be the same, this will quickly weed
those out.  BASIC's LEN function is much faster than its string compare
routine, and it offers a simple but effective opportunity to speed things
up.  LEN is made even faster because it requires only a single argument,
as opposed to the two required for the comparison routine.

SLen = LEN(Sought$)       'do this once outside the loop
FOR X = 1 TO NumElements
  IF LEN(Array$(X)) = SLen THEN   'maybe...
    IF Array$(X) = Sought$ THEN   'found it!
      FoundAt = X



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 281   -

      EXIT FOR
    END IF
  END IF
NEXT

Similarly, if the first characters are not the same then the strings can't
match either.  Like LEN, BASIC's ASC is much faster than the full string
comparison routine, and it too can improve search time by eliminating
elements that can't possibly match.  Depending on the type and distribution
of the data in the array, using both LEN and ASCII can result in a very
fast linear search:

SLen = LEN(Sought$)
SAsc = ASC(Sought$)
FOR X = 1 TO NumElements
  IF LEN(Array$(X)) = SLen THEN
    IF ASC(Array$(X)) = SAsc THEN
      IF Array$(X) = Sought$ THEN
        ...
      END IF
    END IF
  END IF
NEXT

Notice that the LEN test must always be before the ASC test, to avoid an
"Illegal function call" error if the array element is a null string.  If
all or most of the strings are the same length, then LEN will not be
helpful, and ASC should be used alone.
   As I mentioned before, when comparing fixed-length string arrays BASIC
makes a copy of each element into a conventional string, prior to calling
its comparison routine.  This copying is also performed when using ASC is
used, but not LEN.  After all, the length of a fixed-length never changes,
and BASIC is smart enough to know the length directly.  But then, comparing
the lengths of these string is pointless anyway.
   Because of the added overhead to make these copies, the performance of
a conventional linear search for fixed-length data is generally quite poor.
This is a shame, because fixed-length strings are often the only choice
when as much data as possible must be kept in memory at once.  And fixed-
length strings lend themselves perfectly to names and addresses.  It should
be apparent by now that the best solution for quickly comparing fixed-
length string arrays--and the string portion of TYPE arrays too--is with
the various Compare functions already shown.
   If you are searching for an exact match, then either Compare or Compare2
will be ideal, depending on whether you want to ignore capitalization.  If
you have only a single string element in each array, you should define a
dummy TYPE.  This avoids the overhead of having to use both VARSEG and
VARPTR as separate arguments.  The short example program and SearchType
functions that follow search a fixed-length string array for a match.
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DEFINT A-Z
DECLARE FUNCTION Compare% (SEG Type1 AS ANY, SEG Type2 AS ANY, NumBytes)
DECLARE FUNCTION Compare2% (SEG Type1 AS ANY, SEG Type2 AS ANY, NumBytes)
DECLARE FUNCTION SearchType% (Array() AS ANY, Sought AS ANY)
DECLARE FUNCTION SearchType2% (Array() AS ANY, Sought AS ANY)
DECLARE FUNCTION SearchType3% (Array() AS ANY, Searched AS ANY)

CLS
TYPE FLen                       'this lets us use SEG
  LastName AS STRING * 15
END TYPE

REDIM Array(1 TO 4000) AS FLen  '4000 is a lot of names
DIM Search AS FLen              'best comparing like data

FOR X = 1 TO 4000 STEP 2        'impart some realism
  Array(X).LastName = "Henderson"
NEXT

Array(4000).LastName = "Henson" 'almost at the end
Search.LastName = "Henson"      'find the same name

'----- first time how long it takes using Compare
Start! = TIMER                  'start timing

FOR X = 1 TO 5                  'search five times
   FoundAt = SearchType%(Array(), Search)
NEXT

IF FoundAt >= 0 THEN
  PRINT "Found at element"; FoundAt
ELSE
  PRINT "Not found"
END IF

Done! = TIMER
PRINT USING "##.## seconds with Compare"; Done! - Start!
PRINT

'----- then time how long it takes using Compare2
Start! = TIMER                  'start timing

FOR X = 1 TO 5                  'as above
   FoundAt = SearchType2%(Array(), Search)
NEXT

IF FoundAt >= 0 THEN
  PRINT "Found at element"; FoundAt
ELSE
  PRINT "Not found"
END IF

Done! = TIMER
PRINT USING "##.## seconds with Compare2"; Done! - Start!
PRINT

'---- finally, time how long it takes using pure BASIC
Start! = TIMER

FOR X = 1 TO 5
   FoundAt = SearchType3%(Array(), Search)
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NEXT

IF FoundAt >= 0 THEN
  PRINT "Found at element"; FoundAt
ELSE
  PRINT "Not found"
END IF

Done! = TIMER
PRINT USING "##.## seconds using BASIC"; Done! - Start!
END

FUNCTION SearchType% (Array() AS FLen, Sought AS FLen) STATIC

SearchType% = -1                'assume not found

FOR X = LBOUND(Array) TO UBOUND(Array)
  IF Compare%(Array(X), Sought, LEN(Sought)) THEN
    SearchType% = X             'save where it was found
    EXIT FOR                    'and skip what remains
  END IF
NEXT

END FUNCTION

FUNCTION SearchType2% (Array() AS FLen, Sought AS FLen) STATIC

SearchType2% = -1               'assume not found

FOR X = LBOUND(Array) TO UBOUND(Array)
  IF Compare2%(Array(X), Sought, LEN(Sought)) THEN
    SearchType2% = X            'save where it was found
    EXIT FOR                    'and skip what remains
  END IF
NEXT

END FUNCTION

FUNCTION SearchType3% (Array() AS FLen, Searched AS FLen) STATIC

SearchType3% = -1               'assume not found

FOR X = LBOUND(Array) TO UBOUND(Array)
  IF Array(X).LastName = Searched.LastName THEN
    SearchType3% = X            'save where it was found
    EXIT FOR                    'and skip what remains
  END IF
NEXT

END FUNCTION

When you run this program it will be apparent that the SearchType function
is the fastest, because it uses Compare which doesn't perform any case
conversions.  SearchType2 is only slightly slower with that added overhead,
and the purely BASIC function, SearchType3, lags far behind at half the
speed.  Note that the array is searched five times in succession, to
minimize the slight errors TIMER imposes.  Longer timings are generally
more accurate than short ones, because of the 1/18th second resolution of
the PC's system timer.
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BINARY SEARCHES

This is about as far as we can go using linear searching, and to achieve
higher performance requires a better algorithm.  The Binary Search is one
of the fastest available; however, it requires the data to already be in
sorted order.  A Binary Search can also be used with a sorted index, and
both methods will be described.
   Binary searches are very fast, and also very simple to understand.
Unlike the Quick Sort algorithm which achieves great efficiency at the
expense of being complicated, a Binary Search can be written using only a
few lines of code.  The strategy is to start the search at the middle of
the array.  If the value of that element value is less than that of the
data being sought, a new halfway point is checked and the process repeated.
This way, the routine can quickly zero in on the value being searched for.
Figure 8-3 below shows how this works.

13:  Zambia
12:  Sweden
11:  Peru
10:  Mexico  <-- step 2
 9:  Holland
 8:  Germany
 7:  Finland <-- step 1
 6:  England
 5:  Denmark
 4:  China
 3:  Canada
 2:  Austria
 1:  Australia

Figure 8-3: How a Binary Search locates data in a sorted array.

If you are searching for Mexico, the first element examined is number 7,
which is halfway through the array.  Comparing Mexico to Finland shows
that Mexico is greater, so the distance is again cut in half.  In this
case, a match was found after only two tries--remarkably faster than a
linear search that would have required ten comparisons.  Even when huge
arrays must be searched, data can often be found in a dozen or so tries.
One interesting property of a binary search is that it takes no longer to
find the last element in the array than the first one.
   The program below shows one way to implement a Binary Search.
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DEFINT A-Z
DECLARE FUNCTION BinarySearch% (Array$(), Find$)

CLS
PRINT "Creating test data..."

REDIM Array$(1 TO 1000)         'create a "sorted" array
FOR X = 1 TO 1000
  Array$(X) = "String " + RIGHT$("000" + LTRIM$(STR$(X)), 4)
NEXT

PRINT "Searching array..."

FoundAt = BinarySearch%(Array$(), "String 0987")
IF FoundAt >= 0 THEN
  PRINT "Found at element"; FoundAt
ELSE
  PRINT "Not found"
END IF

END

FUNCTION BinarySearch% (Array$(), Find$) STATIC

BinarySearch% = -1              'no matching element yet
Min = LBOUND(Array$)            'start at first element
Max = UBOUND(Array$)            'consider through last

DO
  Try = (Max + Min) \ 2         'start testing in middle

  IF Array$(Try) = Find$ THEN   'found it!
    BinarySearch% = Try         'return matching element
    EXIT DO                     'all done
  END IF

  IF Array$(Try) > Find$ THEN   'too high, cut in half
    Max = Try - 1
  ELSE
    Min = Try + 1               'too low, cut other way
  END IF
LOOP WHILE Max >= Min

END FUNCTION

The BinarySearch function returns either the element number where a match
was found, or -1 if the search string was not found.  Not using a value of
zero to indicate failure lets you use arrays that start with element number
0.  As you can see, the simplicity of this algorithm belies its incredible
efficiency.  The only real problem is that the data must already be in
sorted order.  Also notice that two string comparisons must be made--one
to see if the strings are equal, and another to see if the current element
is too high.  Although you could use Compare3 which examines the strings
once and tells if the data is the same or which is greater, a Binary Search
is so fast that this probably isn't worth the added trouble.  As you will
see when you run the test program, it takes far longer to create the data
than to search it!
   Besides the usual enhancements that can be applied to the comparisons
using UCASE$ or MID$, this function could also be structured to use a
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parallel index array.  Assuming the data is not sorted but the index array
is, the modified Binary Search would look like this:
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FUNCTION BinaryISearch% (Array$(), Index(), Find$) STATIC

BinaryISearch% = -1             'assume not found
Min = LBOUND(Array$)            'start at first element
Max = UBOUND(Array$)            'consider through last

DO
  Try = (Max + Min) \ 2         'start testing in middle

  IF Array$(Index(Try)) = Find$ THEN    'found it!
    BinaryISearch% = Try        'return matching element
    EXIT DO                     'all done
  END IF

  IF Array$(Index(Try)) > Find$ THEN    'too high, cut
    Max = Try - 1
  ELSE
    Min = Try + 1               'too low, cut other way
  END IF
LOOP WHILE Max >= Min

END FUNCTION

NUMERIC ARRAYS

All of the searching techniques considered so far have addressed string
data.  In most cases, string array searches are the ones that will benefit
the most from improved techniques.  As you have already seen, BASIC makes
copies of fixed-length strings before comparing them, which slows down
searching.  And the very nature of strings implies that many bytes may have
to be compared before determining if they are equal or which string is
greater.  In most cases, searching a numeric array is fast enough without
requiring any added effort, especially when the data is integer or long
integer.
   However, a few aspects of numeric searching are worth mentioning here.
One is avoiding the inevitable rounding errors that are sure to creep into
the numbers you are examining.  Another is that in many cases, you may not
be looking for an exact match.  For example, you may need to find the first
element that is higher than a given value, or perhaps determine the
smallest value in an array.
   Unlike strings that are either the same or they aren't, the binary
representation of numeric values is not always so precise.  Consider the
following test which *should* result in a match, but doesn't.

Value! = 1!
Result! = 2!
CLS

FOR X = 1 TO 1000
  Value! = Value! + .001
NEXT

IF Value! = Result! THEN
  PRINT "They are equal"
ELSE
  PRINT "Value! ="; Value!
  PRINT "Result! ="; Result!
END IF
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 After adding .001 to Value! 1000 times Value! should be equal to 2, but
instead it is slightly higher.  This is because the binary storage method
used by computers simply cannot represent every possible value with
absolute accuracy.  Even changing all of the single precision exclamation
points (!) to double precision pound signs (#) will not solve the problem.
Therefore, to find a given value in a numeric array can require some extra
trickery.
   What is really needed is to determine if the numbers are *very close* to
each other, as opposed to exactly the same.  One way to accomplish this is
to subtract the two, and see if the result is very close to zero.  This is
shown below.

Value! = 1!
Result! = 2!
CLS

FOR X = 1 TO 1000
  Value! = Value! + .001
NEXT

IF ABS(Value! - Result!) < .0001 THEN
  PRINT "They are equal"
ELSE
  PRINT "Value! ="; Value!
  PRINT "Result! ="; Result!
END IF

Here, the absolute value of the difference between the numbers is examined,
and if that difference is very small the numbers are assumed to be the
same.  Unfortunately, the added overhead of subtracting before comparing
slows the comparison even further.  There is no simple cure for this, and
an array search must apply this subtraction to each element that is
examined.
   Another common use for numeric array searches is when determining the
largest or smallest value.  Many programmers make the common mistake shown
below when trying to find the largest value in an array.

MaxValue# = 0

FOR X = 1 TO NumElements
  IF Array#(X) > MaxValue# THEN
    MaxValue# = Array#(X)
    Element = X
  END IF
NEXT

PRINT "The largest value found is"; MaxValue#
PRINT "And it was found at element"; Element

The problem with this routine is that it doesn't account for arrays where
all of the elements are negative numbers!  In that case no element will be
greater than the initial MaxValue#, and the routine will incorrectly report
zero as the result.  The correct method is to obtain the lowest element
value, and use that as a starting point:

MaxValue# = Array#(1)

FOR X = 2 TO NumElements
  IF Array#(X) > MaxValue# THEN
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    MaxValue# = Array#(X)
  END IF
NEXT

PRINT "The largest value found is"; MaxValue#

Determining the highest value in an array would be handled similarly,
except the greater-than symbol (>) would be replaced with a less-than
operator (<).

SOUNDEX

The final searching technique I will show is Soundex.  It is often useful
to search for data based on its sound, for example when you do not know how
to spell a person's name.  Soundex was invented in the 1920's and has been
used since then by, among others, the U.S. Census Bureau.  A Soundex code
is an alpha-numeric representation of the sound of a word, and it is
surprisingly accurate despite its simplicity.  The classic implementation
of Soundex returns a four-character result code.  The first character is
the same as the first letter of the word, and the other three are numeric
digits coded as shown in Figure 8-4.

    1    B, F, P, V
    2    C, G, J, K, Q, S, X
    3    D, T
    4    L
    5    M, N
    6    R

Figure 8-4: The Soundex code numbers returned for significant letters of
the alphabet.

Letters not shown are simply skipped as being statistically insignificant
to the sound of the word.  In particular, speaking accents often minimize
the importance of vowels, and blur their distinction.  If the string is
short and there are fewer than four digits, the result is simply padded
with trailing zeros.  One additional rule is that a code digit is never
repeated, unless there is an uncoded letter in between.  In the listing
that follows, two different implementations of Soundex are shown.
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'SOUNDEX.BAS, Soundex routines and example

DEFINT A-Z

DECLARE FUNCTION ASoundex$ (Word$)
DECLARE FUNCTION ISoundex% (Word$)

CLS
DO
  PRINT "press Enter alone to exit"
  INPUT "What is the first word"; FWord$
  IF LEN(FWord$) = 0 THEN EXIT DO
  INPUT "What is the second word"; SWord$
  PRINT

  'Test by alpha-numeric soundex
  PRINT "Alpha-Numeric Soundex: "; FWord$; " and ";
  PRINT SWord$; " do ";
  IF ASoundex$(FWord$) <> ASoundex$(SWord$) THEN
    PRINT "NOT ";
  END IF
  PRINT "sound the same."
  PRINT

  'Test by numeric soundex
  PRINT "      Numeric Soundex: "; FWord$; " and ";
  PRINT SWord$; " do ";
  IF ISoundex%(FWord$) <> ISoundex%(SWord$) THEN
    PRINT "NOT ";
  END IF
  PRINT "sound the same."
  PRINT
LOOP
END

FUNCTION ASoundex$ (InWord$) STATIC

  Word$ = UCASE$(InWord$)
  Work$ = LEFT$(Word$, 1) + "000"
  WkPos = 2
  PrevCode = 0

  FOR L = 2 TO LEN(Word$)
    Temp = INSTR("BFPVCGJKQSXZDTLMNR", MID$(Word$, L, 1))
    IF Temp THEN
      Temp = ASC(MID$("111122222222334556", Temp, 1))
      IF Temp <> PrevCode THEN
        MID$(Work$, WkPos) = CHR$(Temp)
        PrevCode = Temp
        WkPos = WkPos + 1
        IF WkPos > 4 THEN EXIT FOR
      END IF
    ELSE
      PrevCode = 0
    END IF
  NEXT

  ASoundex$ = Work$

END FUNCTION
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FUNCTION ISoundex% (InWord$) STATIC

  Word$ = UCASE$(InWord$)
  Work$ = "0000"
  WkPos = 1
  PrevCode = 0

  FOR L = 1 TO LEN(Word$)
    Temp = INSTR("BFPVCGJKQSXZDTLMNR", MID$(Word$, L, 1))
    IF Temp THEN
      Temp = ASC(MID$("111122222222334556", Temp, 1))
      IF Temp <> PrevCode THEN
        MID$(Work$, WkPos) = CHR$(Temp)
        PrevCode = Temp
        WkPos = WkPos + 1
        IF WkPos > 4 THEN EXIT FOR
      END IF
    ELSE
      PrevCode = 0
    END IF
  NEXT

  ISoundex% = VAL(Work$)

END FUNCTION

The first function, ASoundex, follows the standard Soundex definition and
returns the result as a string.  The ISoundex version cheats slightly by
coding the first letter as a number, but it returns an integer value
instead of a string.  Because integer searches are many times faster than
string searches, this version will be better when thousands--or even
hundreds of thousands--of names must be examined.
   An additional benefit of the integer-only method is that it allows for
variations on the first letter.  For example, if you enter Cane and Kane
in response to the prompts from SOUNDEX.BAS ASoundex will not recognize the
names as sounding alike where ISoundex will.

LINKED DATA
===========

No discussion of searching and sorting would be complete without a mention
of linked lists and other data links.  Unlike arrays where all of the
elements lie in adjacent memory locations, linked data is useful when data
locations may be disjointed.  One example is the linked list used by the
DOS File Allocation Table (FAT) on every disk.  As I described in Chapter
6, the data in each file may be scattered throughout the disk, and only
through a linked list can DOS follow the thread from one sector in a file
to another.
   Another example where linked data is useful--and the one we will focus
on here--is to keep track of memo fields in a database.  A memo field is
a field that can store freeform text such as notes about a sales contact
or a patient's medical history.  Since these fields typically require
varying lengths, it is inefficient to reserve space for the longest one
possible in the main database file.  Therefore, most programs store memo
fields in a separate disk file, and use a *pointer field* in the main data
file to show where the corresponding memo starts in the dedicated memo
file.  Similarly, a back pointer adjacent to each memo identifies the
record that points to it.  This is shown in Figure 8-5 below.

         +----------------------------------------------------
MAIN.DAT ¦LastName¦FirstName¦1¦LastName¦FirstName¦73¦LastNa...
         +----------------------------------------------------
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                             ^                    ^
                             |                    |
pointers into memo file -----+--------------------+
(forward pointers)

offsets into --+----------+-------+--------------+
this memo file |          |       |              |
               1          73     126            233
              +-------------------------------------------+
     MEMO.DAT ¦1LMemo1   ¦2LMemo2¦3LMemo3       ¦4LMemo4  ¦
              +-------------------------------------------+
               ^          ^       ^              ^
               |          |       |              |
record numbers +----------+-------+--------------+
(back pointers)

(L = length of this memo)

Figure 8-5: Pointers relate record numbers to memo file offsets and vice
versa.

Here, the pointer in the main data file record is a long integer that holds
the byte offset into the memo file where the corresponding memo text
begins.  And just before the memo text is an integer record number that
shows which record this memo belongs to.  (If you anticipate more than
65,535 records a long integer must be used instead.)  Thus, these pointers
provide links between the two files, and relate the information they
contain.
   When a new record is added to the main file, the memo that goes with it
is appended to the end of the memo file.  BASIC's LOF function can be used
to determine the current end of the memo file, which is then used as the
beginning offset for the new memo text.  And as the new memo is appended
to MEMO.DAT, the first data actually written is the number of the new
record in the main data file.
   The record number back pointer in the memo file is needed to allow memo
data to be edited.  Since there's no reasonable way to extend memo text
when other memo data follows it, most programs simply abandon the old text,
and allocate new space at the end of the file.  The abandoned text is then
marked as such, perhaps by storing a negative value as the record number.
Storing a negative version of the abandoned data's length is ideal, because
that both identifies the data as obsolete, and also tells how much farther
into the file the next memo is located.
   The idea here is that you would periodically run a memo file maintenance
program that compacts the file, thus eliminating the wasted space the
abandoned memos occupy.  This is similar to the DBPACK.BAS utility shown
in Chapter 7, and also similar to the way that BASIC compacts string memory
when it becomes full.  But when an existing memo is relocated in the memo
file, the field in the main data file that points to the memo must also be
updated.  And that's why the record number back pointer is needed: so the
compaction program can know which record in the main file must be updated.
   The "L" identifier in the memo file in Figure 8-5, shown between the
record number and memo text, is a length byte or word that tells how long
the text is.  If you plan to limit the memo field lengths to 255 or fewer
characters, then a single byte is sufficient.  Otherwise an integer must
be used.  An example of code that reads a data record and then its
associated memo text is shown below.

GET #MainFile, RecNumber, TypeVar
MemoOffset& = TypeVar.MemoOff
GET #MemoFile, MemoOffset& + 2, MemoLength%
Memo$ = SPACE$(MemoLength%)
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GET #MemoFile, , Memo$

The first step reads a record from the main data file into a TYPE variable,
and the second determines where in the memo file the memo text begins.  Two
is added to that offset in the second GET statement, to skip over the
record number back pointer which isn't needed here.  Once the length of the
memo text is known, a string is assigned to that length, and the actual
text is read into it.
   If you are using long integer record numbers you would of course use
MemoOffset& + 4 in the second GET.  And if you're using a single byte to
hold the memo length you would define a fixed-length string to receive
that byte:

DIM Temp AS STRING *1
GET #MemoFile, MemoOffset& + 2, Temp
MemoLength = ASC(Temp)

Since BASIC doesn't offer a byte-sized integer data type, ASC and STR$ can
be used to convert between numeric and string formats.

ARRAY ELEMENT INSERTION AND DELETION
====================================

The last issue related to array and memory manipulation I want to cover
is inserting and deleting elements.  If you intend to maintain file indexes
or other information in memory and in sorted order, you will need some way
to insert a new entry.  By the same token, deleting an entry in a database
requires that the parallel index entry also be deleted.
   The most obvious way to insert or delete elements in an array is with
a FOR/NEXT loop.  The first example below inserts an element, and the
second deletes one.

'----- Insert an element:
Element = 200
InsertValue = 999

FOR X = UBOUND(Array) TO Element + 1 STEP -1
  Array(X) = Array(X - 1)
NEXT
Array(Element) = InsertValue

'----- Delete an element:
Element = 200
FOR X = Element TO UBOUND(Array) - 1
  Array(X) = Array(X + 1)
NEXT
Array(UBOUND(Array)) = 0  'optionally clear last element

For integer, long integer, and fixed-length arrays this is about as
efficient as you can get, short of rewriting the code in assembly language.
However, with floating point and string arrays the performance is less than
ideal.  Unless a numeric coprocessor is installed, floating point values
are assigned using interrupts and support code in the emulator library.
This adds an unnecessary level of complication that also impacts the speed.
When strings are assigned the situation is even worse, because of the
memory allocation overhead associated with dynamic string management.
   A better solution for floating point and string arrays is a series of
SWAP statements.  The short program below benchmarks the speed difference
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of the two methods, as it inserts an element into a single precision array.
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REDIM Array(1 TO 500)
CLS
Element% = 200
InsertValue = 999

Start = TIMER
FOR A% = 1 TO 500
  FOR X% = UBOUND(Array) TO Element% + 1 STEP -1
    Array(X%) = Array(X% - 1)
  NEXT
  Array(Element%) = InsertValue
NEXT
Done = TIMER
PRINT USING "##.## seconds when assigning"; Done - Start

Start = TIMER
FOR A% = 1 TO 500
  FOR X% = UBOUND(Array) TO Element% + 1 STEP -1
    SWAP Array(X%), Array(X% - 1)
  NEXT
  Array(Element%) = InsertValue
NEXT
Done = TIMER
PRINT USING "##.## seconds when swapping"; Done - Start
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If you run this program in the BASIC environment, the differences may not
appear that significant.  But when the program is compiled to an executable
file, the swapping method is more than four times faster.  In fact, you
should never compare programming methods using the BASIC editor for exactly
this reason.  In many cases, the slowness of the interpreting process
overshadows significant differences between one approach and another.
   String arrays also benefit greatly from using SWAP instead of
assignments, though the amount of benefit varies depending on the length
of the strings.  If you modify the previous program to use a string array,
also add this loop to initialize the elements:

   FOR X% = 1 TO 500
     Array$(X%) = "String number" + STR$(X)
   NEXT

With BASIC PDS far strings the difference is only slightly less at about
three to one, due to the added complexity of far data.  Also, SWAP will
always be worse than assignments when inserting or deleting elements in a
fixed-length string or TYPE array.  An assignment merely copies the data
from one location to another.  SWAP, however, must copy the data in both
directions.
   Understand that when using SWAP with conventional string arrays, the
data itself is not exchanged.  Rather, the four-byte string descriptors are
copied.  But because BASIC program modules store string data in different
segments, extra work is necessary to determine which descriptor goes with
which segment.  When near strings are being used, only six bytes are
exchanged, regardless of the length of the strings.  Four bytes hold the
descriptors, and two more store the back pointers.

SUMMARY
=======

This chapter explained many of the finer points of sorting and searching
all types of data in BASIC.  It began with sorting concepts using the
simple Bubble Sort as a model, and then went on to explain indexed and
multi-key sorts.  One way to implement a multi-key sort is by aligning the
key fields into adjacent TYPE components.  While there are some
restrictions to this method, it is fairly simple to implement and also
very fast.
   The Quick Sort algorithm was shown, and the SEEQSORT.BAS program on the
accompanying disk helps you to understand this complex routine by
displaying graphically the progress of the comparisons and exchanges as
they are performed.  Along the way you saw how a few simple modifications
to any string sort routine can be used to sort regardless of
capitalization, or based on only a portion of a string element.
   You also learned that writing a truly general sort routine that can
handle any type of data requires dealing exclusively with segment and
address pointers.  Here, assembly language routines are invaluable for
assisting you when performing the necessary comparisons and data exchanges.
Although the actual operation of the assembly language routines will be
deferred until Chapter 12, such routines may easily be added to a BASIC
program using .LIB and .QLB libraries.
   I mentioned briefly the usefulness of packing and aligning data when
possible, as an aid to fast sorting.  In particular, dates can be packed
to only three bytes in Year/Month/Day order, and other data such as zip
codes can be stored in long integers.  Because numbers can be compared much
faster than strings, this helps the sorting routines operate more quickly.
   Array searching was also discussed in depth, and both linear and binary
search algorithms were shown.  As with the sorting routines, searching can
also employ UCASE$ and MID$ to search regardless of capitalization, or on
only a portion of each array element.  Two versions of the Soundex
algorithm were given, to let you easily locate names and other data based
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on how they sound.
   Besides showing the more traditional searching methods, I presented
routines to determine the minimum and maximum values in a numeric array.
I also discussed some of the ramifications involved when searching floating
point data, to avoid the inevitable rounding errors that might cause a
legitimate match to be ignored.
   Finally, some simple ways to insert and delete elements in both string
and numeric arrays were shown.  Although making direct assignments in a
loop is the most obvious way to do this, BASIC's often-overlooked SWAP
command can provide a significant improvement in speed.
   The next chapter will conclude this section about hands-on programming
by showing a variety of program optimization techniques.

                                CHAPTER 9

                          PROGRAM OPTIMIZATION

Throughout the preceding chapters I have shown a variety of tips and
techniques that can help to improve the efficiency of your programs.  For
example, Chapter 6 explained that processing files in large pieces reduces
the time needed to save and load data.  Likewise, Chapter 8 discussed the
improvement that SWAP often provides over conventional assignments.  Some
optimizations, however, do not fit into any of the well-defined categories
that have been used to organize this book.  In this chapter I will share
several general optimization techniques you can employ to reduce the size
of your programs and make them run faster.
   The material in this chapter is organized into three principle
categories: programming shortcuts and speed improvements, miscellaneous
tips and techniques, and benchmarking.  Each section addresses BASIC
programming ideas and methods that are not immediately obvious in most
cases.

PROGRAMMING SHORTCUTS AND SPEED IMPROVEMENTS
============================================

Chapter 3 discussed the use of AND, OR, and the other logical operations
that can be used for both logical (IF and CASE) tests and also bit
operations.  But there are a few other related points that are worth
mentioning here.  When you need to know if a variable is zero or not, you
can omit an explicit test for zero like this:

   IF Variable THEN...

You might be tempted to think that two variables could be tested for non-
zero values at one time in the same way, using code such as this:

   IF Var1 AND Var2 THEN...

However, that will very likely fail.  The expression Var1 AND Var2 combines
the bits in these variables, which could result in a value of zero even
when both variables are non-zero.  As an example, if Var1 currently holds
a value of 1, its bits will be set as follows:

   0000 0000 0000 0001

Now, if Var2 is assigned the value 2, its bits will be set like this:

   0000 0000 0000 0010

Since no two bits are set in the same position in each variable, the result
of Var1 AND Var2 is zero.  An effective solution is IF Var1 * Var2 THEN to
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ensure that neither variable is zero.  And to test if either variable is
non-zero you'd use OR.  Whatever follows the test IF Var1 OR Var2 THEN will
be executed as long as one (or both) variables are not zero.  These are
important short cuts to understand, because the improvement in code size
and execution speed can be significant.
   Each of the AND, OR, and multiplication tests shown here generates only
11 bytes of code.  Contrast that to the 28 bytes that BC creates for the
alternative: IF Var1 <> 0 AND Var2 <> 0 THEN.  Because of the improved
method of expression evaluation in BASIC PDS, this last example generates
only 14 bytes when using that version of BC.  None the less, if you can
avoid explicit comparisons to zero you will go a long way toward improving
the efficiency of your code.
   This short cut is equally appropriate with LOOP comparisons as well as
IF tests.  In the BufIn function shown in Chapter 6, INSTR was used to see
if a CHR$(13) carriage return was present in the buffer.  In the statement
CR = INSTR(BufPos, Buffer$, CR$), CR receives either 0 if that character
is present, or a non-zero position in the string where it was found.  The
LOOP statement that surrounded the buffer searching uses LOOP WHILE CR,
which continues looping as long as CR is not zero.
   When an integer variable is compared in a LOOP WHILE condition, seven
bytes of code are generated whether it is compared to zero or not.  But
when a long integer is used to control the LOOP WHILE condition, omitting
the explicit test for zero results in 11 bytes of compiled code where
including it creates 20 bytes.  Note that with floating point values
identical code is generated in either case, because an explicit comparison
to zero is required and added by the compiler.

PREDEFINING VARIABLES

Another important point is illustrated in the same code fragment that uses
INSTR to search for a carriage return.  There, the CR$ string variable had
been assigned earlier to CHR$(13).  Although the BufIn code could have used
CR = INSTR(BufPos, Buffer$, CHR$(13)) instead of a previously defined
string variable to replace the CHR$(13), that would take longer each time
the statement is executed.  Since CHR$ is a function, it must be called
each time it is used.  If CR$ is defined once ahead of time, only its
address needs to be passed to INSTR.  This can be done with four bytes of
assembly language code.
   If CHR$(13) will be used only once in a program, then the only savings
afforded by predefining it will be execution speed.  But when it is needed
two or more times, several bytes can be saved at each occurrence by using
a replacement string variable.  Other common CHR$ values that are used in
BASIC programs are the CHR$(34) quote character, and CHR$(0) which is often
used when accessing DOS services with CALL Interrupt.
   Likewise, you should avoid calling any functions more than is absolutely
necessary.  I have seen many programmers use code similar to the following,
to see if a drive letter has been given as part of a file name.

   IF INSTR(Path$, ":") THEN
     Drive$ = LEFT$(INSTR(Path$, ":") - 1)
   END IF

A much better approach is to invoke INSTR only once, and save the results
for subsequent testing:

   Found% = INSTR(Path$, ":")   'save the result from INSTR
   IF Found% THEN
     Drive$ = LEFT$(Path$, Found%) - 1)
   END IF

The same situation holds true for UCASE$, MID$, and all of the other BASIC
functions.  Rather than this:

   IF INSTR(UCASE$(MID$(Work$, 3, 22)), "/A") THEN A = True
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   IF INSTR(UCASE$(MID$(Work$, 3, 22)), "/B") THEN B = True
   IF INSTR(UCASE$(MID$(Work$, 3, 22)), "/C") THEN C = True

Instead use this:

   Temp$ = UCASE$(MID$(Work$, 3, 22))
   IF INSTR(Temp$, "/A") THEN A = True
   IF INSTR(Temp$, "/B") THEN B = True
   IF INSTR(Temp$, "/C") THEN C = True

Where the first example generates 138 bytes of code, the second uses only
111.  The time savings will be even more significant, because BASIC's
UCASE$ and MID$ functions allocate and deallocate memory by making further
calls to BASIC's string memory management routines.
   Indeed, it is always best to avoid creating new strings whenever
possible, precisely because of the overhead needed to assign and erase
string data.  Each time a string is assigned, memory must be found to hold
it; add to that the additional code needed to release the older, abandoned
version of the string.
   This has further ramifications with simple string tests as well.  As
Chapter 3 explained, testing for single characters or the first character
in a string is always faster if you isolate the ASCII value of the
character first, and then use integer comparisons later.  In the example
below, the first series of IF tests generates 60 bytes of code.  This is
much less efficient than the second which generates only 46, even though
the steps to obtain and assign the ASCII value of Answer$ comprise 12 of
those bytes.
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PRINT "Abort, Retry, or Fail? (A/R/F) ";
DO
  Answer$ = UCASE$(INKEY$)
LOOP UNTIL LEN(Answer$)

'----- Method 1:
IF Answer$ = "A" THEN
  REM
ELSEIF Answer$ = "R" THEN
  REM
ELSEIF Answer$ = "F" THEN
  REM
END IF

'----- Method 2:
A% = ASC(Answer$)
IF A% = 65 THEN
  REM
ELSEIF A% = 82 THEN
  REM
ELSEIF A% = 70 THEN
  REM
END IF

Another prime candidate for speed enhancement is when you need to create
a string from individual characters.  The first example below reads the 80
characters in the top row of display memory, and builds a new string from
those characters.

   Scrn$ = ""
   FOR X = 1 TO 80
     Scrn$ = Scrn$ + CHR$(SCREEN(1, X))
   NEXT

Since we already know that 80 characters are to be read, a much better
method is to preassign the destination string, and insert the characters
using the statement form of MID$, thus:

   Scrn$ = SPACE$(80)
   FOR X% = 1 TO 80
     MID$(Scrn$, X%, 1) = CHR$(SCREEN(1, X%))
   NEXT

An informal timing test that executed these code fragments 100 times using
QuickBASIC 4.5 showed that the second example is nearly twice as fast as
the first.  Moreover, since BASIC's SCREEN function is notoriously slow,
the actual difference between building a new string and inserting
characters into an existing string is no doubt much greater.

INTEGER AND LONG INTEGER ASSIGNMENTS

Another facet of compiled BASIC that is probably not immediately obvious
is the way that integer and long integer assignments are handled by the
compiler.  When many variables are to be assigned the same value--perhaps
cleared to zero--it is often more efficient to assign one of them from that
value, and then assign the rest from the first.  To appreciate why this is
so requires an understanding of how BASIC compiles such assignments.
   Normally, assigning an integer or long integer variable from a numeric
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constant requires the same amount of code as assigning from another
variable.  The BASIC statement X% = 1234 is compiled to the following 6-
byte assembly language statement.

   C7063600D204  MOV WORD PTR [X%],1234

Assigning the long integer variable Y& requires two such 6-byte
instructions--one for the low word and another for the high word:

   C7063600D204  MOV  WORD PTR [Y&],1234 ;assign the low word
   C70638000000  MOV  WORD PTR [Y&+2],0  ;then the high word

The 80x86 family of microprocessors does not have direct instructions for
moving the contents of one memory location to another.  Therefore, the
statement X% = Y% is compiled as follows, with the AX register used as an
intermediary.

   A13800  MOV  AX,WORD PTR [Y%]     ;move Y% into AX
   A33600  MOV  WORD PTR [X%],AX     ;move AX into X%

Assigning one long integer from another as in X& = Y& is handled similarly:

   A13A00    MOV  AX,WORD PTR [Y&]     ;move AX from Y& low
   8B163C00  MOV  DX,WORD PTR [Y&+2]   ;move DX from Y& high
   A33600    MOV  WORD PTR [X&],AX     ;move X& low from AX
   89163800  MOV  WORD PTR [X&+2],DX   ;move X& high from DX

You may have noticed that instructions that use the AX registers require
only three bytes to access a word of memory, while those that use DX (or
indeed, any register other than AX) require four.  But don't be so quick
to assume that BASIC is not optimizing your code.  The advantage to using
separate registers is that the full value of Y& is preserved.  Had AX been
used both times, the low word would be lost when the high word was
transferred from Y& to X&.
   When assigning one variable to many in a row, BASIC is smart enough to
remember which values are in which registers, and it reuses those values
for subsequent assignments.  The combination BASIC and assembly language
code shown below was captured from a CodeView session and edited slightly
for clarity.  It shows the actual assembly language code bytes generated
for a series of assignments.

Plain integer assignments:

   A% = 1234
       C7063600D204   MOV  WORD PTR [A%],&H04D2
   B% = 1234
       C7063800D204   MOV  WORD PTR [B%],&H04D2
   C% = 1234
       C7063A00D204   MOV  WORD PTR [C%],&H04D2
   D% = 1234
       C7063C00D204   MOV  WORD PTR [D%],&H04D2
   E% = 1234
       C7063E00D204   MOV  WORD PTR [E%],&H04D2

Plain long integer assignments:

   V& = 1234
       C7064000D204   MOV  WORD PTR [V&],&H04D2
       C70642000000   MOV  WORD PTR [V&+2],0
   W& = 1234
       C7064400D204   MOV  WORD PTR [W&],&H04D2
       C70642000000   MOV  WORD PTR [W&+2],0
   X& = 1234
       C7064800D204   MOV  WORD PTR [X&],&H04D2
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       C70642000000   MOV  WORD PTR [X&+2],0
   Y& = 1234
       C7064C00D204   MOV  WORD PTR [Y&],&H04D2
       C70642000000   MOV  WORD PTR [Y&+2],0
   Z& = 1234
       C7065000D204   MOV  WORD PTR [Z&],&H04D2
       C70642000000   MOV  WORD PTR [Z&+2],0

Assigning multiple integers from another:

   A% = 1234
       C7063600D204   MOV  WORD PTR [A%],&H04D2
   B% = A%
       A13600         MOV  AX,WORD PTR [A%]
       A33800         MOV  WORD PTR [B%],AX
   C% = A%
       A33A00         MOV  WORD PTR [C%],AX
   D% = A%
       A33C00         MOV  WORD PTR [D%],AX
   E% = A%
       A33E00         MOV  WORD PTR [E%],AX

Assigning multiple long integers from another:

   V& = 1234
       C7064000D204   MOV  WORD PTR [V&],&H04D2
       C70642000000   MOV  WORD PTR [V&+2],0
   W& = V&
       A14000         MOV  AX,WORD PTR [V&]
       8B164200       MOV  DX,WORD PTR [V&+2]
       A34400         MOV  WORD PTR [W&],AX
       89164600       MOV  WORD PTR [W&+2],DX
   X& = V&
       A34800         MOV  WORD PTR [X&],AX
       89164A00       MOV  WORD PTR [X&+2],DX
   Y& = V&
       A34C00         MOV  WORD PTR [Y&],AX
       89164E00       MOV  WORD PTR [Y&+2],DX
   Z& = V&
       A35000         MOV  WORD PTR [Z&],AX
       89165200       MOV  WORD PTR [Z&+2],DX

The first five statements assign the value 1234 (04D2 Hex) to integer
variables, and each requires six bytes of code.  The next five instructions
assign the same value to long integers, taking two such instructions for
a total of 12 bytes for each assignment.  Note that a zero is assigned to
the higher word of each long integer, because the full Hex value being
assigned is actually &H000004D2.  Simple multiplication shows that the five
integer assignments generates five times six bytes, for a total of 30
bytes.  The long integer assignments take twice that at 60 bytes total.
   But notice the difference in the next two statement blocks.  The first
integer assignment requires the usual six bytes, and the second does as
well.  But thereafter, any number of additional integer variables will be
assigned with only three bytes apiece.  Likewise, all but the first two
long integer assignments are implemented using only seven bytes each.
Remembering what values are in each register is yet one more optimization
that BASIC performs as it compiles your program.

SHORT CIRCUIT EXPRESSION EVALUATION

Many programming situations require more than one test to determine if a
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series of instructions are to be executed or a branch taken.  The short
example below tests that a string is not null, and also that the row and
column to print at are legal.

   IF Work$ <> "" AND Row <= 25 AND Column <= 80 THEN
     LOCATE Row, Column
     PRINT Work$
   END IF

When this program is compiled with QuickBASIC, all three of the tests are
first performed in sequence, and the results are then combined to see if
the LOCATE and PRINT should be performed.  The problem is that time is
wasted comparing the row and column even if the string is null.  When speed
is the primary concern, you should test first for the condition that is
most likely to fail, and then use a separate test for the other conditions:

   IF Work$ <> "" THEN
     IF Row <= 25 AND Column <= 80 THEN
       LOCATE Row, Column
       PRINT Work$
     END IF
   END IF

This separation of tests is called *short circuit expression evaluation*,
because you are bypassing--or short circuiting--the remaining tests when
the first fails.  Although it doesn't really take BASIC very long to
determine if a string is null, the principle can be applied to other
situations such as those that involve file operations like EOF and LOF.
Further, as you learned in Chapter 3, a better way to test for a non-null
string is IF LEN(Work$) THEN.  However, the point is to perform those tests
that are most likely to fail first, before others that are less likely or
will take longer.
   Another place where you will find it useful to separate multiple tests
is when accessing arrays.  If you are testing both for a legal element
number and a particular element value, QuickBASIC will give a "Subscript
out of range" error if the element number is not valid.  This is shown
below.

   IF Element <= MaxEls AND Array(Element) <> 0 THEN

Since QuickBASIC always performs both tests, the second will cause an error
if Element is not a legal value.  In this case, you *have* to implement the
tests using two separate statements:

   IF Element <= MaxEls THEN
     IF Array(Element) <> 0 THEN
      .
      .
   END IF
 END IF

You may have noticed the I have referred to QuickBASIC here exclusively
in this discussion.  Beginning with BASIC 7.0, Microsoft has added short
circuit testing to the compiler as part of its built-in decision making
process.  Therefore, when you have a statement such as this one:

   IF X > 1 AND Y = 2 AND Z < 3 THEN

BASIC PDS substitutes the following logic automatically:

   IF X <= 1 THEN GOTO SkipIt
   IF Y <> 2 THEN GOTO SkipIt
   IF Z >= 3 THEN GOTO SkipIt
    .
    .
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   SkipIt:

Speaking of THEN and GOTO, it is worth mentioning that the keyword THEN
is not truly necessary when the only thing that follows is a GOTO.  That
is, IF X < 1 GOTO Label is perfectly legal, although the only savings is
in the program's source code.
   This next and final trick isn't technically a short circuit expression
test, but it can reduce the size of your programs in a similar fashion.
Chapter 3 compared the relative advantages of GOSUB routines and called
subprograms, and showed that a subprogram is superior when passing
parameters, while a GOSUB is much faster and smaller.  An ideal compromise
in some situations is to combine the two methods.
   If you have a called subprogram (or function) that requires a large
number of parameters and it is called many times, you can use a single call
within a GOSUB routine.  Since a GOSUB statement generates only three bytes
of code each time it is used, this can be an ideal way to minimize the
number of times that the full CALL is required.  Of course, GOSUB does not
accept parameters, but many of them may be the same from call to call.
In particular, some third-party add-on libraries require a long series of
arguments that are unlikely to change.  This is shown below.

Row = 10
Column = 20
Message$ = "Slap me five"
GOSUB DisplayMsg
 .
 .
DisplayMsg:
CALL ManyParams(Row, Column, Message$, MonType, NoSnow, FGColr, BGColr, _
  HighlightFlag, VideoMode, VideoPage)
RETURN

In many cases you would have assigned permanent values for the majority
of these parameters, and it is wasteful to have BASIC create code to pass
them repeatedly.  Here, the small added overhead of the three assignments
prior to each GOSUB results in less code than passing all ten arguments
repeatedly.

MISCELLANEOUS TIPS AND TECHNIQUES
=================================

There are many tricks that programmers learn over the years, and the
following are some of the more useful ones I have developed myself, or come
across in magazines and other sources.

FORMATTING AND ROUNDING

One frequent requirement in many programs is having control over how
numbers are formatted.  Of course, BASIC has the PRINT USING statement
which is adequate in most cases.  And Chapter 6 also showed how to trick
BASIC's file handling statements into letting you access a string formatted
by PRINT USING.  But there are other formatting issues that are not handled
by BASIC directly.
   One problem for many programmers is that BASIC adds leading and trailing
blanks when printing numbers on the screen or to a disk file.  The leading
blank is a placeholder for a possible minus sign, and is not added when the
number is in fact negative.  Avoiding the trailing blank is easy; simply
use PRINT STR$(Number).  And the easiest way to omit the leading blank for
positive numbers is to use LTRIM$: PRINT LTRIM$(STR$(Number)).
   PRINT USING is notoriously slow, because examines each character in a
string version of the number, and reformat the digits while interpreting
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the many possible options specified in a separate formatting string.  But
in many cases all that is really needed is simple right justification.  To
right-align an integer value (or series of values) you can use RSET to
assign the numbers into a string, and then print that string as shown
below.

   Work$ = SPACE$(10)
   REST Work$ = STR$(Number)
   PRINT TAB(15); Work$

In this case, Work$ could also have been dimensioned as a fixed-length
string.  Adding leading zeros to a number is also quite easy using RIGHT$
like this:

   PRINT RIGHT$("00000" + LTRIM$(STR$(Number)), 6)

You will need at least as many zeros in the string as the final result
requires, less one since STR$ always returns at least one digit.  Trailing
digits are handled similarly, except you would use LEFT$ instead of RIGHT$.
   Rounding numbers is an equally common need, and there are several ways
to handle this.  Of course, INT and FIX can be used to truncate a floating
point value to an integer result, but neither of these perform rounding.
For that you should use CINT or CLNG, which do round the number to the
closest integer value.  For example, Value = CINT(3.59) will assign 4 to
Value, regardless of whether Value is an integer, single precision, or
whatever.
   Some BASICs have a CEIL function, which returns the next *higher* integer
result.  That is, CEIL(3) is 3, but CEIL(3.01) returns the value 4.  This
function can be easily simulated using Ceil = -INT(-Number).
   Rounding algorithms are not quite so simple to implement, as you can see
in the short DEF FN function below.

   DEF FnRound# (Value#, Digits%)
     Mult% = 10 ^ Digits%
     FnRound# = FIX((Mult% * Value#) + (SGN(Value#)) * .5#) / Mult%
   END DEF

Another important math optimization is to avoid exponentiation whenever
possible.  Whether you are using integers or floating point numbers, using
Number ^ 2 and Number ^ 3 are many times slower than Number * Number and
Number * Number * Number respectively.

STRING TRICKS AND MINIMIZING PARAMETERS

There are a few string tricks and issues worth mentioning here too.  The
fastest and smallest way to clear a string without actually deleting it is
with LSET Work$ = "".  Another clever and interesting string trick lets you
delete a string with only nine bytes of code, instead of the usual 13.
   In Chapter 6 you learned that the assembly language routines within
BASIC's runtime library are accessible if you know their names.  You can
exploit that by using the B$STDL (string delete) routine, which requires
less code to set up and call than the more usual Work$ = "".  When a string
is assigned to a null value, two parameters--the address of the target
string and the address of the null--are passed to the string assignment
routine.  But B$STDL needs only the address of the string being deleted.
You might think that BASIC would be smart enough to see the "" null and
call B$STDL automatically, but it doesn't.  Here is how you would declare
and call B$STDL:

   DECLARE SUB DeleteStr ALIAS "B$STDL" (Work$)
   CALL DeleteStr(Any$)

As with the examples that let you call GET # and PUT # directly, DeleteStr
will not work in the QB environment unless you first create a wrapper
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subprogram written in BASIC, and include that wrapper in a Quick Library.
And this brings up an important point.  Why bother to write a BASIC
subprogram that in turn calls an internal routine, when the BASIC
subprogram could just as easily delete the string itself?  Therefore, the
best solution--especially because it's also the easiest--is to write
DeleteStr in BASIC thus:

   SUB DeleteStr(Work$)
     Work$ = ""
   END SUB

This is an important concept to be sure, because it shows how to reduce
the number of parameters when a particular service is needed many times.
Other similar situations are not hard to envision, whereby multiple
parameters that do not change from call to call can be placed into a
subprogram that itself requires only one or two arguments.
   This technique can be extended to several BASIC statements that use more
parameters than might otherwise be apparent.  For example, whenever you use
LOCATE, additional hidden parameters are passed to the B$LOCT routine
beyond those you specify.  The statement LOCATE X, Y generates 22 bytes of
code, even though other called routines that take two parameters need only
13.  (Every passed parameter generates four bytes of code, and the actual
CALL adds five more.  This is the same whether the routine being called is
an internal BASIC statement, a BASIC subprogram or function, or an assembly
language routine.)  Therefore, if you use LOCATE with two arguments
frequently in a program, you can save nine bytes for each by creating a
BASIC subprogram that performs the LOCATE:

   SUB LocateIt(Row, Column) STATIC
     LOCATE Row, Column
   END SUB

Similarly, if you frequently turn the cursor on and off, you should create
two subprograms--perhaps called CursorOn and CursorOff--that invoke LOCATE.
Since no parameters are required, the savings will add up quickly.  Calling
either of the subprograms below generates only five bytes of code, as
opposed to 18 for the statement LOCATE , , 1 and 20 for LOCATE , , 0.

   SUB CursorOn STATIC
     LOCATE , , 1
   END SUB

   SUB CursorOff STATIC
     LOCATE , , 0
   END SUB

The COLOR statement also requires more parameters than the number of
arguments you give.  Where COLOR FG, BG generates 22 bytes of compiled
code, CALL ColorIt(FG, BG) creates only 13.  CLOSE is yet another BASIC
statement that accepts multiple arguments, and it too requires hidden
parameters.  Using CLOSE #X compiles to 13 bytes, and CALL CloseIt(X) is
only nine.
   The reason that BASIC sends more parameters than you specify is because
these routines need extra information to know which and how many arguments
were given.  In the case of LOCATE, each argument is preceded with a flag
that tells if the next one was given.  CLOSE is similar, except the last
parameter tells how many file numbers were specified.  Remember, you can
use CLOSE alone to close all open files, or CLOSE 1, 3, 4 to close only
those files numbers.  Therefore, BASIC requires some way to tell the CLOSE
statement how many file numbers there are.
   Another place where several statements can be consolidated within a
single procedure is when peeking and poking memory.  BASIC's PEEK and POKE
are limited because they can access only one byte in memory at a time.  But
many useful memory locations are in fact organized as a pair of bytes, as
you will see in Chapter 10.  Instead of using code to combine or separate
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the bytes each time memory is accessed, you can use the following short
routines that let you peek and poke two bytes at once.

DECLARE FUNCTION PeekWord%(Address%)
  PeekWord% = PEEK(Address%) + 256 * PEEK(Address% + 1)
END FUNCTION

DECLARE SUB PokeWord(Address%, Value%)
  POKE Address%, Value% AND 255
  POKE Address% + 1, Value% \ 256
END SUB

Because these routines use BASIC's PEEK and POKE, you still need to use DEF
SEG separately.  Of course, the segment could be added as another
parameter, and assigned within the routines:

DECLARE FUNCTION PeekWord%(Segment%, Address%)
  DEF SEG = Segment%
  PeekWord% = PEEK(Address%) + 256 * PEEK(Address% + 1)
END FUNCTION

WORD WRAPPING

A string handling technique you will surely find useful is implementing
word wrapping.  There are a number of ways to do this, and the following
code shows one that I have found to be very efficient.
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DEFINT A-Z
SUB WordWrap (X$, Wide, LeftMargin)

  Length = LEN(X$)   'remember the length
  Pointer = 1        'start at the beginning of the string
  IF LeftMargin = 0 THEN LeftMargin = 1

  'Scan a block of Wide characters backwards, looking for a blank.  Stop
  '  at the first blank, or upon reaching the beginning of the string.
  DO
    FOR X = Pointer + Wide TO Pointer STEP -1
      IF MID$(X$, X, 1) = " " OR X = Length + 1 THEN
        LOCATE , LeftMargin
        PRINT MID$(X$, Pointer, X - Pointer);
        Pointer = X + 1
        WHILE MID$(X$, Pointer, 1) = " "
          Pointer = Pointer + 1
        WEND
        IF POS(0) > 1 THEN PRINT
        EXIT FOR
      END IF
    NEXT
  LOOP WHILE Pointer < Length
END SUB

The WordWrap subprogram expects the text for display to be in a single
long string.  You pass it that text, a left margin, and a width.  You could
certainly add enhancements to this routine such as a color parameter, or
the ability to format the text and send it to a printer or disk file.

UNUSUAL WAYS TO ACCESS DISPLAY MEMORY

If you ever tried to print a character in the lower-right corner of the
display screen, you probably discovered that it cannot be done [with many
BASIC versions] without causing the screen to scroll up.  The only solution
I am aware of is to use POKE to assign the character (and optionally its
color) to display memory directly as shown below.

   DEF SEG = &HB800     'use &HB000 for a monochrome display
   POKE 3998, 65        'ASCII code for the letter "A"
   POKE 3999, 9         'bright blue on black

The second trick also uses display memory in an unconventional manner.
All video adapters contain at least 4096 bytes of on-board memory.  Even
though a 25 line by 80 column text mode screen uses only 4000 bytes (2000
characters plus 2000 colors), memory chips are built in multiples of 1,024
bytes.  Therefore, you can use the last 96 bytes on the display adapter
in your programs.  If the adapter supports multiple video pages, then you
can use the last 96 bytes in each 25-line page.
   One use for this memory is to provide a way to communicate small amounts
of information between separate programs.  When you don't want to structure
an application to use CHAIN, the only other recourse is to use a disk file
to pass information between the programs.  But if all that is needed is a
file name or drive letter, using a file can be awkward and slow, especially
if the program is running from a floppy disk.
   One way to access this video memory is with PEEK and POKE.  But PEEK and
POKE are awkward too, and can access only one byte at a time.  A better
approach is to use an assembly language routine to copy one contiguous
memory block to another location.  The MemCopy routine below is designed
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to do exactly this.
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;MEMCOPY.ASM, copies a block of memory from here to there

.Model Medium, Basic

.Code

MemCopy Proc Uses DS ES SI DI, FromAdr:DWord, ToAdr:DWord, NumBytes:Word

  Cld               ;copy in the forward direction

  Mov  SI,NumBytes  ;get the address for NumBytes%
  Mov  CX,[SI]      ;put it into CX for copying below

  Les  DI,FromAdr   ;load ES:DI with the source address
  Lds  SI,ToAdr     ;load DS:SI with destination address

  Shr  CX,1         ;copy words instead of bytes for speed
  Rep  Movsw        ;do the copy
  Adc  CX,CX        ;this will set CX to either 0 or 1
  Rep  Movsb        ;copy the odd byte if necessary

  Ret               ;return to BASIC

MemCopy Endp
End

MemCopy may be declared and called in two different ways.  The first uses
SEG and is most appropriate when you are copying data between variables,
for example from a group of elements in one array to elements in another.
The second lets you specify any arbitrary segment and address, and it
requires the BYVAL modifier either in the DECLARE statement, the CALL, or
both.  Each method is shown below.

   DECLARE SUB MemCopy(SEG AnyVar1, SEG AnyVar2, Numbytes%)
   CALL MemCopy(AnyVar1, AnyVar2, NumBytes%)

   DECLARE SUB MemCopy(BYVAL Seg1%, BYVAL Adr1%, BYVAL Seg2%, _
     BYVAL Adr2%, NumBytes%)
   CALL MemCopy(SourceSeg%, SourceAdr%, DestSeg%, DestAdr%, NumBytes%)

You may also use a combination of these, perhaps with SEG for the source
argument and BYVAL for the second.  For example, to copy a 20-byte TYPE
variable to the area just past the end of video memory on a color display
adapter you would do this:

   CALL MemCopy(SEG TypeVar, BYVAL &HB800, BYVAL 4000, 20)

In many cases you may need to use MemCopy in more than one way in the same
program.  For this reason it is probably better not to declare it at all.
Once a subprogram or function has been declared, BASIC will refuse to let
you change the number or type of parameters.  But if you don't include a
declaration at all, you are free to use any combination of SEG and BYVAL,
and also any type of variable.
   It is important to understand that numeric and TYPE variables should be
specified using SEG, so MemCopy will know the full address where the
variable resides.  You could use a combination of BYVAL VARSEG(Variable)
and BYVAL VARPTR(Variable), but that is not quite as efficient as SEG.
Copying to or from a conventional string using QuickBASIC requires SADD
(string address) instead of VARPTR; far strings in BASIC 7 require SADD,
and also SSEG (string segment) instead of VARSEG.
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REBOOTING A PC

Another simple trick that is not obvious to many programmers is how to
reboot a PC.  Although most PC technical reference manuals show an
interrupt service for rebooting, that simply does not work with most
computers.  However, every PC has a BIOS routine that is at a fixed
address, and which may be called directly like this:

   DEF SEG = &HFFFF
   CALL Absolute(0)

The Absolute routine is included in thee QB and QBX libraries that come with
BASIC.  If a cold boot with the full memory test and its attendant delay
is acceptable, then the code shown above is all that you need.  Otherwise,
you must poke the special value &H1234 in low memory as a flag to the BIOS
routine, so it will know that you want a warm boot instead:

   DEF SEG = 0
   POKE &H473, &H12
   POKE &H472, &H34
   DEF SEG = &HFFFF
   CALL Absolute(0)

INTEGER VALUES GREATER THAN 32K

As you learned in Chapter 2, an integer variable can hold any value between
-32768 and 32767.  When this range of numbers is considered, the integer
is referred to as being a signed number.  But the same range of values can
also be treated as unsigned numbers spanning from 0 through 65535.  Since
BASIC does not support unsigned integers, additional trickery is often
needed to pass values between 32768 and 65535 to assembler routines and DOS
and BIOS services you invoke with CALL Interrupt.  One way to do this is
to use a long integer first, and add an explicit test for values higher
than 32767:

   Temp& = NumBytes&
   IF Temp& > 32767 THEN
     IntBytes% = Temp& - 65536
   ELSE
     IntBytes% = Temp&
   END IF

To reverse the process you would test for a negative value:

   IF IntBytes% < 0 THEN
     NumBytes& = IntBytes% + 65536
   ELSE
     NumBytes& = IntBytes%
   END IF

Although this method certainly works, it is inefficient because of the
added IF testing.  When you merely need to pass a variable to a called
routine, you can skip this testing and simply pass the long integer
directly.  This may appear counter to the rule that you must always pass
the same type of variable that a subroutine expects.  But as long as the
arguments are not being passed by value using BYVAL, this method works and
adds no extra code.
   When a parameter is passed to a subprogram or function, BASIC sends the
address of its first byte as shown in Figure 9-1.

- - - --------------------- - - -
      ¦ B1 ¦ B2 ¦ B3 ¦ B4 ¦
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- - - --------------------- - - -
      ^
      +--------- Address passed to the routine

Figure 9-1: Passing a long integer where a regular integer is expected.

Here, B1, B2, and so forth refer to the Bytes 1 through 4 of a long integer
variable.  Since the assembly language routine is expecting a regular
integer, it looks at just the first two bytes of the variable.  Thus, a
long integer can be used even when a conventional integer is expected.  Of
course, any excess greater than 65535 will be ignored by the routine, since
the bits that hold the excess are in the third and fourth bytes.

BENCHMARKING
============

Throughout this book I have emphasized the importance of writing code that
is as small and fast as possible.  And these goals should be obvious to all
but the most novice programmer.  But it is not always obvious how to
determine for yourself which of several approaches yields code that is the
smallest or fastest.  One way is to use Microsoft CodeView, which lets you
count the bytes of assembler code that are generated.  This is how I
obtained the byte counts stated throughout this book.
   But smaller is not always faster.  Further, the code that BASIC
generates is not the whole story.  In many cases BASIC makes calls to its
runtime library routines, and you would have to trace through those as well
to know the total byte count for a given statement.  It is not impossible
to trace through the BASIC runtime using CodeView, but it certainly can be
tedious.  Many of BASIC's internal routines are very convoluted--especially
those that allocate and deallocate string and other memory.  Often it is
simpler to devise a test that executes a series of statements many times,
and then time how long the test took.
   As an example for this discussion, I will compare two different ways to
print three strings in succession and show how to tell which produces less
code, and which is faster.  The first statement below prints each string
separately, and the second combines the strings and then prints them as
one.

   1: PRINT X$; Y$; Z$
   2: PRINT X$ + Y$ + Z$

Since the length of each string will certainly influence how long it takes
to print them, each of the strings is first initialized to 80 characters
as follows:

   X$ = STRING$(80, "X")
   Y$ = STRING$(80, "Y")
   Z$ = STRING$(80, "Z")

It is important to understand that the PRINT statement itself will be a
factor, since it takes a certain amount of time to copy the characters
from each string to display memory.  Worse, if the screen needs to be
scrolled because the text runs past the bottom of the display, that will
take additional time.  To avoid the overhead of scrolling, the test program
uses LOCATE to start each new print statement at the top of the screen.
Of course, using LOCATE adds further to the overhead, but in this case much
less than scrolling would.  To prove this to yourself, disable the line
that contains the LOCATE statement.  Here's the complete benchmark program:
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CLS
X$ = STRING$(80, "X")    'create the test string
Y$ = STRING$(80, "Y")
Z$ = STRING$(80, "Z")

Synch! = TIMER           'synchronize to TIMER
DO
  Start! = TIMER
LOOP WHILE Start! = Synch!

FOR X = 1 TO 1000        '1000 times is adequate
  LOCATE 1
  PRINT X$; Y$; Z$
NEXT

Done! = TIMER            'calculate elapsed time
Test1! = Done! - Start!

Synch! = TIMER           'as above
DO
  Start! = TIMER
LOOP WHILE Start! = Synch!

FOR X = 1 TO 1000
  LOCATE 1
  PRINT X$ + Y$ + Z$
NEXT

Done! = TIMER
Test2! = Done! - Start!

PRINT USING "##.## seconds using three strings"; Test1!
PRINT USING "##.## seconds using concatenation"; Test2!
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Notice the extra step that synchronizes the start of each test to BASIC's
TIMER function.  As you probably know, the PC's system time is updated
approximately 18 times per second.  Therefore, it is possible that the test
loop could begin just before the timer is about to be incremented.  In that
case the elapsed time would appear to be 1/18th second longer than the
actual time.  To avoid this potential inaccuracy, the DO loop waits until
a new time period has just begun.  There is still a similar accuracy loss
at the end of the test when Done! is assigned from TIMER.  But by
synchronizing the start of the test, the error is limited to 1/18th second
instead of twice that.
   When you compile and run this program using QuickBASIC 4.5, it will be
apparent that the first test is more than three times faster than the
second.  However, with BASIC 7.1--using either near or far strings--the
second is in fact slightly faster.  Therefore, which is better depends on
the version of your compiler, and there is no single best answer.  Now
let's compare code size.
   The disassemblies shown below are valid for both QuickBASIC 4.5 and
BASIC 7.1.  By counting bytes you can see that printing the strings using
a semicolon generates 27 bytes, while first concatenating the strings
requires 29 bytes.

PRINT X$; Y$; Z$
  B83600          MOV   AX,X$   ;get the address for X$
  50              PUSH  AX      ;pass it on
  9AD125FF4A      CALL  B$PSSD  ;print with a semicolon
  B83A00          MOV   AX,Y$   ;as above for Y$
  50              PUSH  AX
  9AD125FF4A      CALL  B$PSSD
  B83E00          MOV   AX,Z$
  50              PUSH  AX
  9AD625FF4A      CALL  B$PESD  ;print with end of line

PRINT X$ + Y$ + Z$
  B83600          MOV   AX,X$   ;get the address for X$
  50              PUSH  AX      ;pass it on
  B83A00          MOV   AX,Y$   ;get the address for Y$
  50              PUSH  AX      ;pass that on too
  9AD728FF4A      CALL  B$SCAT  ;call String Concatenate
  50              PUSH  AX      ;pass the combined result
  B83E00          MOV   AX,Z$   ;get the address for Z$
  50              PUSH  AX      ;pass it on
  9AD728FF4A      CALL  B$SCAT  ;combine that too
  50              PUSH  AX      ;pass X$ + Y$ + Z$
  9AD625FF4A      CALL  B$PESD  ;print with end of line

Even though the first example uses a single PRINT statement, BASIC treats
it as three separate commands:

   PRINT X$;
   PRINT Y$;
   PRINT Z$

The second example that concatenates the strings requires slightly more
code because of the repeated calls to the B$SCAT (string concatenate)
routine.  Therefore, if you are using QuickBASIC it is clear that printing
the strings separately is both smaller and faster.  BASIC PDS users must
decide between slightly faster performance, or slightly smaller code.
   These tests were repeated 1000 times to minimize the inaccuracies
introduced by the timer's low resolution.  Since this method of timing can
be off by as much as 1/18th second (55 milliseconds), for test results to
be accurate to 1% the test must take at least 5.5 seconds to complete.
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In most cases that much precision is not truly necessary, and other factors
such as the time to use LOCATE will prevent absolute accuracy anyway.
   It is important that any timing tests you perform be done after
compiling the program to an .EXE file.  The BASIC editor is an interpreter,
and is generally slower than a stand-alone program.  Further, the reduction
in speed is not consistent; some statements are nearly as fast as in a
compiled program, and some are much slower.
   To obtain more accurate results than those shown here requires some
heavy ammunition; I recommend the Source Profiler from Microsoft.  This
is a utility program that times procedure calls within a running program
to an accuracy of one microsecond.  The Source Profiler supports all
Microsoft languages including QuickBASIC and BASIC PDS.
   To time a program you must compile and link it using the /zi and /co
CodeView switches.  This tells BASIC and LINK to add symbolic information
that shows where variables and procedures are located, and also relates
each logical line of source code to addresses in the .EXE file.  The Source
Profiler then uses this information to know where each source-language
statement begins and ends.
   You should also understand that there's a certain amount of overhead
associated with the timing loop itself.  Any FOR/NEXT loop requires a
certain amount of time just to increment the counter variable and compare
it to the ending value.  Fortunately, this overhead can be easily isolated,
using an empty loop with the same number of iterations.  The short complete
program that follows shows this in context.
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Synch! = TIMER
DO
  Start! = TIMER
LOOP WHILE Start! = Synch!

FOR X& = 1 TO 50000
NEXT

Done! = TIMER
Empty! = Done! - Start!
PRINT USING "##.## seconds for the empty loop"; Empty!

Synch! = TIMER
DO
  Start! = TIMER
LOOP WHILE Start! = Synch!

FOR X& = 1 TO 50000
  X! = -Y!
NEXT

Done! = TIMER
Assign! = Done! - Start!
PRINT USING "##.## seconds for the assignments"; Assign!

Actual! = Assign! - Empty!
PRINT USING "##.## seconds actually required"; Actual!

SUMMARY
=======

In this chapter you learned a variety of programming shortcuts and other
techniques.  You saw firsthand how it is more efficient to avoid using CHR$
and other BASIC functions repeatedly, in favor a single call ahead of time
when possible.  In a similar vein, you can reduce the size of your programs
by consolidating multiple instances of UCASE$, MID$, LTRIM$, and other
functions once before a series of IF tests, rather than use them each time
for each test.
   You also learned that assigning multiple variables in succession from
another often results in smaller code than assigning from the same numeric
constant.  Short circuit expression evaluation was described, and examples
showed you how that technique can improve the efficiency of a QuickBASIC
program.  But since BASIC PDS already employs this optimization, multiple
AND conditions are not needed when using that version of compiler.
   This chapter explained the importance of reducing the number of
parameters you pass to a subprogram or function, and showed how you can use
GOSUB to invoke a central handler that in turn calls the routine.
Likewise, when using BASIC statements such as LOCATE, COLOR, and CLOSE that
require additional arguments beyond those you specify, a substantial amount
of code can be saved by creating a BASIC subprogram wrapper.  Examples for
turning the cursor on and off were shown, and these can save 13 and 15
bytes per use respectively.
   Several programming techniques were shown, including a word wrap
subprogram, a numeric rounding function, and a simple way to reboot the PC.
You also learned how small amounts of data can be safely stored in the last
96 bytes of video memory, perhaps for use as a common data area between
separately run [non-chained] programs.
   Finally, this chapter included a brief discussion of some of the issues
surrounding benchmarking, and explained how to obtain reasonably accurate
statement timings.  To determine the size of the compiler-generated code
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requires disassembling with CodeView.
   Chapter 10 continues with a complete list of key addresses in low memory
you are sure to find useful, and discusses each in depth along with
accompanying examples.

                               CHAPTER 10

                       KEY MEMORY AREAS IN THE PC

Two very important BASIC keywords that are sadly neglected by many
programmers are PEEK and POKE.  Most people understand that these let you
read from and write to memory locations.  But what are they really good
for?  The whole point of a high-level language like BASIC is to avoid such
direct memory access, and to many programmers these commands may seem like
an enigma.
   In most cases, you *don't* need to access memory with PEEK and POKE.
Unlike C and assembly language that require direct memory operations to
process strings and arrays, BASIC includes a full complement of commands
for this.  However, there is at least one important use for PEEK and POKE
that cannot be accomplished in any other way: accessing low memory.
   The portion of memory in every PC that begins at Hex address 0000:0400
is called the *BIOS Data Area*, and it contains much useful information.
For example, the equipment word at address &H410 tells how many diskette
drives are installed, and how many parallel and serial ports there are.
The keyboard status flags at address &H417 can be read (and written), to
reflect whether the Caps Lock and NumLock states are active.
   In this chapter I will describe all of the low memory locations that are
relevant to a BASIC program, and present numerous practical examples to
show how this data can be utilized.  This is by no means a complete list
of every BIOS data address that is available in the PC.  Rather, I have
purposely limited it to those that I have found useful.

IMPROVING PEEK AND POKE
=======================

One potential limitation that needs to be addressed first is how to access
full words of data.  BASIC's PEEK and POKE operate on single bytes only,
and reading or writing two bytes at a time is a messy proposition at best.
   Chapter 9 introduced a pair of routines called PeekWord and PokeWord,
that allowed accessing memory a word at a time.  In the context those were
presented, a fair amount of code could be saved by consolidating the
necessary code into a subprogram or function.  But in the interest of speed
and even further code size reductions, the following assembly language
routines are better still.
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;PEEKPOKE.ASM, simplifies access to full words

.Model Medium, Basic

.Code

PeekWord Proc Uses ES, SegAddr:DWord
  Les  BX,SegAddr     ;load the segment and address
  Mov  AX,ES:[BX]     ;read the word into AX
  Ret                 ;return to BASIC
PeekWord Endp

PokeWord Proc Uses ES, SegAddr:DWord, Value:Word
  Les  BX,SegAddr     ;load the segment and address
  Mov  AX,Value       ;and the new value to store there
  Mov  ES:[BX],AX     ;write the value into memory
  Ret                 ;return to BASIC
PokeWord Endp
End

Both of these routines expect the parameters to be passed by value, for
faster speed and smaller code.  Therefore, you will declare them as
follows:

   DECLARE FUNCTION PeekWord%(BYVAL Segment%, BYVAL Address%)
   DECLARE SUB PokeWord(BYVAL Segment%, BYVAL Address%, BYVAL Value%)

Then to read a word of memory--say, the address of the LPT1 printer adapter
at address &H408--PeekWord would be invoked like this:

   LPT1Addr% = PeekWord%(0, &H408)

And to write the letter "A" in the lower left corner of a color display
screen in white on blue you could use PokeWord, thus:

   CALL PokeWord(&HB800, 3998, &H1741)

Notice that PeekWord returns a negative value for numbers greater than
32767.  This is normal, as explained in Chapter 2.  However, the same
negative value that PeekWord returns can be used as an argument to PokeWord
with the correct results.

LOW MEMORY ADDRESSES
====================

The sections that follow are organized by category, since this is how low
memory is arranged in the PC.  That is, one section discusses the RS-232
communications data area, the next shows the portion of memory used by the
printer adapters, and so forth.  Each address is listed in ascending order;
by convention, Hex notation is used exclusively for these addresses.  In
all of the examples shown here, you will use a segment value of zero.
   It is important to understand that besides memory addresses that are
accessed with PEEK and POKE (or in this case their full-word equivalents),
the IBM PC family also has a series of input and output ports.  These ports
are accessed using INP and OUT commands instead of PEEK and POKE.  I
mention this here because ports are referred to in several places in the
discussions that follow.  In particular, the communications ports that are
exchanged in the next section are in fact port numbers, and not memory
addresses.  Some useful port numbers are given at the end of this chapter,
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along with code examples that show how to read from and write to them.
   Table 10-1 provides a summary of all the low memory addresses that are
described in this chapter.
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Address   Meaning
=======   ==========================================
 &H400    2 bytes, COM1 port number
 &H402    2 bytes, COM2 port number
 &H404    2 bytes, COM3 port number
 &H406    2 bytes, COM4 port number

 &H408    2 bytes, LPT1 port number
 &H40A    2 bytes, LPT2 port number
 &H40C    2 bytes, LPT3 port number
 &H40E    2 bytes, LPT4 port number

 &H410    2 bytes, Equipment List
 &H413    2 bytes, installed memory (K)
 &H417    2 bytes, keyboard status
 &H418    2 bytes, enhanced keyboard status

 &H41A    2 bytes, keyboard buffer head pointer
 &H41C    2 bytes, keyboard buffer tail pointer
 &H41E    30 bytes, keyboard buffer

 &H43F    1 byte, diskette motor on indicator
 &H440    1 byte, diskette motor countdown timer

 &H449    1 byte, current video mode
 &H44A    2 bytes, current screen width (columns)
 &H44C    2 bytes, current video page size (bytes)
 &H462    1 byte, current video page number
 &H463    2 bytes, CRT controller port number

 &H46C    4 bytes, long integer system timer count

 &H478    4 bytes, LPT1 - LPT4 timeout values

 &H484    1 byte, EGA/VGA screen height (rows)
 &H485    2 bytes, character height (scan lines)
 &H487    1 byte, EGA/VGA Features bits

 &H4F0    16 bytes, Inter-Application Area

 &H500    1 byte, PrtSc busy flag

 &H504    1 byte, active drive for one-diskette PC

Table 10-1: Key low memory addresses in the PC.
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COMMUNICATIONS PORT ADDRESSES
=============================

The four words starting at address &H400 hold the port numbers for each
installed RS-232 communications adapter.  For example, the port number for
COM1 is contained in the word at address &H400, and the port number for
COM3 is at address &H404.  Because these port numbers are words rather than
bytes, the COM1 port number is contained in both &H400 and &H401.  Thus,
COM2 starts at address &H402, and COM3 starts at &H404.
   BASIC allows you to open only COM ports 1 and 2; however by exchanging
these addresses you can substitute ports 3 and 4 if necessary.  The
complete program that follows first swaps the port numbers for COM1 and
COM3, and then opens COM1 for output.  Since the port numbers are swapped,
it is actually COM3 that is being opened.

DEFINT A-Z
DECLARE FUNCTION PeekWord% (BYVAL Segment, BYVAL Address)
DECLARE SUB PokeWord (BYVAL Segment, BYVAL Address, BYVAL Value)

COM1 = PeekWord%(0, &H400)    'save COM1 port number
COM3 = PeekWord%(0, &H404)    'save COM3 port number
CALL PokeWord(0, &H400, COM3) 'assign COM3 to COM1
CALL PokeWord(0, &H404, COM1) 'and then COM1 to COM3

OPEN "COM1:1200,N,8,1,RS,DS" FOR RANDOM AS #1
PRINT #1, "ATDT 1-555-1212"   'dial information
CLOSE #1

CALL PokeWord(0, &H400, COM1) 'restore the original values
CALL PokeWord(0, &H404, COM3)

PRINTER PORT ADDRESSES
======================

The four printer port numbers start at address &H408, and they are similar
to those used to hold the communications ports and may also be exchanged
if necessary.  For example, if you have a program that uses LPRINT
commands, all printed output will be sent to LPT1.  If at some later time
you want to use the same program with LPT2, you can exchange the port
numbers instead of having to rewrite the program.  A short code fragment
that does this is shown following.

DEFINT A-Z
DECLARE FUNCTION PeekWord% (BYVAL Segment, BYVAL Address)
DECLARE SUB PokeWord (BYVAL Segment, BYVAL Address, BYVAL Value)

LPT1 = PeekWord%(0, &H408)    'save LPT1 port number
LPT2 = PeekWord%(0, &H40A)    'save LPT2 port number
CALL PokeWord(0, &H408, LPT2) 'assign LPT2 to LPT1
CALL PokeWord(0, &H40A, LPT1) 'and LPT1 to LPT2

LPRINT "This is printed on LPT2"
CALL PokeWord(0, &H408, LPT1) 'restore the original values
CALL PokeWord(0, &H40A, LPT2)
LPRINT "And now we're back to LPT1"    'prove it worked

Like the communications port addresses, each printer port address is a
full word, so while the first is located at address &H408, the second is
at &H40A.  You will also find PeekWord useful because it does not require
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you to change the current DEF SEG setting.  Although there is no harm in
assigning a new DEF SEG value in most cases, it is not easy to restore it
to the original setting.  Therefore, when writing reusable subprograms and
functions that need to access memory, you don't have to worry about
affecting a subsequent PEEK or BLOAD in the main program.

SYSTEM DATA
===========

One of the most valuable data items in low memory is the equipment list
in the word starting at address &H410.  The information contained here is
bit coded, to indicate which and how many peripherals are installed in the
host PC.  Figure 10-1 shows the organization of this word.  Bits not
identified are either reserved, or not particularly useful.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 <- bit numbers
 x  x -------------------------------------------- printers
          x -------------------------------------- 1 = game port
                x  x  x -------------------------- serial ports
                         x  x -------------------- diskette *
                               x  x -------------- video mode
                                          x ------ coprocessor
                                              x -- diskette *

* If Bit 0 is set, then bits 6 and 7 together reflect the number of
diskette drives *less one*.  If Bit 0 is clear then no diskette drives are
installed.

Figure 10-1: The organization of the equipment list word at address &H410.

Because the data in this word is bit coded, you must use AND to extract
the necessary information.  For example, to see if a math coprocessor is
installed you must turn off all but bit 1, and see if the result is zero
or not:

   IF PeekWord%(0, &H410) AND 2 THEN
     PRINT "A coprocessor is installed."
   ELSE
     PRINT "Sorry, no coprocessor detected."
   END IF

This brings up an important point, because it is not immediately obvious
what values you should use to isolate the various bits in a word.  It would
be terrific if Microsoft BASIC offered the ability to handle binary values
directly.  The Microsoft Macro Assembler allows this, as does PowerBasic.
In the absence of &B and a BIN$ function, the following short function can
be used to determine the correct integer value for a given sequence of
binary bits.

FUNCTION Bin% (Bit$) STATIC
  Temp& = 0
  Length = LEN(Bit$)
  FOR X = 1 TO Length
    IF MID$(Bit$, Length - X + 1, 1) = "1" THEN
      Temp& = Temp& + 2 ^ (X - 1)
    END IF
  NEXT
  IF Temp& > 32767 THEN
    Bin% = Temp& - 65536
  ELSE
    Bin% = Temp&
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  END IF
END FUNCTION

Given a string of binary digits of the form "01011001", the Bin function
returns an equivalent integer value.  You could add this function to your
programs, or use it to determine constant values ahead of time.  For
example, to determine the number of diskette drives that are installed
requires isolating bits 6 and 7.  This is simple in assembly language,
where you can specify an AND mask using 11000000b as a value.  The example
below obtains the equipment word, and then uses the Bin function to disable
all but bits 6 and 7.

   Equipment = PeekWord%(0, &H410)
   Floppies = 1 + (Equipment AND Bin%("11000000")) \ 64
   PRINT Floppies; "diskette drive(s) installed"

Although the Bin function is used in the code, I recommend that you create
a simple test program first, to determine the value of 11000000 (192) once
ahead of time.  Then, the Bin function can be omitted from the final
program and the second line would be changed as follows:

   Floppies = 1 + (Equipment AND 192) \ 64

Notice the use of parentheses to force BASIC to combine Equipment and the
number 192 before dividing by 64 with AND.  If these are omitted BASIC
will instead combine Equipment with the result of 192 divided by 64, which
is not correct.
   One final technique you should understand is how to shift bits into the
correct position to obtain the actual value the bits represent.  Treated
as bits alone, the number of diskette drives is represented as 00, 01, 10,
or 11, and the decimal equivalents for these binary numbers are 0, 1, 2,
and 3.  But because of their positioning in the equipment word, the bits
must be shifted to the right six places.  After all, the value 11000000
(192) is certainly not the same as the value 11 (3).
   This is handled simply and elegantly using integer division as shown.
To shift a number right one position divide it by 2; to shift right 2
places divide by 4, and so forth.  Since the diskette bits need to be
shifted six places, the equipment variable is divided by 64 after AND is
used to mask off the unrelated bits.  Likewise, to shift bits left you can
multiply by 2, 4, 8, and so forth.  The number to use when dividing or
multiplying can also be determined by raising 2 to the number of bits
power.  For example, to shift a number right five places you would divide
by 2 ^ 5 = 32.
   A problem arises when dealing with the highest order bit, because to
BASIC this bit implies a negative number.  Therefore, when bit 15 is set,
dividing will not produce the expected results.  One workaround that is
admittedly clumsy is to test that bit explicitly, then mask it off and
shift the bits as needed, and finally use an IF test to see if the bit had
been set.  The only place this is necessary in the equipment list is when
reading the number of parallel printers that are present.  The first
example below reports the number of serial ports, and the second tells how
many parallel ports are installed.

Equipment = PeekWord%(0, &H410)
Serial = (Equipment AND Bin%("11000000000")) \ 512
PRINT Serial; "serial port(s) installed"

IF Equipment AND Bin%("1000000000000000") THEN
  HiBitSet = -1
END IF
Parallel = (Equipment AND Bin%("0100000000000000")) \ 16384
IF HiBitSet THEN Parallel = Parallel + 2



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 324   -

PRINT Parallel; "parallel port(s) installed"

In the interest of completeness I should point out that it is not strictly
necessary to manipulate bit 15 when accessing the equipment word.  Since
none of the information straddles a byte boundary, BASIC's PEEK can in fact
be used to read just the high byte.  Since a byte value is never higher
than 255, the entire issue of saving and then masking that bit can be
avoided.  But there are other situations you may encounter where an entire
word must be processed and the highest bit may be set.
   The final useful item in the equipment word is the initial video mode.
I've seen many programmers read use information to determine if a color
or monochrome monitor is installed like this:

   DEF SEG = 0
   IF (PEEK(&H410) AND &H30) = &H30 THEN
     ' monochrome
   ELSE
     ' color
   END IF

There are two problems with this approach.  The most serious is that this
reflects the monitor that was active when the PC was first powered up.
These days, many people have two monitors connected to their PC, and you
usually need to know which is currently active.  The other problem is this
requires more code than the better method I showed in Chapter 6 which reads
the port address of the currently active video adapter:

   DEF SEG = 0
   IF PEEK(&H463) = &HB4 THEN
     ' monochrome
   ELSE
     ' color
   END IF

Besides the equipment word at address &H410, another word at address &H413
holds the amount of memory that is installed in KiloBytes.  Note that this
word does not reflect any extended or expanded memory that may be present.
Also note that a much better indicator of how much memory is actually
available to a program is BASIC's FRE(-1) function.  The short code
fragment below shows how to determine the total DOS-accessible memory that
is installed.

   TotalK = PeekWord%(0, &H413)
   PRINT TotalK; "K Bytes present in this PC."

KEYBOARD DATA
=============

As with the equipment word, the keyboard data area also maintains bit-coded
information.  However, this word indicates the setting of the various
keyboard shift states.  Unlike many of the other addresses in the BIOS data
area, some of these bits may be written to as well as read from.
   The byte at address &H417 shows the current status of all of the shift
keys, and the lower four bits may be either read or written.  The remaining
bits in this byte should not be written to, nor should you alter any of the
bits in the next byte at address &H418.  Figure 10-2 shows the meaning of
each bit in the byte at address &H417, and Figure 10-3 shows the bits at
address &H418 that relate to extended keyboards only.
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7   6   5   4   3   2   1   0   <-- bits

x --------------------------------- Insert state
    x ----------------------------- Caps Lock
        x ------------------------- Num Lock
            x --------------------- Scroll Lock
                x ----------------- Alt key
                    x ------------- Ctrl key
                        x --------- Left Shift key
                            x ----- Right Shift key

Figure 10-2: The organization of the keyboard data byte at address &H417.

7   6   5   4   3   2   1   0   <-- bits

x --------------------------------- Insert
    x ----------------------------- Caps Lock
        x ------------------------- Num Lock
            x --------------------- Scroll Lock
                x ----------------- Pause state
                    x ------------- Sys Req
                        x --------- Left Alt key
                            x ----- Left Ctrl key

Figure 10-3: The organization of the extended keyboard data byte at address
&H418.
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The various flags in the upper four bits at address &H417 are toggled on
and off by the BIOS each time the corresponding keys are pressed.  For
example, bit 6 is set while the Caps Lock is active, and bit 5 is clear
when Num Lock is not in effect.  Note, however, that the Insert flag is of
no practical use, and you should not rely on that bit in your programs.
If you are writing an input routine (or using the one shown in Chapter 6)
you should keep track of the insert status manually.
   The lower four bits indicate the current state of the various shift
keys, and they are set only while the associated key is actually being
pressed.  Bits in the next word at address &H418 let you determine which
Alt and Ctrl keys are pressed, for keyboards that have more than one of
those keys.  In most cases you will probably just want to know if these
keys are active, and not distinguish between the left and the right key.
Therefore, you will usually ignore the extended keyboard information,
unless you need to detect the SysReq key.
   As with the equipment list, you will use a combination of PeekWord (or
PEEK) to read all of the flags, and then use AND to isolate just those bits
you care about.  Because there is only one bit that corresponds to each
keyboard state flag, it is not necessary to divide or multiply to convert
multiple bits into a number.
   The examples below show how to test each of the bits in the byte at
address &H417, without regard to the extra Ctrl and Alt key information
contained at address &H418.
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CLS
PRINT "Press the various Shift and Lock keys, ";
PRINT "then press Escape to end this madness."
COLOR 0, 7

DO
  Status = PeekWord%(0, &H417)

  LOCATE 10, 1
  IF Status AND 1 THEN
    PRINT "RightShift"
  ELSE
    GOSUB ClearIt
  END IF

  LOCATE 10, 11
  IF Status AND 2 THEN
    PRINT "Left Shift"
  ELSE
    GOSUB ClearIt
  END IF

  LOCATE 10, 21
  IF Status AND 4 THEN
    PRINT "Ctrl key"
  ELSE
    GOSUB ClearIt
  END IF

  LOCATE 10, 31
  IF Status AND 8 THEN
    PRINT "Alt key"
  ELSE
    GOSUB ClearIt
  END IF

  LOCATE 10, 41
  IF Status AND 16 THEN
    PRINT "ScrollLock"
  ELSE
    GOSUB ClearIt
  END IF

  LOCATE 10, 51
  IF Status AND 32 THEN
    PRINT "Num Lock"
  ELSE
    GOSUB ClearIt
  END IF

  LOCATE 10, 61
  IF Status AND 64 THEN
    PRINT "Caps Lock"
  ELSE
    GOSUB ClearIt
  END IF

  LOCATE 10, 71
  IF Status AND 128 THEN
    PRINT "Insert"
  ELSE
    GOSUB ClearIt
  END IF
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LOOP UNTIL INKEY$ = CHR$(27)
COLOR 7, 0
END

ClearIt:
  COLOR 7, 0
  PRINT SPACE$(10);
  COLOR 0, 7
  RETURN

As you can see, to read a single bit you use AND to isolate it from the
rest, and then test if the result is non-zero.  Setting a bit requires
slightly more work, because it is important not to disturb the other bits
in that byte.  This requires that you first read the current information,
change only the bit or bits of interest, and then write the modified data
back to the same location.  The next short example shows how to turn the
CapsLock state on and then off again.

CurStatus = PeekWord%(0, &H417)
NewStatus = CurStatus OR Bin%("1000000")
CALL PokeWord(0, &H417, NewStatus)

PRINT "Press a key to turn off CapsLock"
WHILE INKEY$ = "": WEND

NewStatus = NewStatus AND Bin%("10111111")
CALL PokeWord(0, &H417, NewStatus)

Notice the difference between how OR is used in the first example, and how
AND is used in the second one.  In the first case we want to set a bit,
so only that bit is specified in the binary mask.  The remaining bits stay
the same as they were--if they are already set then OR will leave them that
way.  But to turn off the CapsLock bit requires that all of the mask bits
be set *except* the one you wish to force off.  Other bits that were
already on will remain on after being combined with AND and 1.

THE KEYBOARD BUFFER

The next group of low memory keyboard addresses relate to the keyboard
buffer.  As you undoubtedly know, every PC has a keyboard buffer that can
hold up to fifteen keystrokes.  When a program is off doing something and
is unable to read the keyboard, the BIOS keyboard routines will store keys
that have been typed.  Then, when the program finally gets around to
reading the keyboard, they are waiting there to be read.  The keyboard
buffer is therefore also called the *type-ahead* buffer.
   A series of 34 bytes are set aside for the keyboard buffer.  Two words
(four bytes) are used to hold the current head and tail pointers that show
where the next key will be read from, and where the next will be stored.
The current head address is stored at address &H41A and the tail at address
&H41C.  Thirty additional bytes are used to store the actual keystrokes,
with two bytes used for each.  The keyboard buffer is called a *circular
buffer*, because the start and end points are constantly revolving.
   When a PC is first powered up, the head of the buffer holds the address
&H41E, which is the start of the buffer memory area.  The tail is also
initially set to that same address, until a key is pressed.  When that
happens, the tail pointer is advanced by 2, and the character and its scan
code are placed into the buffer.  Each time a new key is pressed the
character and scan code are added to the end of the buffer and the tail
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pointer is advanced by two; each time a key is read by an application the
word at the current head is returned and the head pointer is advanced.
   Note that the head and tail addresses assume a segment of &H40, rather
than zero.  Therefore, the actual values stored range from &H1E through
&H3A rather than &H41E through &H43A.  Of course, address 0000:041E is the
same as address 0040:001E, and you can think of the buffer address either
way.  I usually treat all of low memory as being located in segment 0,
because that can often save a byte of code.  BASIC (or assembly language,
for that matter) can pass the number zero by value using only three bytes,
compared to the four bytes needed to pass any other number.
   The program below shows how to determine the number of keys that are
currently pending in the buffer, and also which one will be returned next.

CLS
PRINT "You have two seconds to press a few keys..."
Pause! = TIMER
WHILE Pause! + 2 > TIMER: WEND

BufferHead = PeekWord%(0, &H41A)
BufferTail = PeekWord%(0, &H41C)

NumKeys = (BufferTail - BufferHead) \ 2
IF NumKeys < 0 THEN NumKeys = NumKeys + 16
PRINT "There are"; NumKeys; "keys pending in the buffer."

PRINT "The next key waiting to be read is ";
NextKey = PeekWord%(&H40, BufferHead)
IF NextKey AND &HFF THEN
  PRINT CHR$(34); CHR$(NextKey AND &HFF); CHR$(34)
ELSE
  PRINT "Extended key scan code"; NextKey \ 256
END IF

This program starts by waiting two seconds giving you a chance to press a
few keys.  It then reads the buffer head and tail pointers, and from that
calculates the number of keys that are pending in the buffer.  With a
circular buffer the head address may be higher the tail address, so a
separate test is needed to account for that.
   Next, the word at the head of the buffer is retrieved, which indicates
the next available key.  Since the head and tail pointers assume segment
&H40, I used that instead of segment 0. PeekWord%(0, &H41E) produces less
code than PeekWord%(&H40, &H1E); however, PeekWord%(0, &H400 + BufferHead)
is worse than PeekWord%(&H40, BufferHead) because of the addition needed.
   Data in the keyboard buffer is always a full word, and it is up to you
to determine if it is a normal ASCII key or an extended key's scan code.
A normal key is indicated with a non-zero low byte, and the high byte then
holds the physical hardware scan code which can usually be ignored.  If the
low byte instead holds a value of zero, it is an extended key and the scan
code in the high byte indicates which one.  Therefore, the BASIC statement
NextKey AND &HFF masks the high byte, to test if the low byte is non-zero.
   If the key is extended, then NextKey \ 256 returns the value in the high
byte.  This is similar to the earlier examples that shifted bits to the
right by dividing.  Unlike the earlier tests that examined only some of the
bits in the equipment flag, we are interested in all of the bits in the
upper byte.  Dividing by 256 copies the upper byte to the lower byte, thus
discarding the lower byte entirely.
   You should also refer back to the StuffBuffer program shown in Chapter
6, which accesses the keyboard buffer directly and inserts new keystrokes.

DISKETTE DATA
=============



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 330   -

There are several bytes in low memory that relate to the floppy and fixed
disks in your PC, but most of them are best left alone.  One exception,
however, is the diskette drive motor timeout duration.  Whenever a diskette
drive is accessed, DOS first turns on the motor, and then waits a second
or two until the motor has come up to speed.  Once DOS is certain that the
disk speed is correct, reading and writing are allowed.
   Because of the time it takes the diskette to become ready, DOS also
keeps the motor running for two more seconds after a read or write has been
completed.  This way, if another request comes along within that time,
further delays can be avoided because the motor is already running.  If you
know that the data your program is accessing is on a floppy disk and there
may be pauses in the reading or writing, you can force the motor to stay
on longer than the normal two seconds.
   The byte at address &H440 controls the motor hold time, and its value
is decremented at every system timer tick [every 1/18th second].  When DOS
has finished accessing a diskette, it places a value into this memory
location.  And when the value is decremented to zero the motor is turned
off.  The current motor on/off state is reflected by the byte at address
&H43F.  The program that follows shows how you can modify the timeout value
by poking a new, higher value into address &H440 immediately after a
command that accesses the disk.

PRINT "Place a diskette in drive A and press a key ";
WHILE INKEY$ = "": WEND
FILES "A:*.*"   'this starts the motor

DEF SEG = 0
POKE &H440, 91  'force drive motor on for five seconds

DO
  LOCATE 10, 1, 0
  PRINT PEEK(&H43F),
  PRINT PEEK(&H440)
LOOP WHILE PEEK(&H440)

BEEP            'watch the diskette light go out when you hear the beep

The value you store at address &H440 is the number of timer ticks that are
to elapse before the motor is turned off.  Since a new timer tick occurs
every 18.2 seconds, you will multiply the number of seconds times this
value using Value% = Seconds * 18.2.

DISPLAY ADAPTER DATA
====================

As with the diskette data area, a lot of information is available that
pertains to the video display, and most of it is of little use in an
application programming context.  Therefore, I will discuss only some of
this data.
   The byte at address &H449 holds the current video mode.  Unfortunately,
there is no easy way to relate the information in this byte to the current
BASIC SCREEN setting.  Table 10-2 shows all of the possible values that
might be present.

Video Mode       Description
==========       =========================================
     0           40 by 25 16-color text
     1           40 by 25 16-color text, with color burst
     2           80 by 25 16-color text
     3           80 by 25 16-color text, with color burst
     4           320 by 200 pixels 4-color graphics
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     5           320 by 200 pixels 4-color
     6           640 by 200 pixels 2-color
     7           80 by 25 monochrome text
    13           320 by 200 pixels 16-color graphics
    14           640 by 200 pixels 16-color graphics
    15           640 by 350 pixels monochrome EGA graphics
    16           640 by 350 pixels 16-color graphics
    17           640 by 480 pixels 2-color graphics
    18           640 by 480 pixels 16-color graphics
    19           320 by 200 pixels 256-color graphics

Table 10-2: The video mode value at Hex address 0000:0449

Since you will always have set the video mode yourself with a SCREEN
statement, there is little reason to have to read the current mode
manually.
   The word at address &H44A tells how many columns are on the display, and
the word at address &H44C holds the total size of the screen in bytes.  In
a normal 80 column by 25 line screen mode, the value at address &H44C will
be 4096, even though the screen can hold only 4000 characters.
   The byte at address &H462 holds the current video page number, starting
at page 0.  Please understand that BASIC lets you set pages individually
for writing to and displaying, and the page reported here is that which is
visible on the monitor.
   We have already looked at the data at address &H463, which holds the CRT
controller port address.  Although this address is a full word, only the
lower byte needs to be examined to know the type of display that is active.
If the byte value at address &H463 is &HB4, then a monochrome monitor is
connected and being used.  If a color adapter is active the value at this
byte will instead be &HD4.

SYSTEM TIMER DATA
=================

Every 18th second the BIOS timer generates an interrupt that increments
the master system timer count at address &H46C.  This counter is stored as
a four-byte long integer; the count is initialized to zero at midnight, and
increases to a value of just over one 1.5 million at 11:59:59 pm.
   In some cases using the BIOS timer count directly can help to reduce the
size of your programs, because BASIC's TIMER requires floating point math.
Chapter 9 discussed some of the issue involved in benchmarking a program,
and the examples there used TIMER to know when a new 1/18th second period
has just started and how long a sequence of commands took.  The following
short program times a long integer assignment within a FOR/NEXT loop, and
it uses the PeekWord function to access the BIOS timer count directly.

Synch = PeekWord%(0, &H46C)
DO
  Start = PeekWord%(0, &H46C)
LOOP WHILE Synch = Start

FOR X& = 1 TO 70000
  Y& = X&
NEXT

Done = PeekWord%(0, &H46C)
PRINT Done - Start; "timer ticks have elapsed"

Note that it is possible for this program to report an incorrect elapsed
time, since it considers only the lower of the two timer words.  If the
count exceeded 65,535 during the course of the timing, the lower word will
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have wrapped around to a value of zero.  An enhancement to this technique
would therefore be to create a PeekLong% function that returns the entire
four bytes in one operation.  You could write such a function in assembly
language, or use BASIC like this:

FUNCTION PeekLong& (Segment%, Address%) STATIC
  PeekLong& = PeekWord%(Segment%, Address%) + 65536 * _
    PeekWord%(Segment%, Address% + 2)
END FUNCTION

Here, the PeekWord function is used to do most of the work, and the two
words are combined into a single long integer.  When many timing operations
are needed using these functions can increase the speed of your programs,
as well as help to avoid the inclusion of the floating point math library
routines.

PRINTER TIMEOUT DATA
====================

Whenever data is sent to a parallel printer it is routed through a BIOS
service that handles the actual communications with the printer hardware.
If the printer is turned off or disconnected, the BIOS can detect that
immediately, and report the error to the calling program.  But when the
printer is turned on but deselected (off-line) or if it has run out of
paper, the BIOS waits for a certain period of time before returning with
an error condition.  This gives the operator a chance to fix the problem.
   The amount of time the BIOS waits varies from PC to PC, and even between
different models of the same brand.  The original IBM PC waited for only
a very short time, and would occasionally report an error incorrectly when
used with very slow printers.  Modern PCs wait as long as two minutes
before timing out, which is more than enough time to reload a new ream of
paper.  Unfortunately, if you want to test if a printer is ready before
using it, your program may appear to hang if the printer is disabled.
   Although BASIC provides ON ERROR to trap for printer errors, many
programmers prefer to avoid ON ERROR because it makes the program larger
and run more slowly.  Also, ON ERROR cannot avoid the long wait the BIOS
imposes.  There are several solutions to this problem.
   One is to print a flashing message at the bottom of the screen that says
something like, "Turn on the printer!" immediately before printing, and
then clear the message afterward:

   LOCATE 25, 1
   COLOR 23
   PRINT "Turn on the printer!";
   LPRINT Some$
   COLOR 7
   PRINT SPC(20)

If the printer is in fact on line and ready, the message will be displayed
and cleared so quickly that it is not likely to be noticed.  Otherwise, the
operator will see the message and take the appropriate action.
   This technique can be enhanced to instead test the printer, before
sending any data.  The most reliable way I have found to test a printer is
to first send it a CHR$(32) space character, and if that is accepted print
a CHR$(8) backspace to cancel the original space.  A further enhancement
alters the BIOS printer timeout values stored beginning at address &H478.
The combined demonstration and function that follows performs this service
using CALL Interrupt to circumvent BASIC's normal error handling routine.
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DEFINT A-Z
DECLARE SUB INTERRUPT (IntNo, InRegs AS ANY, OutRegs AS ANY)
DECLARE FUNCTION LPTReady% (LPTNumber)

'$INCLUDE: 'REGTYPE.BI'

LPTNumber = 1

IF LPTReady%(LPTNumber) THEN
  PRINT "The printer is on-line and ready to go."
ELSE
  PRINT "Sorry, the printer is not available."
END IF
END

FUNCTION LPTReady% (LPTNumber) STATIC

  DIM Regs AS RegType                'for CALL INTERRUPT
  LPTReady% = 0                      'assume not ready

  Address = &H477 + LPTNumber        'LPT timeout address
  DEF SEG = 0                        'access segment zero
  OldValue = PEEK(Address)           'save current setting
  POKE Address, 1                    '1 retry

  Regs.AX = 32                       'first print a space
  Regs.DX = LPTNumber - 1            'convert to 0-based
  CALL INTERRUPT(&H17, Regs, Regs)   'print the space

  Result = (Regs.AX \ 256) OR 128    'get AH, ignore busy
  Result = Result AND 191            'and acknowledge
  IF Result = 144 THEN               'it worked!
    Regs.AX = 8                      'print a backspace
    CALL INTERRUPT(&H17, Regs, Regs) '  to undo CHR$(32)
    LPTReady% = -1                   'return success
  END IF

  POKE Address, OldValue             'restore original
                                     '  timeout value
END FUNCTION

There are several important points worth mentioning here.  First, you must
never use zero for the printer timeout value, or the timeout will be a *lot*
longer than you anticipated.  A value of zero tells the BIOS to continue
trying indefinitely, and is equivalent to using the DOS MODE LPT1: command
with the ",p" argument.
   Another point is that you should not use this function many times in a
row, without ever printing anything.  All modern printers provide a buffer,
which accepts characters as fast as the computer can send them.  If the
buffer fills with spaces and backspaces before any printable characters are
sent, it may be impossible to clear the buffer.  Therefore, you should
perform the printer test only once or twice, just before you actually need
to begin printing.

EGA AND VGA DATA
================

The seven bytes starting at address &H484 hold information about an
installed EGA or VGA display adapter.  This data should not be relied upon
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until you have determined that the adapter is in fact an EGA or VGA.  The
Monitor function shown in Chapter 6 can be used for this.
   The first byte holds the number of rows currently displayed on the
screen.  The next word at addresses &H485 and &H486 tells how high each
character is in scan lines.  For a normal 80 by 25 line screen this value
will be 16.  After using WIDTH , 43 or WIDTH , 50 the height of each
character is 8 scan lines.  Notice that this value also includes the
spacing between each line.  Curiously, two bytes are set aside to hold this
value, even though it is extremely unlikely that any video mode would ever
require a number larger than 255.
   The only other information you are likely to find useful in this data
area is the amount of installed memory on the EGA or VGA adapter card.
Bits 5 and 6 at address &H487 hold the number of 64K banks, and the code
that follows shows how to turn this into a meaningful number:

   DEF SEG = 0             'look in segment zero
   Byte = PEEK(&H487)      'get the byte
   Byte = Byte AND 96      'keep what we need (96 = 1100000b)
   Byte = Byte \ 32        'shift the bits right five places
   Byte = (Byte + 1) * 64  'add 1 because 0 means 64K
   PRINT "This EGA/VGA adapter has"; Byte; "K memory"

After reading the EGA Features byte (listed earlier in Figure 10-1), the
statement Byte = Byte AND 96 masks off all of the bits that are irrelevant.
Byte is then divided by 32 to slide those bits into the lowest position.
The number that results is coded such that 0 means 64K of installed video
memory, 1 means 128K, 2 means 192K (which is never really possible), and
3 indicates 256K.  Because this value is zero-based, 1 is added to Byte
before multiplying by 64.

MISCELLANEOUS DATA
==================

The 16-byte data area that begins at address &H4F0 is called the inter-
application communications area, and it is available for any arbitrary use
by a program.  One possibility is for passing just a few parameters between
separate programs, instead of having to use COMMON and CHAIN.  Although
this data area has been available since the original IBM PC was introduced,
there is a risk involved with using it because it is possible that another
program or TSR has stored information there.  Chapter 9 described using the
last 96 bytes in the display adapter's memory, which is both a larger
buffer and is probably safer to use.
   The byte at address &H500 is used as a flag by the BIOS Print Screen
service to detect when it is busy.  When you press Shift-PrtSc, the BIOS
routine that handles that key sets this byte to a value of 1 before
beginning to print the screen.  This way if you press Shift-PrtSc again
before it has finished printing, the second request can be ignored.  When
the printing has completed the flag is then reset to zero.
   You can set this flag manually to disable the action of the PrtSc key,
and then reenable it again later:

   DEF SEG = 0
   POKE &H500, 1
    .
    .
   POKE &H500, 0

In fact, you must be *sure* to reenable PrtSc before ending your program if
you have disabled it.  Otherwise, that key will be disabled until the PC
is rebooted.
   The last low memory address I'll describe is also one of the most
potentially useful.  For systems that have only one diskette drive, the
byte at address &H504 tells which drive (A or B) is currently active.  In
this case, that drive serves as both A and B.  Most PC users are familiar
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with DOS' infamous "Insert disk for drive B" message.  This message is
displayed whenever you attempt to access one of the logical drives while
the other is currently active.
   The problem is that this message will ruin an otherwise attractive
screen design, and you have no control over where or if the message is
displayed.  Fortunately, you can determine if only one drive is available,
and also which is currently active.  Even better, you can set this byte to
reflect either drive, and thus avoid the intervention by DOS.
   If the byte at address &H504 is currently zero, then drive A is active;
a value of 1 indicates drive B.  The short complete program that follows
shows how to detect which drive is current.

DEF SEG = 0
Floppies% = (PEEK(&H410) AND 192) \ 64 + 1
PRINT "This PC has"; Floppies%; "floppy disk drive(s)."

IF Floppies% = 1 THEN
  PRINT "The disk is now acting as drive ";
  CurDrive% = PEEK(&H504)
  IF CurDrive% THEN
    PRINT "B"
  ELSE
    PRINT "A"
  END IF
END IF

To change from drive A to B simply use POKE &H504, 1, assuming that the
current DEF SEG value is already zero.  Likewise, to change from B to A you
will use POKE &H504, 0.  Of course, you must also prompt the user to change
disks as DOS would.  But at least you can control how the prompt message
is displayed.  If you do switch drives behind DOS' back, it is up to you
to prompt the user to exchange disks as necessary, and also to ensure that
files are updated and closed correctly before each switch.

INPUT/OUTPUT PORTS
==================

Besides the low memory addresses that are reserved for BIOS and DOS uses,
every PC also has a collection of Input/Output (I/O) ports.  Like memory,
ports are addressed by number, and data may be read from or to written to
them.  In truth, some ports are write-only, others may only be read, and
still others can be read and written.
   Where conventional memory is often used by the operating system to hold
flags, status words, and other values, ports are used to actually control
the hardware.  For example, port number &H3F2 controls the diskette drive
motors, and appropriate OUT commands to that port can turn the motor for
any drive on or off.
   For the most part, you should not experiment with the ports unless you
know what they are for, and which values are appropriate.  As an example,
it is possible to damage your monitor by sending incorrect values through
the display adapter controller ports.  Two useful ports I will describe
here control the PC's speaker and the keyboard.
   Although BASIC offers the SOUND and PLAY statements, using them can
quickly increase the size of a program.  Both of these commands can operate
in the background, thereby continuing to produce sound after they return
to your program.  As you can imagine, this requires a lot of code to
implement.  An informal test showed that adding a single SOUND statement
increased the program size by more than 11K.  Therefore, if you do not need
the ability to have tones play in the background, the combination
demonstration and subprogram that follows can be used in place of SOUND.
Besides avoiding the code to plays tones as a background task, this routine
also avoids SOUND's inclusion of floating point math.
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DEFINT A-Z
DECLARE SUB BSound (Frequency, Duration)

CLS

PRINT "Sweep sound"
FOR X = 1 TO 10
  READ Frequency
  CALL BSound(Frequency, 1)
NEXT
DATA 100, 200, 300, 400, 600, 900, 1200, 1500, 1800, 2100

PRINT "Press a key for more..."
WHILE INKEY$ = "": WEND

PRINT "Telephone"
FOR X = 1 TO 10
  CALL BSound(600, 1)
  CALL BSound(800, 1)
NEXT

PRINT "Press a key for more..."
WHILE INKEY$ = "": WEND

PRINT "Siren"
FOR X = 1 TO 2
  FOR Y = 600 TO 1000 STEP 15
    CALL BSound(Y, -1)          'negative values leave
  NEXT                          '  the speaker turned on
  FOR Y = 1000 TO 600 STEP -15
    CALL BSound(Y, -1)
  NEXT
NEXT
CALL BSound(600, 1)             'force the speaker off

SUB BSound (Frequency, Duration) STATIC

  IF Frequency < 33 THEN EXIT SUB

  IF NOT BeenHere THEN          'do this only once for a
    BeenHere = -1               '  smoother sound effect
    OUT &H43, 182               'initialize speaker port
  END IF

  Period = 1190000 \ Frequency  'convert to period
  OUT &H42, Period AND &HFF     'send it as two bytes
  OUT &H42, Period \ 256        '  in succession

  Speaker = INP(&H61)           'read Timer port B
  Speaker = Speaker OR 3        'set the speaker bits on
  OUT &H61, Speaker

  DEF SEG = 0
  FOR X = 1 TO ABS(Duration)    'for each tick specified
    ThisTime = PEEK(&H46C)      '  count changes again
    DO                          'wait until the timer
    LOOP WHILE ThisTime = PEEK(&H46C)
  NEXT

  IF Duration > 0 THEN          'turn off if requested
    Speaker = INP(&H61)         'read Timer port B
    Speaker = Speaker AND &HFC  'set the speaker bits off
    OUT &H61, Speaker
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  END IF

END SUB

The BSound routine accepts the same frequency and duration arguments as
BASIC's SOUND statement.  Each time it is called it calculates the
appropriate period based on the incoming frequency, which is what the timer
ports expect.  (Period is the reciprocal of frequency.  Here, the period
is related to the PC's clock frequency of 1,190,000 Hz.)  BSound then turns
on the speaker, waits in a loop for the specified duration, and finally
turns off the speaker before returning.
   Two extra steps are required to create a smooth effect when BSound is
called rapidly in succession.  One is that the speaker port is initialized
only once, the very first time BSound is called.  The other step lets you
optionally leave the speaker turned on when BSound returns, to avoid the
choppiness that otherwise results with sounds like the siren effect.  To
tell BSound to leave the speaker on, use an equivalent negative value for
the Duration parameter.  Just be sure to call BSound once again with a
positive duration value, or use the same set of INP and OUT statements
that BSound uses to turn the speaker off.  This is shown in the last
demonstration that creates a siren sound.

KEYBOARD PORTS

There are several ports associated with the keyboard, and one is of
particular interest.  The enhanced keyboards that come with AT-class and
later computers allow you to control how quickly keystrokes are repeated
automatically.  There are actually two values--one sets the initial delay
before keys begin to repeat, and the other establishes the repeat rate.
By sending the correct values through the keyboard port, you can control
the keyboard's "typematic" response.  The complete program that follows
shows how to do this, and Table 10-3 shows how the delay and repeat rate
values are determined.

   OUT &H60, &HF3          'get the keyboard's attention
   FOR D& = 1 TO 100: NEXT 'brief delay to give the hardware time to settle
   Value = 7               '1/4 second initial delay, 16 CPS
   OUT &H60, Value

       AT-style keyboard delay and repeat rates
       ========================================

     initial delay --->    0.25    0.50    0.75    1.00
                           ====    ====    ====    ====
30 characters per second:    0      20      40      60
16 characters per second:    7      27      47      67
 8 characters per second:    F      2F      4F      6F
 4 characters per second:   17      37      57      77
 2 characters per second:   1F      3F      5F      7F

NOTE: All values are shown in Hexadecimal.

Table 10-3: Sample values for setting the initial delay and repeat rate on
an AT-style keyboard.

Table 10-3 shows only some of the possible values that can be used.
However, you can interpolate additional values for delay times and repeat
rates between those shown.
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SUMMARY
=======

This chapter explained what the BIOS low memory data area is, and also
discussed many of the addresses that are useful to application programs.
A number of practical examples were given, including useful PEEK and POKE
replacements that operate on data a word, rather than a byte, at a time.
A simple binary conversion function was shown, to help you determine the
correct values to use with AND and OR.
   You learned how to exchange serial and parallel port addresses, and how
to access communications ports 3 and 4 which BASIC normally does not allow.
Exchanging printer ports lets you access any printer as LPT1, perhaps to
avoid having to rewrite a large program that relies on existing LPRINT
statements.  Other useful printer data that can be accessed is the BIOS
timeout value, and a routine was shown for testing the printer status
without the usual delay.
   The equipment list word was described in detail, showing how to
determine the number of diskette drives and other peripherals that are
installed.  Another useful routine showed how to determine if drive A or
B is active on a one-floppy system, and also how to change the current
status of that drive.  The various keyboard status bits were also
described, and code fragments showed how to read and set the current state.
   Finally, you learned how the hardware ports are read and written using
INP and OUT commands.  One example produced sound with much less generated
code than BASIC's SOUND, and another showed how to alter the typematic rate
on enhanced (AT) keyboards.
   The next chapter explores using CALL Interrupt in great detail, using
many examples that show how to access DOS and BIOS system services.

                                CHAPTER 11

                      ACCESSING DOS AND BIOS SERVICES

BASIC is arguably the most capable of all the popular high-level languages
available for the PC.  However, one area where all PC languages are weak is
when accessing DOS and BIOS system interrupts.  Previous chapters included
subroutines and functions that access DOS interrupt services using CALL
Interrupt, but in most cases with little explanation.  This chapter
explains what interrupts are, how they are accessed, and how they return
information to your program.
     Only assembly language--the native language of the processor in every
PC--can directly access interrupts.  Assembly language programmers use the
Int instruction, which transfers control to an *interrupt service routine*.
An Int instruction is nearly identical to a conventional CALL statement,
except a slightly different mechanism within the computer's hardware is
used to implement it.
     BASIC lets you access system interrupts by providing a pair of
assembly language interface routines called Interrupt and InterruptX.
These routines accept the interrupt number and other parameters the
interrupt requires, and they then perform the actual interrupt call.
InterruptX is similar to Interrupt; the only real difference is that it
lets you access two additional CPU registers.
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WHAT IS AN INTERRUPT?
=====================

The IBM PC family of personal computers supports two types of interrupts:
hardware and software.  A hardware interrupt is invoked by an external
device or event, such as pressing a key on the keyboard.  When this
happens, a signal is sent from the keyboard hardware to the PC's
microprocessor telling it to stop what it's currently doing and instead
call one of the routines in the PC's BIOS.
     For example, while your PC is currently copying a group of files you
may type DIR simultaneously, to display the results when the copying has
finished.  Even though DOS is reading and writing the files, you interrupt
those operations for a few microseconds each time a key is pressed.  The
BIOS routine that handles the keyboard interrupt is responsible for placing
the keystrokes into the PC's 15-character keyboard buffer.  Then when DOS
has finished copying your files, the DIR command will already be there.
Because there is a direct physical connection between the keyboard
circuitry and the PC's microprocessor, you are able to interrupt whatever
else is happening at the time.
     A software interrupt, on the other hand, doesn't really interrupt
anything.  Rather, it is a form of CALL command that an assembly language
program may issue.  Just like the CALL command in BASIC that transfers
control to a subroutine, a software interrupt is used in an assembly
language program to access DOS and BIOS services.  Although assembly
language programs may use a CALL statement to invoke a subroutine, an
interrupt instruction is needed to access the operating system routines.
     When a program issues a subroutine call, the address of that
subroutine must be known, so the processor will be able to jump to the code
there.  With most programs, subroutine addresses are determined and
assigned by LINK.EXE when it combines the various portions of your program
into a single executable file.  But this method can't be used with the DOS
and BIOS routines, because their addresses are not known ahead of time.
For example, if you compile a BASIC program on an IBM PC, it must also be
able to be run on, say, a Tandy 1000 using a different version of DOS.  Of
course, it is impossible for LINK to know where the DOS and BIOS routines
are located on the Tandy computer.
     To solve this problem and allow a program to call a routine whose
address is not known, a list of addresses is stored in a known place in low
memory.  This place is called the *interrupt vector table*.  The first
1,024 bytes in every PC contains a table of addresses for all 256 possible
interrupts.  Each table entry requires two words (four bytes): one word is
used to hold the routine's segment, and the other holds its address within
that segment.  Whenever an assembly language program issues an interrupt
instruction, the PC's processor automatically fetches the segment and
address from this table, and then calls that address.  Thus, any program
may access any interrupt routine, without having to know where in memory
the routine actually resides.  The first four bytes in the interrupt vector
table hold the address for Interrupt 0, the next four show where Interrupt
1 is, and so forth.
     DOS and BIOS services are specified by interrupt number, and most
interrupt routines also expect a *service number*.  Nearly all of the DOS
services you will find useful are accessed through Interrupt &H21, with the
desired service number specified in the AH register.  In many cases,
information is also returned in the CPU registers.  For instance, the DOS
service that returns the current default disk drive is specified by placing
the value &H19 in the AH register.  When the interrupt has finished, the
current drive number is returned in the AL register.  Registers will be
described in the section that follows.  As with the low memory addresses
discussed in Chapter 10, the DOS and BIOS interrupt numbers use Hexadecimal
numbering by convention.
     There are also several BIOS interrupts you will find useful, and these
include video interrupt &H10, printer interrupt &H17, Print Screen
interrupt 5, and the two equipment interrupts &H11 and &H12.  There are
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other BIOS and DOS interrupts, but those are mostly useful when accessed
from assembly language.  For example, there is little need to call keyboard
interrupt &H16 to read a key, since INKEY$ already does this.  Likewise,
you are unlikely to find disk interrupt &H13 very interesting, although it
is used when performing copy protection and other low-level direct disk
accesses.  But unless you know what you are doing, it is possible--even
likely--to trash your hard disk in the process of experimenting with this
disk interrupt.
     I won't attempt to provide all of the information you need to access
every possible DOS and BIOS service here.  Indeed, a complete discussion
would fill several books.  Two excellent books that I recommend are "Peter
Norton's Programmer's Guide to the IBM PC" (1988), and "Advanced MS-DOS",
by Ray Duncan (1988).  Both of these books are published by Microsoft
Press, and can be found in most book stores.  These books list every DOS
and BIOS interrupt service, and show which registers are used to exchange
information with each interrupt service.
     Also, once you have read and understood the information in this
chapter you should go back to some of the examples presented in earlier
chapters.  In particular, Chapter 6 shows how to access DOS Interrupt &H21
to read file names, and Chapter 7 includes routines that access Interrupt
&H2F to see if a network is running on the host PC and if so which one.

REGISTERS
=========

Microprocessors in the Intel 8086 family contain a set of built-in integer
variables called *registers*.  Each register can hold a single word (two
bytes), which nicely corresponds to the size of a BASIC integer variable.
Because these registers are contained within the microprocessor itself,
they can be accessed by the CPU very quickly--much faster than variables
which are stored in memory.
     The 8086 and 8088 microprocessors contain a total of fourteen
registers.  [Newer CPUs contain more registers, but they are not accessible
via CALL Interrupt nor are they useful to a BASIC program.]  Some of these
registers are intended for a specific use, while others may be used as
general purpose variables.  For example, the CS and DS registers contain
the current code and data segments respectively, while the CX register is
often used as a counter in an assembly language FOR/NEXT loop.  I'm not
going to pursue a lengthy discussion of microprocessor theory here though,
because it's not really necessary if you simply want to access a few system
interrupts.  Rather, I will focus on how to set up and invoke the various
interrupt services, and interpret the results they return.  Assembly
language and CPU registers will be discussed more fully in Chapter 12.
     Both Interrupt and InterruptX (Interrupt Extended) require a TYPE
variable with components that mirror each of the processor's registers.
Figure 11-1 lists all of the 8086 registers that are accessible from BASIC,
showing which are available with each of the interrupt routines.

InterruptX     Interrupt
==========     =========
  AX             AX
  BX             BX
  CX             CX
  DX             DX
  BP             BP
  SI             SI
  DI             DI
  Flags          Flags
  DS
  ES

Figure 11-1: The registers accessible from BASIC through Interrupt and
InterruptX.
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When you call the either Interrupt routine, the values in a TYPE variable
are copied into the CPU's registers, the interrupt is performed, and then
the results returned in each register are copied back into a TYPE variable
again.  All of the CALL Interrupt examples Microsoft shows use two TYPE
variables called InRegs and OutRegs.  However, you can also use the same
TYPE variable to both send and receive the register values.  In fact, using
a single TYPE variable will save a few bytes of DGROUP memory.  Therefore,
the remaining examples that use CALL Interrupt use a single TYPE variable.
     One important issue that needs to be addressed before we can proceed
is how the CPU registers are accessed.  I stated earlier that there are
fourteen such registers, and each is the same size as an integer variable:
2 bytes.  While this is certainly true, there is more to the story.  Four
of the registers--AX, BX, CX, and DX--can also be treated as being two
separate one-byte registers.
     Each register half uses the designator "H" or "L" to mean High or Low.
For example, the high-byte portion of AX is called AH, and the low-byte
portion of CX is CL.  When considered as a composite register, the two
halves form a single integer word.  Figure 11-2 shows how the AX register
is constructed, with each half contributing to the total combined value.

¦<--------------------  AX  --------------------->¦
+-------------------------------------------------+
¦ 1  1  0  1  0  0  0  1 ¦ 1  1  0  0  1  1  0  1 ¦
+-------------------------------------------------+
¦<--------- AH --------->¦<--------- AL --------->¦

Figure 11-2: How a single word-sized register may also be treated as two
byte-sized registers.

In an assembly language program it is simple to access each register half
separately.  However, BASIC does not offer a byte-sized variable type to
use within the TYPE declaration.  Therefore, a slight amount of math is
required to get at each half separately.  Although a fixed-length string
with a length of one character could be used, the added overhead BASIC
imposes to access a string as a number reduces the usefulness of that
approach.
     Using Hexadecimal notation and multiplication simplifies access to
each register half when it is being assigned, and integer division and
BASIC's AND operator lets you separate the two halves when reading them.
That is, you can assign the value &H12 to the upper byte in AH and the
value &H34 to the lower byte in AL at one time, like this:

     Registers.AX = &H1234

In many cases it is necessary to assign only AH, which can be done like
this:

     Registers.AX = &H0600

Here, the value 6 is placed into AH, and 0 is assigned to AL.  Since many
of the DOS and BIOS services ignore what is in AL, assigning a value of
zero is the simplest and most effective solution.  Again, using Hexadecimal
notation lets you clearly define what is in each register half, because the
first two digits represent the upper portion, and the second two represent
the lower byte.
     When both the upper and lower bytes are important, you can use
multiplication to assign them.  By definition, any byte value in the high
portion of a register is 256 times greater than it would be in the lower
part.  Thus, to assign the variable Low% to AL and High% to AH is as simple
as this:
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     Registers.AX = Low% + (256 * High%)

In practice the parentheses are not really necessary because multiplication
is always performed before addition.  But I included them here for clarity.
     When an interrupt routine returns information in one of the
combination registers, you may easily isolate the high and low portions as
follows:

     Low% = Registers.DX AND 255
     High% = Registers.DX \ 256

Some examples you may have seen use MOD to extract the lower byte, and that
will also work:

     Low% = Registers.DX MOD 256

Although MOD and AND cause BASIC to generate the same amount of assembly
language code (three bytes), I generally prefer using AND because that
instruction is somewhat faster on the older 8088 processors.

ACCESSING THE BIOS
==================

The simplest BIOS interrupt to call is the Print Screen interrupt,
Interrupt 5.  No parameters are required by this interrupt, and no values
are returned when it finishes.  But since the Interrupt routine expects the
TYPE variable to be present and copies data to it, you must still dimension
it in your program.
     Because Interrupt and InterruptX are external subroutines as opposed
to built-in commands, you will need to load the Quick Library containing
these routines.  QuickBASIC comes with the file QB.QLB; BASIC PDS provides
the same routines in a library named QBX.QLB.  [And in VB/DOS this file is
called VBDOS.QLB.]  You must of course use whichever is appropriate for
your version of BASIC.  To start QuickBASIC and load the Quick Library that
contains these routines use the /L switch like this:

     qb /l

Normally, the name of a Quick Library must be given after the /L switch.
However, QB and QBX know that /L by itself means to load the default QB.QLB
or QBX.QLB Quick Library.
     The following complete program prints a simple pattern on the screen,
and then sends it to the printer designated as LPT1: as if the PrtSc key
had been pressed.

DEFINT A-Z
TYPE RegType
  AX AS INTEGER
  BX AS INTEGER
  CX AS INTEGER
  DX AS INTEGER
  BP AS INTEGER
  SI AS INTEGER
  DI AS INTEGER
  Flags AS INTEGER
END TYPE
DIM Registers AS RegType

CLS
FOR X% = 1 TO 24
  PRINT STRING$(80, X% + 64);
NEXT
CALL Interrupt(5, Registers, Registers)
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Although the Registers TYPE definition is shown here, the remaining
examples in this chapter will instead specify the REGTYPE.BI include file
that contains this code.  QuickBASIC includes a similar include file called
QB.BI, and BASIC PDS uses the name QBX.BI for the same file.  [I created
REGTYPE.BI so all of the programs in this book will run as is with any
version of BASIC.  But the BASIC-supplied versions also include DECLARE
statements for the Interrupt routines, where my REGTYPE.BI file does not.
Since all of these programs use the CALL keyword, a declaration is not
strictly necessary.]

THE BIOS VIDEO INTERRUPT

The next example shows how to call BIOS video interrupt &H10 to clear just
a portion of the display screen.  It is designed as a combination
demonstration and subprogram, so you can extract just the subprogram and
add it to programs of your own.

DEFINT A-Z
DECLARE SUB ClearScreen (ULRow, ULCol, LRRow, LRCol, Colr)

'$INCLUDE: 'REGTYPE.BI'
DIM SHARED Registers AS RegType

CLS
FG = 7: BG = 1           'set the foreground and background colors
COLOR FG, BG

FOR X% = 1 TO 24
  PRINT STRING$(80, X% + 64);
NEXT

Colr = FG + 16 * BG      'use the same colors for clearing
CALL ClearScreen(5, 10, 20, 70, Colr)

SUB ClearScreen (ULRow, ULCol, LRRow, LRCol, Colr) STATIC
  Registers.AX = &H600
  Registers.BX = Colr * 256
  Registers.CX = (ULCol - 1) + (256 * (ULRow - 1))
  Registers.DX = (LRCol - 1) + (256 * (LRRow - 1))
  CALL Interrupt(&H10, Registers, Registers)
END SUB

There are two important benefits to using the BIOS for a routine such as
this.  One is of course the reduced amount of code that is needed, when
compared to manually looping through memory using POKE to clear each
character position.  The second is the BIOS is responsible for determining
the type of monitor installed, to select the correct video segment.
     The demonstration portion of the program first clears the screen, and
then creates a simple test pattern using a color of white on blue.  Just
before the call to ClearScreen, the correct Colr parameter is calculated
based on the same foreground and background specified to BASIC.  Where
BASIC accepts separate foreground and background values, the BIOS requires
a single composite color byte.
     The simplified formula used in this example will accommodate normal
colors, but does not support adding 16 to the foreground to specify a
flashing color.  This next formula shows how to derive a single color byte
while also honoring flashing:

     Colr = (FG AND 16) * 8 + ((BG AND 7) * 16) + (FG AND 15)
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ClearScreen is then called telling it to clear a rectangular portion of the
screen that lies within the boundary specified by an upper-left corner at
location 5, 10 to the lower-right corner at location 20, 70.  The color
value calculated earlier is also passed, so the white on blue color will be
maintained even after the screen is cleared.
     Within ClearScreen, four of the CPU's registers are assigned to values
needed by the BIOS video interrupt.  The first statement specifies service
6 in AH, which tells the BIOS to scroll the screen.  The number of rows to
scroll is then placed into the AL register, which we've set to zero.  This
particular BIOS service recognizes zero as a special flag, which tells it
to clear the screen rather than scroll it.
     Service 6 also expects the color to use for clearing in the BH
register.  As I explained earlier, multiplying by 256 is equivalent to
assigning just the higher portion of an integer, so the statement
Registers.BX = Colr * 256 is equivalent to placing the one byte that is
actually used by the Colr variable into BH.
     The next two instructions take the upper left and lower right corner
arguments, and place them into the appropriate registers.  In this case,
the upper left column is placed into CL and the upper left row in CH.
Similarly, the lower right column goes into DL and the lower right row into
DH.  Even though BASIC considers screen rows and columns to be numbered
beginning at 1, the BIOS routines assume these to be zero-based.
Therefore, 1 is subtracted from the parameters before they are placed into
each component of the Registers TYPE variable.  Finally, BASIC's Interrupt
routine is called specifying Interrupt number &H10.
     Note that the same BIOS interrupt service can also be used to scroll a
rectangular portion of the screen.  Indeed, this is the primary purpose of
service 6.  To scroll a portion of the screen up a certain number of lines,
you will place the number of lines into AL:

     Registers.AX = NumLines + (6 * 256)

Scrolling the screen downward is also possible, using service 7 like this:

     Registers.AX = NumLines + (7 * 256)

Also note that the Registers TYPE variable was dimensioned to be shared.
This allows it to be accessed from all of the subprograms in a single
program.  If Registers is dimensioned in many different subprograms and
functions, then a new instance will be created, with each stealing 20 bytes
of DGROUP memory.  Beware, however, that this memory savings has the
potential drawback of introducing subtle bugs due to the same variable
being used by different services.  Whatever register values remain after
one use of CALL Interrupt will still be present the next time, unless new
values are explicitly assigned.  [But that is rarely a problem, since you
will generally assign all of the registers that a given interrupt needs
just before calling that interrupt.]
     Although this short example simply clears or scrolls a portion of the
display screen, it provides a foundation for nearly anything else you may
need to do using CALL Interrupt.  The DOS interrupt examples that follow
will build on this foundation, and show how to access a wealth of useful
services that are not otherwise possible using BASIC alone.

ACCESSING DOS INTERRUPTS
========================

As with the BIOS video interrupt services, DOS interrupt &H21 expects a
service number to be given in the AH register.  Many DOS services require
additional information in other registers as well, including integer values
and the segments and addresses of variables.
     The DOS services that accept or return a string (such as a file or
directory name) require the address of the string, to know where it is
located.  For example, the DOS service that changes the current directory
is called with AH set to &H3B, and DS:DX holding the address of a string
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that contains the name of the directory to change to.
     Likewise, to obtain the current directory you would load AH with the
value &H47, and DS:SI with the address of a string that will receive the
current directory's name.  It is essential that this string already be
initialized to a sufficient length before calling DOS.  Otherwise, the
returned directory name will likely overwrite other existing data.  [And if
that data happens to be a BASIC string descriptor or back pointer you will
likely crash the program and possibly even have to reboot the PC.]
     When a string is sent as a parameter to a DOS routine, it must be
terminated with a CHR$(0), so DOS can tell where it ends.  Likewise, when
DOS returns a string to your program such as the current directory, it
indicates the end with a CHR$(0).  Therefore, it is up to your program to
manually append a CHR$(0) to any file or directory names you pass to DOS.
And when receiving a string from DOS, you must use INSTR to locate the
CHR$(0) that marks the end, and keep only what precedes that character.
     I will start with some simple examples that access DOS Interrupt &H21,
and proceed to more complex routines that pass and receive string data.

ACCESSING THE DEFAULT DRIVE

The first DOS example shows how to determine the current default drive, and
it is designed as a DEF FN-style function.  A function is a natural way to
design a routine that returns information, as opposed to a called
subprogram.  Further, using a DEF FN-style function reduces the amount of
code that BASIC generates, and also reduces the code needed each time the
function is invoked.

DEFINT A-Z

'$INCLUDE: 'REGTYPE.BI'
DIM Registers AS RegType

DEF FnGetDrive%
  Registers.AX = &H1900
  CALL Interrupt(&H21, Registers, Registers)
  FnGetDrive% = (Registers.AX AND &HFF) + 65
END DEF

PRINT "The current default drive is "; CHR$(FnGetDrive%)

Here, service number &H19 is assigned to the AH portion of AX prior to
calling Interrupt &H21, and the value that DOS returns in AL indicates the
current drive.  For this service DOS uses 0 to indicate drive A, 1 for
drive B, and so forth.  Therefore, you use AND with the value &HFF (255) to
keep just the low portion in AX.  Once the DOS drive number has been
isolated, the program adds 65 to adjust that to the equivalent ASCII
character value.
     Setting a new default drive is just as easy as obtaining the current
drive.  Although BASIC PDS provides the CHDRIVE command to set a new drive
as the current default, QuickBASIC does not.  The ChDrive subprogram that
follows affords the same functionality to QuickBASIC users, and it accepts
a single letter to indicate which drive is to be made the new current
default.

DEFINT A-Z
DECLARE SUB ChDrive (Drive$)

'$INCLUDE: 'REGTYPE.BI'

DIM SHARED Registers AS RegType
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INPUT "Enter the drive to make current: ", NewDrive$
CALL ChDrive(NewDrive$)

SUB ChDrive (Drive$) STATIC
  Registers.AX = &HE00
  Registers.DX = ASC(UCASE$(Drive$)) - 65
  CALL Interrupt(&H21, Registers, Registers)
END SUB

Now that you know how to set and get the current default drive, you can
combine the two and create a function that tells if a given drive letter is
valid.  Many DOS services return the success or failure of an operation
using the CPU's Carry flag.  However, the service that sets a new drive is
a notable exception.  Therefore, to determine if a given drive letter is in
fact valid requires more than simply trying to set the new drive, and then
seeing if an error resulted.
     The only way to tell if a request to change the current drive was
accepted is to make another call to get the current drive, thereby seeing
if the original request took effect.  The program that follows accepts a
drive letter as a string, and returns True or False (-1 or 0) to indicate
whether or not the drive is valid.
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DEFINT A-Z
DECLARE SUB ChDrive (Drive$)

'$INCLUDE: 'REGTYPE.BI'

DIM SHARED Registers AS RegType

DEF FnGetDrive%
  Registers.AX = &H1900
  CALL Interrupt(&H21, Registers, Registers)
  FnGetDrive% = (Registers.AX AND &HFF) + 65
END DEF

DEF FnDriveValid% (TestDrive$)
  STATIC Current                'local to this function
  Current = FnGetDrive%         'save the current drive
  FnDriveValid% = 0             'assume not valid
  CALL ChDrive(TestDrive$)      'try to set a new drive
  IF ASC(UCASE$(TestDrive$)) = FnGetDrive% THEN
     FnDriveValid% = -1         'they match so it's valid
  END IF
  CALL ChDrive(CHR$(Current))   'either way restore it
END DEF

INPUT "Enter the drive to test for validity: ", Drive$
IF FnDriveValid%(Drive$) THEN
   PRINT Drive$; " is a valid drive."
ELSE
   PRINT "Sorry, drive "; Drive$; " is not valid."
END IF

SUB ChDrive (Drive$) STATIC
  Registers.AX = &HE00
  Registers.DX = ASC(UCASE$(Drive$)) - 65
  CALL Interrupt(&H21, Registers, Registers)
END SUB

The strategy used here is to first save the current default drive, and then
set a new drive on a trial basis.  If the current drive is the one that was
just set, then the specified drive was indeed valid.  In either case, the
original drive must be restored.

DETERMINING IF A FILE EXISTS

Both of the DOS services we have considered so far use integer arguments to
indicate the new drive, or which drive is the current default.  The next
example shows how to pass a BASIC string to a DOS service, which is
somewhat more complicated.  The situation is made worse by the far strings
feature available in BASIC PDS.  Therefore, be sure to observe the comment
that shows how to replace SSEG with VARSEG for use with QuickBASIC.
     Chapter 6 showed an admittedly clunky way to determine if a file is
present.  The example given there attempted to open the specified file for
random access, and then used LOF to see if the file had a length of zero.
The problem with that method--besides requiring a lot of unnecessary DOS
activity--is that it reports a file with a perfectly legal length of zero
as not being present, and then deletes it!
     The FnFileExist function that follows is intended for use with BASIC
PDS, and comments show how to change it for use with QuickBASIC.  Please
understand that PDS doesn't really need a File Exist function, since DIR$
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can be used for that purpose.  The statement IF LEN(DIR$(FileSpec$)) THEN
will quickly tell if a file is present.  However, the point is to show how
strings are passed to DOS, and for that purpose this example serves quite
nicely.
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DEFINT A-Z
'$INCLUDE: 'REGTYPE.BI'

DIM Registers AS RegType

TYPE DTA                         'used by DOS services
  Reserved  AS STRING * 21       'reserved for use by DOS
  Attribute AS STRING * 1        'the file's attribute
  FileTime  AS STRING * 2        'the file's time
  FileDate  AS STRING * 2        'the file's date
  FileSize  AS LONG              'the file's size
  FileName  AS STRING * 13       'the file's name
END TYPE
DIM DTAData AS DTA

DEF FnFileExist% (Spec$)
  FnFileExist% = -1              'assume the file exists

  Registers.DX = VARPTR(DTAData) 'set a new DOS DTA
  Registers.DS = VARSEG(DTAData)
  Registers.AX = &H1A00
  CALL InterruptX(&H21, Registers, Registers)

  Spec$ = Spec$ + CHR$(0)      'DOS needs an ASCIIZ string
  Registers.AX = &H4E00        'find file name service
  Registers.CX = 39            'attribute for any file
  Registers.DX = SADD(Spec$)   'show where the spec is
  Registers.DS = SSEG(Spec$)   'use this with BASIC PDS
 'Registers.DS = VARSEG(Spec$) 'use this with QuickBASIC

  CALL InterruptX(&H21, Registers, Registers)
  IF Registers.Flags AND 1 THEN FnFileExist% = 0
END DEF

INPUT "Enter a file name or specification: ", FileSpec$
IF FnFileExist%(FileSpec$) THEN
   PRINT FileSpec$; " does exist"
ELSE
   PRINT "Sorry, no files match "; FileSpec$
END IF

FnFileExist calls upon the DOS Find First service that searches a directory
and attempts to locate the first file that matches a given specification
template.  Therefore, besides being able to see if ACCOUNTS.DAT or
F:\UTILS\NU.EXE exist, you can also use the DOS wild cards.   For example,
given C:\QB45\*.BAS, FnFileExist will report if any files with a .BAS
extension are in the \QB45 directory of drive C.
     As part of its directory searching mechanism, DOS requires a block of
memory known as a Disk Transfer Area, or DTA for short.  If a matching file
name is found, DOS stores important information about the file there, where
your program can read it.  As you can see by examining the DTAType
structure, this includes the file's name and extension, the date and time
it was last written, to, its current size, and attribute.  The 21-byte
string at the beginning identified as Reserved holds sector numbers and
other information, and is used by DOS for subsequent searches.  This
function doesn't use any of the information in the DTA; however, it must
still be defined for use by DOS.
     You will notice that FnFileExist uses the InterruptX routine rather
than Interrupt, and this is to provide support for use with BASIC PDS far
strings.  Two of the CPU's registers are used to hold the DS and ES data
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segment registers.  When Interrupt is called, it simply leaves whatever is
currently in DS and ES and then calls the interrupt.  InterruptX, on the
other hand, loads DS and ES from those components of the Registers TYPE
variable, and those are the values the interrupt itself receives.  Were
FnFileExist limited to working with QuickBASIC [where all strings are in
the DS segment], Interrupt would be sufficient and the added complication
of using either VARSEG or SSEG could be avoided.
     Note that InterruptX can also be told to use the current value of DS
for both DS and ES, when the calling program doesn't need or want to change
them.  This is specified by placing a value of -1 into either or both
portions of the Registers TYPE variable.  For example, the statement
Registers.DS = -1 tells InterruptX not to assign DS before performing the
interrupt.  Otherwise, if Registers.DS were not assigned, DS would receive
the value 0 which is incorrect for DOS services that receive a variable's
address.  In a similar manner, Registers.ES = -1 tells InterruptX to set ES
to the current value of DS.

THE CARRY FLAG

The last item to note in this function is how the Carry flag is tested.  As
I mentioned earlier, many DOS services indicate the success or failure of
an operation by either clearing or setting the CPU's Carry flag.  This flag
is held in one bit in the Flags register, and its primary purpose is to
assist multi-word arithmetic in assembly language programs.  But because
the 80x86 provides single instructions that easily set and test this flag,
the designers of DOS decided to use it as an error indicator.
     The Carry flag is stored in the lowest bit of the Flags register, and
can therefore be tested using the AND instruction with a value of 1.  If
that bit is set, the result of the AND test will be one; otherwise it will
be zero.  Thus, the statement IF Registers.Flags AND 1 THEN will be true if
the Carry flag is set, which indicates an error.  In the case of DOS' Find
First function this is not really an error in the strictest sense.  But
there is no need here to distinguish between, say, an invalid path name and
the lack of any matching files.  Either a match was found or it wasn't.

IMPROVING ON INTERRUPT
======================

Recall that Chapter 8 introduced the DOSInt routine which serves as a
small-code replacement for BASIC's InterruptX routine.  Although the
reduction in code size gained by using DOSInt versus Interrupt or
InterruptX is not dramatic, it can save several hundred bytes in a program
that calls it many times.  DOSInt is also somewhat easier to set up and
use, because it requires only a single Registers argument.
     Of course, DOSInt is meant only for use with DOS Interrupt &H21, and
it will not work with any other DOS or BIOS interrupt services.  Because of
the savings that DOSInt affords, the remaining DOS examples in this chapter
will use DOSInt instead of Interrupt or InterruptX.  Like InterruptX,
DOSInt lets you access the DS and ES registers, and it also recognizes an
incoming value of -1 to specify the current contents of DS.

OBTAINING THE CURRENT DIRECTORY

Where FnFileExist shows how to pass a BASIC string to a DOS interrupt
service, the FnGetDir function following shows how to receive a string from
DOS.  Again, BASIC PDS users have the CURDIR$ function which reports the
current directory, but most QuickBASIC programmers will find this function
invaluable.
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DEFINT A-Z
'$INCLUDE: 'REGTYPE.BI'

DIM Registers AS RegType

DEF FnGetDir$ (Drive$)
  STATIC Temp$, Drive, Zero     'local variables

  IF LEN(Drive$) THEN           'did they pass a drive?
    Drive = ASC(UCASE$(Drive$)) - 64
  ELSE
    Drive = 0
  END IF

  Temp$ = SPACE$(65)            'DOS stores the name here

  Registers.AX = &H4700         'get directory service
  Registers.DX = Drive          'the drive goes in DL
  Registers.SI = SADD(Temp$)    'show DOS where Temp$ is
  Registers.DS = SSEG(Temp$)    'use this with BASIC PDS
 'Registers.DS = -1             'use this with QuickBASIC

  CALL DOSInt(Registers)        'call DOS

  IF Registers.Flags AND 1 THEN 'must be an invalid drive
    FnGetDir$ = ""
  ELSE
    Zero = INSTR(Temp$, CHR$(0))    'find the zero byte
    FnGetDir$ = "\" + LEFT$(Temp$, Zero)
  END IF
END DEF

PRINT "Which drive? ";
DO
  Drive$ = INKEY$
LOOP UNTIL LEN(Drive$)
PRINT

Cur$ = FnGetDir$(Drive$)
IF LEN(Cur$) THEN
  PRINT "The current directory is ";
  PRINT Drive$; ":"; FnGetDir$(Drive$)
ELSE
  PRINT "Invalid drive"
END IF

PRINT "The current directory for the default drive is ";
PRINT FnGetDir$("")

The variables Temp$, Drive, and Zero are declared as STATIC to prevent them
from conflicting with variables of the same name in your program.  Of
course, you could convert this to a formal FUNCTION procedure if you
prefer, which considers variables local by default.  Converting to a formal
function is also needed if you plan to access it from multiple source
modules.
     Unlike the DOS Get Drive and Set Drive services, service &H47 uses a
value of one to indicate drive A, 2 for drive B, and so forth.  To request
the current directory on the default drive you must use a value of zero.
An explicit test for this is made at the beginning of the function.  Later,
this value is assigned to Registers.DX where DOS expects it.  Note that it
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is really DL that will hold the specified drive number.  But assigning DX
from Drive as shown does this, and also clears the high (DH) portion in the
process.  Since the contents of DH are ignored by this DOS service, no harm
is done and the extra code that would be needed to assign only DL can be
avoided.
     As I mentioned earlier, it is essential that you set aside space to
hold the returned directory name.  Since the longest path name that DOS can
accommodate is 65 characters, Temp$ is assigned to that length.  Then, the
segment and address where Temp$ is stored are passed to DOS in the DS and
SI registers.  Note that DOS is not very consistent in its use of
registers.  Where the service that finds the first matching file name uses
DS:DX to point to the file specification, this service uses DS:SI to point
to the string.
     Like the FnFileExist function, you must change the statement that
assigns Registers.DS if you plan to use this one with QuickBASIC.  The
BASIC PDS version of that statement is left active rather than the
QuickBASIC version, so QuickBASIC will highlight that line as an error to
remind you.  Although FnFileExist uses VARSEG for the DS value when used
with QuickBASIC, FnGetDir uses -1.  Both methods work, and I used -1 here
just to show that in context.
     After DOSInt is called to load Temp$ with the current directory name,
the Carry Flag is tested to see if an error occurred.  The only error that
is possible here is "Invalid drive", in which case FnGetDir$ is assigned a
null value as a flag to indicate that.  Otherwise, INSTR is used to locate
the CHR$(0) zero byte that DOS assigned to mark the end of the name.
     This error testing can be left out to save code if you prefer.  You
could also validate the drive using the FnDriveValid function, either by
adding the code within FnGetDir, or separately prior to invoking it.

READING FILE AND DIRECTORY NAMES

One important service that many programs need and which BASIC has never
provided is the ability to read directory names from disk.  Any word
processor worth its salt will let you view a list of files that match, say,
a *.DOC extension, and then select the one you want to edit.  With the
introduction of BASIC PDS Microsoft added the DIR$ function, which lets you
read file names.  However, there is no way to specify file attributes
(hidden, read-only, and so forth), and also no way to read directory names.
To add insult to injury, the PDS manuals do not show clearly how to read a
list of file names, and store them into a string array.
     The program that follows counts the number of files or directories
that match a given specification, and then dimensions and loads a string
array with their names.
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DEFINT A-Z
DECLARE SUB LoadNames (FileSpec$, Array$(), Attribute%)

'$INCLUDE: 'REGTYPE.BI'

TYPE DTA                        'used by find first/next
  Reserved  AS STRING * 21      'reserved for use by DOS
  Attribute AS STRING * 1       'the file's attribute
  FileTime  AS STRING * 2       'the file's time
  FileDate  AS STRING * 2       'the file's date
  FileSize  AS LONG             'the file's size
  FileName  AS STRING * 13      'the file's name
END TYPE

DIM SHARED DTAData AS DTA       'shared so LoadNames can
DIM SHARED Registers AS RegType '  access them too

DEF FnFileCount% (Spec$, Attribute)
  STATIC Count                   'make this private

  Registers.DX = VARPTR(DTAData) 'set new DTA address
  Registers.DS = -1              'the DTA is in DGROUP
  Registers.AX = &H1A00          'specify service 1Ah
  CALL DOSInt(Registers)         'DOS set DTA service

  Count = 0                      'clear the counter
  Spec$ = Spec$ + CHR$(0)        'make an ASCIIZ string
  IF Attribute AND 16 THEN       'find directory names?
    DirFlag = -1                 'yes
  ELSE
    DirFlag = 0                  'no
  END IF

  Registers.DX = SADD(Spec$)     'the file spec address
  Registers.DS = SSEG(Spec$)     'this is for BASIC PDS
 'Registers.DS = -1              'this is for QuickBASIC
  Registers.CX = Attribute       'assign the attribute
  Registers.AX = &H4E00          'find first matching name

  DO
    CALL DOSInt(Registers)       'see if there's a match
    IF Registers.Flags AND 1 THEN EXIT DO   'no more
    IF DirFlag THEN
      IF ASC(DTAData.Attribute) AND 16 THEN
        IF LEFT$(DTAData.FileName, 1) <> "." THEN
          Count = Count + 1      'increment the counter
        END IF
      END IF
    ELSE
      Count = Count + 1          'they want regular files
    END IF

    Registers.AX = &H4F00        'find next name
  LOOP

  FnFileCount% = Count           'assign the function
END DEF

REDIM Names$(1 TO 1)             'create a dynamic array
Attribute = 19                   'matches directories only
Attribute = 39                   'matches all files
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INPUT "Enter a file specification: ", Spec$
CALL LoadNames(Spec$, Names$(), Attribute)

FOR X = LEN(Spec$) TO 1 STEP -1  'isolate the drive/path
  Temp = ASC(MID$(Spec$, X, 1))
  IF Temp = 58 OR Temp = 92 THEN '":" or "\"
    Path$ = LEFT$(Spec$, X)      'keep what precedes that
    EXIT FOR                     'and we're all done
  END IF
NEXT

FOR X = 1 TO UBOUND(Names$)      'print the names
  PRINT Path$; Names$(X)
NEXT

PRINT
PRINT UBOUND(Names$); "matching file(s)"
END

SUB LoadNames (FileSpec$, Array$(), Attribute) STATIC

  Spec$ = FileSpec$ + CHR$(0)     'make an ASCIIZ string
  NumFiles = FnFileCount%(Spec$, Attribute) 'count names
  IF NumFiles = 0 THEN EXIT SUB             'exit if none
  REDIM Array$(1 TO NumFiles)    'dimension the array

  IF Attribute AND 16 THEN       'find directory names?
    DirFlag = -1                 'yes
  ELSE
    DirFlag = 0                  'no
  END IF

  '---- The following code isn't strictly necessary
  '     because we know that FnFileCount already set the
  '     DTA address.
 'Registers.DX = VARPTR(DTAData) 'set new DTA address
 'Registers.DS = -1              'the DTA in DGROUP
 'Registers.AX = &H1A00          'specify service 1Ah
 'CALL DOSInt(Registers)         'DOS set DTA service

  Registers.DX = SADD(Spec$)     'the file spec address
  Registers.DS = SSEG(Spec$)     'this is for BASIC PDS
 'Registers.DS = -1              'this is for QuickBASIC
  Registers.CX = Attribute       'assign the attribute
  Registers.AX = &H4E00          'find first matching name
  Count = 0                      'clear the counter

  DO
    CALL DOSInt(Registers)       'see if there's a match
    IF Registers.Flags AND 1 THEN EXIT DO   'no more
    Valid = 0
    IF DirFlag THEN                         'directories?
      IF ASC(DTAData.Attribute) AND 16 THEN
        IF LEFT$(DTAData.FileName, 1) <> "." THEN
          Valid = -1             'this name is valid
        END IF
      END IF
    ELSE
      Valid = -1                 'they want regular files
    END IF

    IF Valid THEN                'process the file if it
      Count = Count + 1          '  passed all the tests
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      Zero = INSTR(DTAData.FileName, CHR$(0))
      Array$(Count) = LEFT$(DTAData.FileName, Zero - 1)
    END IF
    Registers.AX = &H4F00        'find next matching name
  LOOP

END SUB

These routines call upon the DOS Find First and Find Next services, which
performs the actual searching and loading of the names.  Before the names
can be loaded into an array, you need some way to know how many files there
are.  Therefore, the FnFileCount function makes repeated calls to DOS to
find another file, until there are no more.
     The general strategy is to request service &H4E to find the first
matching file.  If a file is found then the Carry Flag is returned clear;
otherwise it is set and the function returns with a count of zero.  If a
file is found Registers.AX is assigned a value of &H4F, and this tells DOS
to resume searching based on the same file specification as before.  Where
the FnFileExist function merely needed to check for the presence of a file
using the Find First service, this one continues in a DO loop until no more
matching files are found.
     Understand that these DOS services accept either a partial file
specification such as "*.BAS" or "D:\PATHNAME\*.*", or a single file name
such as "CONFIG.SYS" or "C:\AUTOEXEC.BAT".

File Attributes

The DOS Find services also accept--and require--a file attribute indicating
the type of files that are being sought.  The method of specifying and
isolating files and their attributes is convoluted and confusing to be
sure.  Figure 11-3 lists each of the six file attributes, and shows which
corresponds to each bit in the attribute byte.
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 7   6   5   4   3   2   1   0  <-- Bits
128  64  32  16  8   4   2   1  <-- Numeric Values
--- --- --- --- --- --- --- ---
 ¦   ¦   ¦   ¦   ¦   ¦   ¦   ¦
 ¦   ¦   ¦   ¦   ¦   ¦   ¦   +----- Read-Only
 ¦   ¦   ¦   ¦   ¦   ¦   +--------- Hidden
 ¦   ¦   ¦   ¦   ¦   +------------- System
 ¦   ¦   ¦   ¦   +----------------- Volume Label
 ¦   ¦   ¦   +--------------------- Subdirectory
 ¦   ¦   +------------------------- Archive
 +--------------------------------- Unused

Figure 11-3: The makeup of the bits in the attribute byte, and the
individual decimal value of each.

In most cases, the attribute bits are cumulative.  For example, if you
specify that you want to locate files marked as read-only, you will also
get files that are not.  But if you leave that bit clear, then read-only
files will not be included.  The same logic is used for reading directory
names.  If the directory bit is set then you will read directories, and
also regular files whose directory bit is not set.  This requires that you
perform additional qualifications when the file name is read into the DTA.
To make matters even worse, there is an exception to this rule whereby an
attribute of zero will still read file names whose archive bit is set.
     Before considering how to qualify the names as they are read, you must
first understand what attributes are and how to specify them to begin with.
Every file has an attribute, which is set by DOS to Archive at the time it
is created.  The archive bit is used solely to tell if the file has been
backed up using the DOS BACKUP utility.  When BACKUP copies the file to a
floppy disk, it clears the Archive bit in the file's directory entry.  Then
if the file is written to again later, DOS sets that bit.  This way, BACKUP
can tell which files need to be backed up, and which ones haven't changed
since the last backup was performed.  Most modern commercial backup
utilities also manipulate the archive bit, for the same reason that DOS'
BACKUP does.
     The hidden bit tells the DOS DIR command not to display that file's
name.  Although it won't display in a directory listing, a hidden file may
be opened, read from, and written to.  The system bit is similar in that it
also tells DIR not to display the file.  The IO.SYS and MSDOS.SYS files
that come with MS-DOS are hidden system files, so to read their names you
must set those bits in the search attribute.  Note that IBM's version of
DOS uses the names IBMBIO.COM and IBMDOS.COM respectively for the same
files.
     The label bit identifies a file as the disk's volume label, which
isn't really a file at all.  Every disk is allowed to have one volume label
entry in its root directory, which lets an application identify the disk.
This feature is not particularly important with hard disks, but when
floppy-only systems were the norm this let programs ensure that the correct
data diskette was installed in the drive.  Even though a volume label is
stored in the disk's directory like a regular file name, no sectors are
allocated to it.  Note that a bug in DOS 2.x versions causes a search for a
volume label to fail.  The only work-around is to use the more complex DOS
1.x Find First/Next services that are still supported in later versions for
compatibility with older programs.
     Finally, the subdirectory attribute bit identifies a file as a
directory.  From DOS' perspective a subdirectory *is* a file, with fixed-
length records that hold the names, attributes, and other information for
the files it contains.  Notice that the "." and ".." directory entries that
appear when you type DIR are in fact present in that directory.
     Every directory except the root contains these entries, and they also
have a directory attribute.  The single dot refers to the current
directory, and the double dots to the parent directory one level above.  I
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mention this because these "dot" entries are reported by the Find First and
Find Next services, and in many cases you will want to filter them out.
     To specify a file attribute you must determine the correct value,
based on the individual bits to be included in the search.  As I stated
earlier, setting the attribute to zero includes all normal files, and
exclude any marked as read-only, hidden, system, or subdirectory.
Therefore, to include all files but not subdirectories you will use an
attribute value of 39.  This value is derived by adding up the bit values
for each desired attribute as shown in Figure 11-3.
     When you add all of the values for each bit of interest, the answer is
32 (archive) + 4 (system) + 2 (hidden) + 1 (read-only) = 39.  In a similar
fashion, you will use 16 to read directory names, but hidden or read-only
directories will not be included unless you also add 2 + 1 = 3, resulting
in a final value of 19.
     Although you can specify attribute bits in nearly any combination, DOS
returns all of the names that match any of the bits.  Therefore, you must
further qualify the files by examining the attribute DOS returns in the DTA
TYPE variable.  A typical search for directory names will ask to include
all three attribute bits (directory, hidden, and read-only), but the
qualification test merely tests if the directory bit is set.  The following
excerpt shows this in context.

     Registers.CX = 19
     CALL DOSInt(Registers)
     IF ASC(DTAData.Attribute) AND 16 THEN  'it is a directory

Even if the directory was in fact hidden or read-only, the test for the
directory bit will succeed regardless of any other bits that may be set.
Unfortunately, the reverse is not true.  If the directory is not hidden or
read-only, then testing for those bits will fail.  Both the FnFileCount
function and the LoadNames subprogram include an explicit test for
directory searches, and contain additional logic to check for this case.
     You could also add similar logic to the FnFileExist function, or
create a separate version perhaps called FnDirExist that adds a test for
the directory bit and also filters out the "dot" entries.

REDIM PRESERVE

One glaring shortcoming you have probably already noticed is the enormous
amount of code that is duplicated in both the FnFileCount and LoadNames
routines.  In fact, the two are almost identical, except that LoadNames
also assigns elements in the array.  Worse, having to count all of the
names before they can be read greatly increases the amount of time needed
to process a directory when there are many files.  Until you know how many
files are present, there's no way to known how large to dimension the
string array.
     One solution is to create an array with, say, 500 elements, and hope
that the actual number of files does not exceed that.  But if there are
only a few files this wastes a lot of memory, and when there are more than
500, then, well, you're still out of luck.  In fact, this is one of the few
features that C offers but QuickBASIC does not.  C programs can allocate
memory that will be treated as an array, and then repeatedly request more
memory for that same array as it is needed.
     Fortunately, BASIC PDS version 7.1 includes the PRESERVE option to the
REDIM statement.  This allows you to increase (or decrease) the size of an
array, but without destroying its current contents.  Thus, REDIM PRESERVE
is ideal for applications like this that require an array's size to be
altered.  The next, much shorter program uses REDIM PRESERVE to advantage,
and avoids the extra step that counts how many files match the search
specification.  Of course, this program requires BASIC PDS.
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DEFINT A-Z
DECLARE SUB LoadNames (FileSpec$, Array$(), Attribute%)

'$INCLUDE: 'REGTYPE.BI'

TYPE DTA                        'used by find first/next
  Reserved  AS STRING * 21      'reserved for use by DOS
  Attribute AS STRING * 1       'the file's attribute
  FileTime  AS STRING * 2       'the file's time
  FileDate  AS STRING * 2       'the file's date
  FileSize  AS LONG             'the file's size
  FileName  AS STRING * 13      'the file's name
END TYPE

DIM SHARED DTAData AS DTA       'shared so LoadNames can
DIM SHARED Registers AS RegType '  access them too

REDIM Names$(1 TO 1)             'create a dynamic array
Attribute = 19                   'matches directories only
Attribute = 39                   'matches all files
Spec$ = "*.*"                    'so does this
CALL LoadNames(Spec$, Names$(), Attribute)

IF Names$(1) = "" THEN           'check for no files
  PRINT "No matching files"
ELSE
  FOR X = 1 TO UBOUND(Names$)    'print the names
    PRINT Path$; Names$(X)
  NEXT
END IF
END

SUB LoadNames (FileSpec$, Array$(), Attribute) STATIC
  Spec$ = FileSpec$ + CHR$(0)    'make an ASCIIZ string
  Count = 0                      'clear the counter

  Registers.DX = VARPTR(DTAData) 'set new DTA address
  Registers.DS = -1              'the DTA is in DGROUP
  Registers.AX = &H1A00          'specify service 1Ah
  CALL DOSInt(Registers)         'DOS set DTA service

  IF Attribute AND 16 THEN       'find directory names?
    DirFlag = -1                 'yes
  ELSE
    DirFlag = 0                  'no
  END IF

  Registers.DX = SADD(Spec$)     'the file spec address
  Registers.DS = SSEG(Spec$)     'this is for BASIC PDS
  Registers.CX = Attribute       'assign the attribute
  Registers.AX = &H4E00          'find first matching name

  DO
    CALL DOSInt(Registers)       'see if there's a match
    IF Registers.Flags AND 1 THEN EXIT DO   'no more

    Valid = 0                    'invalid until qualified
    IF DirFlag THEN              'find directories?
      IF ASC(DTAData.Attribute) AND 16 THEN 'yes, is it?
        IF LEFT$(DTAData.FileName, 1) <> "." THEN
          Valid = -1             'this name is valid
        END IF
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      END IF
    ELSE
      Valid = -1                 'they want regular files
    END IF

    IF Valid THEN                'process the file if it
      Count = Count + 1          '  passed all the tests
      REDIM PRESERVE Array$(1 TO Count)  'expand the array
      Zero = INSTR(DTAData.FileName, CHR$(0)) 'find zero
      Array$(Count) = LEFT$(DTAData.FileName, Zero - 1)
    END IF

    Registers.AX = &H4F00        'find next matching name
  LOOP
END SUB

MANAGING FILES

Chapter 6 explained in great detail how files are opened, closed, read, and
written using BASIC.  I mentioned there that BASIC imposes a number of
arbitrary limitations on what you can and cannot do with files.  Indeed,
DOS allows almost any action except writing to a file that has been opened
for input.  As you can imagine, CALL Interrupt--or in this case the DOSInt
replacement routine--can be used to circumvent BASIC and access your files
directly.
     Although BASIC expects you to state how the file will be accessed with
the various OPEN options, to DOS all files are considered as being opened
for binary access.  There is no equivalent DOS service for BASIC's INPUT #
or PRINT # commands. Therefore, it is up to you to write subroutines that
look for a terminating carriage return and optional line feed when reading
sequential text.  Likewise, it is up to you to manually append a carriage
return and line feed to the end of each line of text written to disk.
     Frankly, sequential file access is often best left to BASIC, since a
lot of time-consuming tests are needed when reading sequential data.  You
could, however, use the BufIn function shown in Chapter 6, or similar logic
of your own devising.  There are many types of file access that can be
performed using direct DOS calls, and I will show those that are the most
useful and appropriate here.
     The program that will follow shortly is a combination demonstration,
and suite of twelve subprograms and functions that perform most of the
services necessary for manipulating files.  Subprograms are provided to
replace BASIC's OPEN, CLOSE, GET, and PUT statements, as well as LOCK and
UNLOCK, SEEK, and KILL.
     There are also replacement functions for LOC and LOF, as well as two
additional subprograms that have no BASIC equivalent.  All of the routines
use the DOSInt interface routine, and avoid using BASIC's file handling
statements.  The demonstration is comprised of a series of code blocks that
exercise each routine showing how it is used.  Comments at the start of
each block explain what is being demonstrated.
     One reason to go behind BASIC's back this way is to avoid its many
restrictions.  For example, BASIC will not let you read from a file that
has been opened for output, even though DOS considers this to be perfectly
legal.  Another is to avoid the need for ON ERROR.  As you learned in
Chapter 3, ON ERROR can make a program run more slowly, and also increase
its size.  By going directly to DOS you can avoid the burden of ON ERROR,
which is otherwise needed to prevent your program from terminating if an
error occurs.  These replacement routines avoid errors such as those caused
by attempting to open a file that does not exist, or trying to lock a
network file that has already been locked by someone else.
     As with some of the other programs in this book that combine a
demonstration and subroutines, you should make a copy of the file, and then
delete all of the code in the main portion of the program.  The only lines
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that must not be deleted are the DEFINT, DECLARE, and INCLUDE statements,
and also the two DIM SHARED statements.  Then, you can load the resultant
module into the BASIC editor along with your own main application.



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 361   -

'DOS.BAS, demonstrates the direct DOS access routines

DEFINT A-Z
DECLARE FUNCTION DOSError% ()
DECLARE FUNCTION ErrMessage$ (ErrNumber)
DECLARE FUNCTION LocFile& (Handle)
DECLARE FUNCTION LofFile& (Handle)
DECLARE FUNCTION PeekWord% (BYVAL Segment, BYVAL Address)

DECLARE SUB ClipFile (Handle, NewLength&)
DECLARE SUB CloseFile (Handle)
DECLARE SUB FlushFile (Handle)
DECLARE SUB KillFile (FileName$)
DECLARE SUB LockFile (Handle, Location&, NumBytes&, Action)
DECLARE SUB OpenFile (FileName$, OpenMethod, Handle)
DECLARE SUB ReadFile (Handle, Segment, Address, NumBytes)
DECLARE SUB SeekFile (Handle, Location&, SeekMethod)
DECLARE SUB WriteFile (Handle, Segment, Address, NumBytes)

'$INCLUDE: 'REGTYPE.BI'

DIM SHARED Registers AS RegType 'so all can access it
DIM SHARED ErrCode              'ditto for the ErrCode
CRLF$ = CHR$(13) + CHR$(10)     'define this once now

COLOR 15, 1                     'this makes the DOS
CLS                             'messages high-intensity
COLOR 7, 1

'---- Open the test file we will use.
FileName$ = "C:\MYFILE.DAT"     'specify the file name
OpenMethod = 2                  'read/write non-shared
CALL OpenFile(FileName$, OpenMethod, Handle)
GOSUB HandleErr
PRINT FileName$; " successfully opened, handle:"; Handle

'---- Write a test message string to the file.
Msg$ = "This is a test message." + CRLF$
Segment = SSEG(Msg$)            'use this with BASIC PDS
'Segment = VARSEG(Msg$)         'use this with QuickBASIC
Address = SADD(Msg$)
NumBytes = LEN(Msg$)
CALL WriteFile(Handle, Segment, Address, NumBytes)
GOSUB HandleErr
PRINT "The test message was successfully written."

'---- Show how to write a numeric value.
IntData = 1234
Segment = VARSEG(IntData)
Address = VARPTR(IntData)
NumBytes = 2
CALL WriteFile(Handle, Segment, Address, NumBytes)
GOSUB HandleErr
PRINT "The integer variable was successfully written."

'---- See how large the file is now.
Length& = LofFile&(Handle)
GOSUB HandleErr
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PRINT "The file is now"; Length&; "bytes long."

'---- Seek back to the beginning of the file.
Location& = 1                   'specify file offset 1
SeekMethod = 0                  'relative to beginning
CALL SeekFile(Handle, Location&, SeekMethod)
GOSUB HandleErr
PRINT "We successfully seeked back to the beginning."

'---- Ensure that the Seek worked by seeing where we are.
CurSeek& = LocFile&(Handle)
GOSUB HandleErr
PRINT "The DOS file pointer is now at location"; CurSeek&

'---- Read the test message back in again.
Buffer$ = SPACE$(23)            'the length of Msg$
Segment = SSEG(Buffer$)         'use this with BASIC PDS
'Segment = VARSEG(Buffer$)      'use this with QuickBASIC
Address = SADD(Buffer$)
NumBytes = LEN(Buffer$)
CALL ReadFile(Handle, Segment, Address, NumBytes)
GOSUB HandleErr
PRINT "Here is the test message: "; Buffer$

'---- Skip over the CRLF by reading it as an integer.
Address = VARPTR(Temp)          'read the CRLF into Temp
Segment = VARSEG(Temp)
NumBytes = 2
CALL ReadFile(Handle, Segment, Address, NumBytes)
GOSUB HandleErr

'---- Read the integer written earlier, also into Temp.
Address = VARPTR(Temp)
Segment = VARSEG(Temp)
NumBytes = 2
CALL ReadFile(Handle, Segment, Address, NumBytes)
GOSUB HandleErr
PRINT "The integer value just read is:"; Temp

'---- Append a new string at the end of the file.
Msg$ = "This is appended to the end of the file." + CRLF$
Segment = SSEG(Msg$)            'use this with BASIC PDS
'Segment = VARSEG(Msg$)         'use this with QuickBASIC
Address = SADD(Msg$)
NumBytes = LEN(Msg$)
CALL WriteFile(Handle, Segment, Address, NumBytes)
GOSUB HandleErr
PRINT "The appended message has been written, ";
PRINT "but it's still in the DOS file buffer."

'---- Flush the file's DOS buffer to disk.
CALL FlushFile(Handle)
GOSUB HandleErr
PRINT "Now the buffer has been flushed to disk.  ";
PRINT "Here's the file contents:"
SHELL "TYPE " + FileName$
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'---- Display the current length of the file again.
PRINT "Before calling ClipFile the file is now";
Length& = LofFile&(Handle)
GOSUB HandleErr
PRINT Length&; "bytes long."

'---- Clip the file to be 2 bytes shorter.
NewLength& = LofFile&(Handle) - 2
CALL ClipFile(Handle, NewLength&)
PRINT "The file has been clipped successfully.  ";

'---- Prove that the clipping worked successfully.
Length& = LofFile&(Handle)
GOSUB HandleErr
PRINT "It is now"; Length&; "bytes long."

'---- Close the file.
CALL CloseFile(Handle)
GOSUB HandleErr
PRINT "The file was successfully closed."

'---- Open the file again, this time for shared access.
OpenMethod = 66                 'full sharing, read/write
CALL OpenFile(FileName$, OpenMethod, Handle)
GOSUB HandleErr
PRINT FileName$; " successfully opened in shared mode";
PRINT ", handle:"; Handle

'---- Lock bytes 50 through 59.
Start& = 50
Length& = 10
Action = 0                      'specify locking
CALL LockFile(Handle, Start&, Length&, Action)
GOSUB HandleErr
PRINT "File bytes 50 through 59 are successfully locked."

'---- Prove that it is locked by asking DOS to copy it.
PRINT "DOS (another process) fails to access the file:"
SHELL "COPY " + FileName$ + " NUL"

'---- Unlock the same range of bytes (mandatory).
Start& = 50
Length& = 10
Action = 1                      'specify unlocking
CALL LockFile(Handle, Start&, Length&, Action)
GOSUB HandleErr
PRINT "File bytes 50 through 59 successfully unlocked."

'---- Prove the unlocking worked by having DOS copy it.
PRINT "Once unlocked DOS can access the file:";
SHELL "COPY " + FileName$ + " NUL"

CloseIt:
'---- Close the file
CALL CloseFile(Handle)
GOSUB HandleErr
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PRINT "The file was successfully closed, ";

'---- Kill the file to be polite
CALL KillFile(FileName$)
GOSUB HandleErr
PRINT "and then successfully deleted."

END

'=======================================
'  Error handler
'=======================================
HandleErr:

TempErr = DOSError%             'call DOSError% just once
IF TempErr = 0 THEN RETURN      'return if no errors
PRINT ErrMessage$(TempErr)      'else print the message
IF TempErr = 1 THEN             'we failed trying to lock
  COLOR 7 + 16
  PRINT "SHARE must be installed to continue."
  COLOR 7
  RETURN CloseIt
ELSE                            'otherwise end
  END
END IF

SUB ClipFile (Handle, Length&) STATIC
  '-- Use SeekFile to seek there, and then call WriteFile
  '   specifying zero bytes to truncate it at that point.
  '   Length& + 1 is needed because we need to seek just
  '   PAST the point where the file is to be truncated.
  CALL SeekFile(Handle, Length& + 1, Zero)
  IF ErrCode THEN EXIT SUB    'exit if an error occurred
  CALL WriteFile(Handle, Dummy, Dummy, Zero)
END SUB

SUB CloseFile (Handle) STATIC
  ErrCode = 0                   'assume no errors
  Registers.AX = &H3E00         'close file service
  Registers.BX = Handle         'using this handle
  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
END SUB

FUNCTION DOSError%
  DOSError% = ErrCode           'simply return the error
END FUNCTION

FUNCTION ErrMessage$ (ErrNumber) STATIC
  SELECT CASE ErrNumber
    CASE 2
      ErrMessage$ = "File not found"
    CASE 3
      ErrMessage$ = "Path not found"
    CASE 4
      ErrMessage$ = "Too many files"
    CASE 5
      ErrMessage$ = "Access denied"
    CASE 6
      ErrMessage$ = "Invalid handle"
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    CASE 61
      ErrMessage$ = "Disk full"
    CASE ELSE
      ErrMessage$ = "Undefined error: " + STR$(ErrNumber)
  END SELECT
END FUNCTION

SUB FlushFile (Handle) STATIC
  ErrCode = 0                   'assume no errors
  Registers.AX = &H4500         'create duplicate handle
  Registers.BX = Handle         'based on this handle

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN 'an error, assign it
    ErrCode = Registers.AX
  ELSE                          'no error, so closing the
    TempHandle = Registers.AX   'dupe flushes the data
    CALL CloseFile(TempHandle)
  END IF
END SUB

SUB KillFile (FileName$) STATIC
  ErrCode = 0                      'assume no errors
  LocalName$ = FileName$ + CHR$(0) 'make an ASCIIZ string

  Registers.AX = &H4100            'delete file service
  Registers.DX = SADD(LocalName$)  'using this handle
  Registers.DS = SSEG(LocalName$)  'use this with PDS
 'Registers.DS = -1                'use this with QB

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
END SUB

FUNCTION LocFile& (Handle) STATIC
  ErrCode = 0               'assume no errors

  Registers.AX = &H4201     'seek to where we are now
  Registers.BX = Handle     'using this handle
  Registers.CX = 0          'move zero bytes from here
  Registers.DX = 0

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN    'an error occurred
    ErrCode = Registers.AX
  ELSE                             'adjust to one-based
    LocFile& = (Registers.AX + (65536 * Registers.DX)) + 1
  END IF
END FUNCTION

SUB LockFile (Handle, Location&, NumBytes&, Action) STATIC
  ErrCode = 0                     'assume no errors
  LocalLoc& = Location& - 1       'adjust to zero-based

  Registers.AX = Action + (256 * &H5C)  'lock/unlock
  Registers.BX = Handle
  Registers.CX = PeekWord%(VARSEG(LocalLoc&), VARPTR(LocalLoc&) + 2)
  Registers.DX = PeekWord%(VARSEG(LocalLoc&), VARPTR(LocalLoc&))
  Registers.SI = PeekWord%(VARSEG(NumBytes&), VARPTR(NumBytes&) + 2)
  Registers.DI = PeekWord%(VARSEG(NumBytes&), VARPTR(NumBytes&))
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  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
END SUB

FUNCTION LofFile& (Handle)
  '---- first get and save the current file location
  CurLoc& = LocFile&(Handle) 'LocFile also clears ErrCode
  IF ErrCode THEN EXIT FUNCTION

  Registers.AX = &H4202      'seek to the end of the file
  Registers.BX = Handle      'using this handle
  Registers.CX = 0           'move zero bytes from there
  Registers.DX = 0

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN  'an error occurred
    ErrCode = Registers.AX
    EXIT FUNCTION
  ELSE                           'assign where we are
    LofFile& = Registers.AX + (65536 * Registers.DX)
  END IF

  Registers.AX = &H4200     'seek to where we were before
  Registers.BX = Handle     'using this handle
  Registers.CX = PeekWord%(VARSEG(CurLoc&), VARPTR(CurLoc&) + 2)
  Registers.DX = PeekWord%(VARSEG(CurLoc&), VARPTR(CurLoc&))

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
END FUNCTION

SUB OpenFile (FileName$, Method, Handle) STATIC
  ErrCode = 0                          'assume no errors
  Registers.AX = Method + (256 * &H3D) 'open file service
  LocalName$ = FileName$ + CHR$(0) 'make an ASCIIZ string

  DO
    Registers.DX = SADD(LocalName$) 'point to the name
    Registers.DS = SSEG(LocalName$) 'use this with PDS
   'Registers.DS = -1               'use this w/QuickBASIC

    CALL DOSInt(Registers)              'call DOS
    IF (Registers.Flags AND 1) = 0 THEN 'no errors
      Handle = Registers.AX         'assign the handle
      EXIT SUB                      'and we're all done
    END IF

    IF Registers.AX = 2 THEN        'File not found error
      Registers.AX = &H3C00         'so create it!
    ELSE
      ErrCode = Registers.AX        'read the code from AX
      EXIT SUB
    END IF
  LOOP
END SUB

SUB ReadFile (Handle, Segment, Address, NumBytes) STATIC
  ErrCode = 0                   'assume no errors

  Registers.AX = &H3F00         'read from file service
  Registers.BX = Handle         'using this handle
  Registers.CX = NumBytes       'and this many bytes
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  Registers.DX = Address        'read to this address
  Registers.DS = Segment        'and this segment

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
END SUB

SUB SeekFile (Handle, Location&, Method) STATIC
  ErrCode = 0                      'assume no errors
  LocalLoc& = Location& - 1        'adjust to zero-based

  Registers.AX = Method + (256 * &H42)
  Registers.BX = Handle
  Registers.CX = PeekWord%(VARSEG(LocalLoc&), VARPTR(LocalLoc&) + 2)
  Registers.DX = PeekWord%(VARSEG(LocalLoc&), VARPTR(LocalLoc&))

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
END SUB

SUB WriteFile (Handle, Segment, Address, NumBytes) STATIC
  ErrCode = 0                      'assume no errors

  Registers.AX = &H4000
  Registers.BX = Handle
  Registers.CX = NumBytes
  Registers.DX = Address
  Registers.DS = Segment

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN
    ErrCode = Registers.AX
  ELSEIF Registers.AX <> Registers.CX THEN
    ErrCode = 61
  END IF
END SUB

This program begins by dimensioning two variables as SHARED throughout the
entire module.  By establishing the Registers TYPE variable as SHARED, all
of the routines can use the same portion of DGROUP memory.  If a separate
DIM statement were used within each procedure, that many copies of this 20-
byte variable would reside in memory at once.  The CRLF$ variable does not
need to be shared, because it is used only by the demonstration portion of
the program.
     Before I describe each of these routines and how they are used, it is
important to explain how DOS uses file handles.  BASIC is unique among
languages in that it allows you to make up an arbitrary file number that is
used to access the files.  With most languages and operating systems--and
DOS is no exception--it is the operating system that assigns a number which
your program must remember.  Therefore, when you call the OpenFile routine
to open a file, the Handle parameter is returned to you and you will use
that number for subsequent file operations.
     Another important point is how errors are handled by these routines.
Since you do not use ON ERROR to trap those situations another method is
needed.  Each routine clears or sets a global SHARED variable named
ErrCode, which indicates its success or failure.  After each call to one of
these routines you will then check this variable, to see if it was
successful.  For the most efficiency, this program invokes a central error
checking GOSUB routine that performs the actual testing.  If an error
occurs this routine prints an appropriate message using the ErrMessage$
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function, and then ends.  The DOSError function is provided to allow access
to ErrCode from other modules.
     In practice, it is not strictly necessary to add an explicit test
after each subroutine call.  For example, if you know the file has been
opened successfully and you are sure the disk drive has sufficient space,
then it is probably safe to assume that subsequent file writes will be
okay.  However, if you do call a routine that causes an error and don't
check for that error, the next successful call to another routine will
clear ErrCode and you will have no way to know about the earlier error.

Opening a File

The demonstration begins by first assigning a file name and open method,
and then calling OpenFile to open the file.  The open method lets you
indicate the file access mode (reading, writing, or both), and also if the
file will be accessed on a network.  This parameter is bit-coded, and each
bit has a parallel equivalent in BASIC's ACCESS READ, WRITE, SHARED, LOCK
READ, and LOCK WRITE options.  Figure 11-4 shows how these bits are
organized.

 7   6   5   4   3   2   1   0  <-- Bits
n/a  64  32  16 n/a  4   2   1  <-- Numeric Values
--- --- --- --- --- --- --- ---
 ¦   ¦   ¦   ¦   ¦   ¦   ¦   ¦
 ¦   ¦   ¦   ¦   ¦   +------------- Access Mode
 ¦   ¦   ¦   ¦   +----------------- Reserved
 ¦   +----------------------------- Sharing Mode
 +--------------------------------- Inheritance

Figure 11-4: The organization of the bits that establish how a file is to
be opened.

As with the file attribute bits shown earlier in Figure 11-3, you also need
to set bits individually here to fully control the various file permission
privileges.  The access mode bits are valid with DOS versions 2.0 or later,
and are equivalent to BASIC's ACCESS arguments.  The sharing mode bits
require DOS 3.0 or later, and also require SHARE.EXE to be installed.  Note
that some network software does not explicitly require SHARE, and provides
the same functionality as part of its normal operation.
     The three lower bits control the file access, using the following
binary code: 000 establishes read-only access, 001 allows writing only, and
010 allows both reading and writing.  The term access as used here means
what actions *your* program can perform, and has nothing to do with network
or file sharing privileges.
     File sharing privileges are controlled by the three bits in the upper
nybble (half-byte), and these determine what actions may be performed by
other programs while your file is open.  Regardless of what sharing (or
locking) options you choose, your program always has full permission to
access the file.  The share bits are organized as follows: 000 means
sharing is disabled, and this is what you must specify if you are not
running on a network or when DOS 2.x is installed.  A code of 001 denies
other programs access to either read from or write to the file, 010 allows
other programs to read but not write, and 011 allows writing but not
reading.  A code of 100 indicates full sharing, which lets other programs
read and write, as long as that part of the file is not locked explicitly.
     Again, these codes are presented as binary values, and it is up to you
to determine the correct value based on the settings of the individual
bits.  This is not as hard as it may sound at first, because you simply add
up the bit values shown in the table.  For example, to open a file for non-
network read/write access under any version of DOS you use 000 + 010 = 2,
which is the value used in the first OPEN example.  To open a file for
reading and writing and also allow other applications to access it fully
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you instead use 100 + 010 = 64 + 2 = 66.  This is shown in the second OPEN
statement.  Figure 11-5 lists a few of the possible bit combinations, with
the equivalent BASIC OPEN options.

      BASIC OPEN Statement             Bits    Value
=================================    ========  =====
OPEN FOR BINARY                      00000010     2
OPEN FOR BINARY ACCESS READ          00000000     0
OPEN FOR BINARY ACCESS WRITE         00000001     1
OPEN FOR BINARY ACCESS READ WRITE    00000010     2
OPEN FOR BINARY ACCESS READ SHARED   01000000    64
OPEN FOR BINARY LOCK READ            00110010    50
OPEN FOR BINARY LOCK WRITE           00100010    34

Figure 11-5: Bit equivalents for some of BASIC's OPEN options.

Reading and Writing

Once the file has been opened successfully, the next step is to show how to
write a string variable in the same way BASIC does when you use PRINT #.
The WriteFile and ReadFile routines each expect four arguments: the DOS
file handle, the segment and address to save from or read into, and the
number of bytes.  These are the same parameters that DOS expects, and you
can see by examining the subprograms that they merely pass this information
on to DOS.
     Just before the first call to WriteFile, Msg$ is assigned a short test
string, and a carriage return and line feed are appended to it manually.
Remember, when you use BASIC's PRINT # command it is BASIC that adds these
bytes for you.  When dealing with DOS directly it is up to you to append
these characters.  Of course, you would omit these to mimic appending a
semicolon at the end of a BASIC print line:

     PRINT #1, Msg$;

SSEG then determines where the string data segment is, and SADD reports its
address within that segment.  The QuickBASIC version is shown as a comment,
and it uses VARSEG instead.  The number of bytes is obtained using LEN, and
DOS accepts any value up to 65535.  It is imperative that you never pass a
value of zero for the number of bytes, or DOS will truncate the file at the
current seek location.  I will discuss this in more detail later on, in the
section entitled *Beyond BASIC's File Handling*.
     The next example that writes an integer variable to the file is
similar, except it uses a fixed length of 2.  BASIC will not let you pass
different types of data to one subprogram or function, which is why these
read and write routines are designed to accept a segment and address.
     ReadFile is not called until later in the demonstration; however, it
is nearly identical to WriteFile.  Because you must tell ReadFile how many
bytes are to be read, you should establish some type of system.  One good
one is the method used by Lotus and described in Chapter 6.  For programs
that do not need such a heavy-handed approach or that write only strings,
you could use a simpler technique.  For example, each string could be
preceded by an integer length word, and that word would be read prior to
reading each string.  The short code fragment that follows shows how this
might work.

     Segment = VARSEG(Length)      'Length is what gets read first
     Address = VARPTR(Length)
     CALL ReadFile(Handle, Segment, Address, 2)

     Work$ = SPACE$(Length)        'make a string that long
     Segment = SSEG(Work$)         'then read Length bytes into the string
     Address = SADD(Work$)
     CALL ReadFile(Handle, Segment, Address, Length)
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Setting and Reading the DOS Seek Location

The LocFile and LofFile functions are similar to their BASIC LOC and LOF
counterparts, except that LocFile is really equivalent to the SEEK
function.  Chapter 6 described the difference between the LOC and SEEK
functions, and came to the inescapable conclusion that LOC is not nearly as
useful as SEEK in most situations.
     The SeekFile subprogram, on the other hand, is equivalent to the
statement form of BASIC's SEEK, and offers an interesting twist as an
enhancement.  Where BASIC's SEEK statement expects an offset from the
beginning of the file, DOS provides additional seek methods.  One lets you
seek relative to where you are now in the file, and the other is relative
to the end of the file.  Therefore, I have included a SeekMethod parameter
with my version of SeekFile, letting you enjoy the same flexibility.
     If SeekMethod is set to zero, DOS behaves the same as BASIC does and
bases the new seek location from the beginning of the file.  If SeekMethod
is instead assigned to 1, the new offset into the file will be based on the
current location.  Note that you may use both positive *and* negative seek
values, to move forward and backwards respectively.  Finally, using a
SeekMethod value of 2 tells DOS to consider the new location as being
relative to the end of the file.
     For this method you may also use either a positive or negative value,
to go beyond the end of the file or some offset before the end.  While
there is nothing inherently wrong with seeking past the end of a file, if
any data is written at that point DOS will make that the new file length.
And as explained in Chapter 6, the portion of the file that lies between
the previous end of the file and the current end will hold whatever junk
happened to be in the sectors that were just assigned to extend the length.
     One slight complication arises if you are dealing with fixed-length
record data: you must calculate the appropriate file offset manually.  The
short one-line DEF FN function below shows how to do this.

  DEF FNSeekLoc&(RecNumber, RecLen) = ((RecNumber - 1) * CLNG(RecLen)) + 1

Locking a File

The LockFile subprogram serves the same purpose as BASIC's LOCK and UNLOCK
statements.  Because the code to lock and unlock a file are identical
except for a single instruction, it seemed reasonable to combine the two
services into one routine.  LockFile expects four arguments: a handle, a
starting offset, the number of bytes, and an action code.  The starting
offset and number of bytes use long integer values, to accommodate large
files.
     Because DOS's Lock and Unlock services require you to specify the
range of bytes to be locked, additional effort may be needed on your part.
For example, if you are manipulating fixed-length records it is up to you
to translate record numbers and record ranges to an equivalent binary
offset and number of bytes.  Fortunately, these values are very easy to
determine using the following formulas:

     Location& = (RecNumber - 1) * CLNG(RecLength)
     NumBytes& = RecLength * CLNG(NumRecords)

Note how CLNG is necessary to prevent BASIC from creating an overflow error
if the result of the multiplications exceeds 32767.
     LockFile can also be used with normal BASIC file handling statements,
if you merely want to avoid an error from attempting to lock a file that is
already locked by another process.  This requires you to use BASIC's
FILEATTR function to obtain the equivalent DOS handle, thus:

     Handle = FILEATTR(FileNumber, 2)
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Here, FileNumber is the BASIC file number that was specified when the file
was first opened.  For example, if you used this:

     OPEN FileName$ FOR RANDOM SHARED AS #4 LEN = RecLength

then the correct value for FileNumber will be 4.

Beyond BASIC's File Handling

Aside from SeekFile's ability to use the end of a file or the current seek
location as a base point, the routines presented so far merely mimic the
same capabilities BASIC already provides.  Two notable exceptions, however,
are ClipFile and FlushFile.
     The ClipFile subprogram lets you set a new length for a file, and that
length may be either longer or shorter than the current length.  ClipFile
takes advantage of a little-known DOS feature that sets a new length for a
file when you tell it to write zero bytes.  This technique was used in the
DBPACK.BAS program from Chapter 7, and it let that program remove deleted
records from the end of a dBASE file.
     ClipFile begins by calling SeekFile to move the DOS file pointer just
past the new length specified.  If no error occurred it then calls
WriteFile to write zero bytes at that point, thus establishing the new
length.  Notice the way the undefined variable Zero is used rather than a
literal constant 0.  As you already learned in Chapter 2, when a constant
is passed to a subprogram or function, BASIC creates code to store a copy
of the constant in DGROUP, and then passes the address of that copy.
Although the variable Zero also requires two bytes of DGROUP memory for
storage, the code to explicitly place the value there is avoided.  Since an
unassigned variable is always zero this method can be used with confidence.
     FlushFile also provides an important service that BASIC does not.
When data is written to disk using either BASIC or DOS via direct interrupt
calls, the last portion that was written is not necessarily on the physical
disk.  DOS buffers all file writes to minimize the number of disk accesses
needed, thereby improving the speed of those writes.  BASIC performs
additional buffering as well, which further improves your program's
performance.  However, this creates a potential problem because a power
outage or other disaster will cause any data in the file buffer to be lost.
     FlushFile calls upon another little-known DOS service called Duplicate
Handle.  When this service is called with the handle of a file that is
already open, DOS creates a duplicate handle for the same file.  This
service is not that useful in and of itself, except for one important
exception:  When the duplicate handle is subsequently closed, DOS also
writes the original file's contents to disk and updates the directory entry
to reflect the current length.  This is exactly what FlushFile does to
flush the file buffer to disk.

Error Messages

The ErrMessage$ function is designed to display an appropriate message if
an error occurs while using these routines.  DOS has fewer error codes than
BASIC, and it also uses a completely different numbering system.  The
ErrMessage$ function returns an error message that is equivalent to BASIC's
where possible, but based on the DOS error return codes.

Potential Problems

Although this collection of file handling routines offers many improvements
over using equivalent BASIC statements, there is one important issue I have
not addressed here: handling critical errors.  A critical error is caused
by attempting to access a floppy disk drive with the drive door open, or no
disk in place.  At the DOS command line critical errors result in the
infamous "Abort, Retry, Fail" message.
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     Handling critical errors requires pure assembly language, and is a
fairly complex undertaking.  Therefore, I have purposely omitted that
functionality from these routines.  However, add-on library products such
as QuickPak Professional and P.D.Q. from Crescent Software are written in
assembly language, and include critical error handling.
     There is another potential problem you must be aware of when using
these routines.  When you open a file using BASIC's OPEN statement, and
then restart the program before the file has been closed, BASIC closes the
file before running your program again.  This is done automatically and
without your knowing about it.
     If you call OpenFile to open a file and then restart the program, the
original file remains open.  This causes no harm by itself--your program
will simply receive the next available handle when it calls OpenFile.  But
at some point you will surely exhaust the available handles.  The problem
is that you will not be able to save your program, because the BASIC editor
needs a handle when writing your source code to disk.
     The solution is to press F6 to go to the Immediate window, and then
type the following line:

     FOR X% = 5 TO 20: CALL CloseFile(X%): NEXT

This closes all of the files your program opened, thus freeing them for use
by the BASIC editor.  It is essential that you never close DOS handles zero
through four, because they are in use by the PC.  Since DOS uses these
handles itself to print to the screen and read keyboard input, closing
those handles will effectively lock up your PC.  [Also, it is okay to close
handles 5 through 20, even if your program hasn't opened that many.  That
is, asking DOS to close a file handle that was never opened does no harm.]

ACCESSING THE MOUSE
===================

All of the DOS and BIOS system services we have looked at so far rely on
either the Interrupt routine that comes with BASIC, or the simplified
DOSInt replacement.  In a similar fashion, accessing the mouse driver also
requires you to call interrupts.  All of the mouse services are invoked
using Interrupt &H33, and like DOS and the BIOS they require you to load
the processor's registers to pass information, and then read them again
afterward to obtain the results.
     In this section I will present several useful subroutines that show
how to access the mouse interrupt.  The first portion discusses the various
utility routines, and shows how they are used.  Following that, I will
explain how the routines actually work and interface with the mouse driver.

MOUSE SERVICES

The important mouse services provided here are those that turn the mouse
cursor on and off, position it on the screen and control its color, and let
you determine which buttons are being pressed and where the cursor is
presently located.  Other routines show how to restrict the range of the
mouse cursor's travel, and show how to define new, custom cursor shapes.
     To reduce the size of your programs I have written a short assembly
language subroutine called MouseInt.  This is similar to the DOSInt routine
introduced in Chapter 6, except it is intended for use with the mouse
interrupt &H33.



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 373   -

;MOUSEINT.ASM

.Model Medium, Basic

MouseRegs Struc
  RegAX  DW ?
  RegBX  DW ?
  RegCX  DW ?
  RegDX  DW ?
  Segmnt DW ?
MouseRegs Ends

.Code

MouseInt Proc Uses SI DS ES, MRegs:Word
  Mov  SI,MRegs          ;get the address of MouseRegs
  Mov  AX,[SI+RegAX]     ;load each register in turn
  Mov  BX,[SI+RegBX]
  Mov  CX,[SI+RegCX]
  Mov  DX,[SI+RegDX]

  Mov  SI,[SI+Segmnt]    ;see what the segment is
  Or   SI,SI             ;is it zero?
  Jz   @F                ;yes, skip ahead and use default

  Cmp  SI,-1             ;is it -1?
  Je   @F                ;yes, skip ahead
  Mov  DS,SI             ;no, use the segment specified

@@:
  Push DS                ;either way, assign ES=DS
  Pop  ES
  Int  33h               ;call the mouse driver

  Push SS                ;regain access to MouseRegs
  Pop  DS

  Mov  SI,MRegs          ;access MouseRegs again
  Mov  [SI+RegAX],AX     ;save each register in turn
  Mov  [SI+RegBX],BX
  Mov  [SI+RegCX],CX
  Mov  [SI+RegDX],DX

  Ret                    ;return to BASIC
MouseInt Endp
End
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Like DOSInt, this routine also uses a TYPE variable to define the various
CPU registers that are needed by the mouse driver.  However, fewer
registers are needed simplifying the TYPE structure.  You should define
this TYPE variable as follows:

     TYPE MouseType
       AX      AS INTEGER
       BX      AS INTEGER
       CX      AS INTEGER
       DX      AS INTEGER
       Segment AS INTEGER
     END TYPE
     DIM MouseRegs AS MouseTYPE

Since the mouse driver uses only these few registers, you can save a few
bytes of DGROUP memory by using this subset TYPE instead of the full
Registers TYPE that DOSInt requires.  Notice the last component called
Segment.  Unlike the Mouse routine that Microsoft sells as an add-on
library, MouseInt lets you specify a segment for passing far data to the
mouse interrupt handler.  For most mouse services you can leave the segment
set to zero or -1.  Either value tells MouseInt to use BASIC's default data
segment.  But some services that accept the address of incoming data also
need to know the data's segment.
     In the Microsoft version you have no choice but to use static data and
near memory arrays.  Obviously, this precludes being able to use BASIC PDS
far strings with that interface routine.  You would instead have to create
a single fixed-length string or TYPE variable, just to force the data to
reside in near memory.  When calling MouseInt with a value other than zero
or -1 for the segment, MouseInt loads both DS and ES with that value.
     As with the collection of DOS file access routines, the following
subprograms and functions can be added as a module to your program.  Again,
you should first make a copy of the source file that is included on the
accompanying floppy disk, and then delete the demonstration portion of the
program.  This way, you can also run the original demonstration, and trace
through it to test each of the mouse services.  Of course, be sure to leave
the commands that dimension the MouseRegs and MousePresent variables as
being shared, and also the relevant DECLARE and DEFINT statements.
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'MOUSE.BAS, demonstrates the various mouse services

DEFINT A-Z

'---- assembly language functions and subroutines
DECLARE FUNCTION PeekWord% (BYVAL Segment, BYVAL Address)
DECLARE SUB MouseInt (MouseRegs AS ANY)

'---- BASIC functions and subprograms
DECLARE FUNCTION Bin2Hex% (Binary$)
DECLARE FUNCTION MouseThere% ()
DECLARE FUNCTION WaitButton% ()
DECLARE SUB CursorShape (HotX, HotY, Shape())
DECLARE SUB HideCursor ()
DECLARE SUB MouseTrap (ULRow, ULCol, LRRow, LRCol)
DECLARE SUB MoveCursor (X, Y)
DECLARE SUB ReadCursor (X, Y, Buttons)
DECLARE SUB ShowCursor ()
DECLARE SUB TextCursor (FG, BG)

DECLARE SUB Prompt (Message$)   'used for this demo only

TYPE MouseType                  'similar to DOS RegType
  AX      AS INTEGER
  BX      AS INTEGER
  CX      AS INTEGER
  DX      AS INTEGER
  Segment AS INTEGER
END TYPE

DIM SHARED MouseRegs AS MouseType
DIM SHARED MousePresent
REDIM Cursor(1 TO 32)

IF NOT MouseThere% THEN         'ensure a mouse is present
  PRINT "No mouse is installed" '  and initialize it if so
  END
END IF
CLS

DEF SEG = 0                     'see what type of monitor
IF PEEK(&H463) <> &HB4 THEN     'if it's color
  ColorMon = -1                 'remember that for later
  SCREEN 12                     'this requires a VGA
  LINE (0, 0)-(639, 460), 1, BF 'paint a blue background
END IF

DIM Choice$(1 TO 5)             'display some choices
LOCATE 1, 1                     'for something to point at
FOR X = 1 TO 5
  READ Choice$(X)
  PRINT Choice$(X);
  LOCATE , X * 12
NEXT
DATA "Choice 1", "Choice 2", "Choice 3"
DATA "Choice 4", "Choice 5"

IF NOT ColorMon THEN            'if it's not color
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  CALL TextCursor(-2, -2)       'select a text cursor
END IF

CALL ShowCursor
CALL Prompt("Point the cursor at a choice, and press _
  a button.")

DO                              'wait for a button press
  CALL ReadCursor(X, Y, Button)
LOOP UNTIL Button
IF Button AND 4 THEN Button = 3 'for three-button mice

CALL Prompt("You pressed button" + STR$(Button) + _
  " and the cursor was at location" + STR$(X) + "," + _
  STR$(Y) + " - press a button.")

IF ColorMon THEN                'if it is a color monitor
  RESTORE Arrow                 '  load a custom arrow
  GOSUB DefineCursor
END IF
Dummy = WaitButton%

IF ColorMon THEN                'the hardware can do it
  RESTORE CrossHairs            'set a cross-hairs cursor
  GOSUB DefineCursor
  CALL Prompt("Now the cursor is a cross-hairs, press _
    a button.")
  Dummy% = WaitButton%
END IF

IF ColorMon THEN                'now set an hour glass
  RESTORE HourGlass
  GOSUB DefineCursor
END IF

CALL Prompt("Now notice how the cursor range is _
  restricted.  Press a button to end.")
CALL MouseTrap(50, 50, 100, 100)
Dummy = WaitButton%

IF ColorMon THEN                'restore to 640 x 350
  CALL MouseTrap(0, 0, 349, 639)
ELSE                            'use CGA bounds for mono!
  CALL MouseTrap(0, 0, 199, 639)
END IF

Dummy = MouseThere%             'reset the mouse driver
CALL HideCursor                 'and turn off the cursor
SCREEN 0                        'revert to text mode
END

DefineCursor:

FOR X = 1 TO 32                 'read 32 words of data
  READ Dat$                     'read the data
  Cursor(X) = Bin2Hex%(Dat$)    'convert to integer
NEXT
CALL CursorShape(Zero, Zero, Cursor())
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RETURN

Arrow:

NOTES:
'The first group of binary data is the screen mask.
'The second group of binary data is the cursor mask.
'The cursor color is black where both masks are 0.
'The cursor color is XORed where both masks are 1.
'The color is clear where the screen mask is 1 and the
'  cursor mask is 0.
'The color is white where the screen mask is 0 and the
'  cursor mask is 1.
'
'Mouse cursor designs by Phil Cramer.

'--- this is the screen mask
DATA "1110011111111111"
DATA "1110001111111111"
DATA "1110000111111111"
DATA "1110000011111111"
DATA "1110000001111111"
DATA "1110000000111111"
DATA "1110000000011111"
DATA "1110000000001111"
DATA "1110000000000111"
DATA "1110000000000011"
DATA "1110000000000001"
DATA "1110000000011111"
DATA "1110001000011111"
DATA "1111111100001111"
DATA "1111111100001111"
DATA "1111111110001111"

'---- this is the cursor mask
DATA "0001100000000000"
DATA "0001010000000000"
DATA "0001001000000000"
DATA "0001000100000000"
DATA "0001000010000000"
DATA "0001000001000000"
DATA "0001000000100000"
DATA "0001000000010000"
DATA "0001000000001000"
DATA "0001000000000100"
DATA "0001000000111110"
DATA "0001001100100000"
DATA "0001110100100000"
DATA "0000000010010000"
DATA "0000000010010000"
DATA "0000000001110000"

CrossHairs:

DATA "1111111101111111"
DATA "1111111101111111"
DATA "1111111101111111"
DATA "1111000000000111"
DATA "1111011101110111"
DATA "1111011101110111"
DATA "1111011111110111"
DATA "1000000111000000"
DATA "1111011111110111"
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DATA "1111011101110111"
DATA "1111011101110111"
DATA "1111000000000111"
DATA "1111111101111111"
DATA "1111111101111111"
DATA "1111111101111111"
DATA "1111111111111111"

DATA "0000000010000000"
DATA "0000000010000000"
DATA "0000000010000000"
DATA "0000111111111000"
DATA "0000100010001000"
DATA "0000100010001000"
DATA "0000100000001000"
DATA "0111111000111111"
DATA "0000100000001000"
DATA "0000100010001000"
DATA "0000100010001000"
DATA "0000111111111000"
DATA "0000000010000000"
DATA "0000000010000000"
DATA "0000000010000000"
DATA "0000000000000000"

HourGlass:

DATA "1100000000000111"
DATA "1100000000000111"
DATA "1100000000000111"
DATA "1110000000001111"
DATA "1110000000001111"
DATA "1111000000011111"
DATA "1111100000111111"
DATA "1111110001111111"
DATA "1111110001111111"
DATA "1111100000111111"
DATA "1111000000011111"
DATA "1110000000001111"
DATA "1110000000001111"
DATA "1100000000000111"
DATA "1100000000000111"
DATA "1100000000000111"

DATA "0000000000000000"
DATA "0001111111110000"
DATA "0000000000000000"
DATA "0000111111100000"
DATA "0000100110100000"
DATA "0000010001000000"
DATA "0000001010000000"
DATA "0000000100000000"
DATA "0000000100000000"
DATA "0000001010000000"
DATA "0000011111000000"
DATA "0000110001100000"
DATA "0000100000100000"
DATA "0000000000000000"
DATA "0001111111110000"
DATA "0000000000000000"

FUNCTION Bin2Hex% (Binary$) STATIC  'binary to integer
  Temp& = 0
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  Count = 0

  FOR X = LEN(Binary$) TO 1 STEP -1
    IF MID$(Binary$, X, 1) = "1" THEN
      Temp& = Temp& + 2 ^ Count
    END IF
    Count = Count + 1
  NEXT

  IF Temp& > 32767 THEN Temp& = Temp& - 65536
  Bin2Hex% = Temp&
END FUNCTION

SUB CursorShape (HotX, HotY, Shape()) STATIC
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 9
  MouseRegs.BX = HotX
  MouseRegs.CX = HotY
  MouseRegs.DX = VARPTR(Shape(1))
  MouseRegs.Segment = VARSEG(Shape(1))

  CALL MouseInt(MouseRegs)
END SUB

SUB HideCursor STATIC       'turns off the mouse cursor
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 2
  CALL MouseInt(MouseRegs)
END SUB

FUNCTION MouseThere% STATIC 'reports if a mouse is present
  MouseThere% = 0           'assume there is no mouse
  IF PeekWord%(Zero, (4 * &H33) + 2) = 0 THEN 'segment = 0
    EXIT FUNCTION           '  means there's no mouse
  END IF

  MouseRegs.AX = 0
  CALL MouseInt(MouseRegs)
  MouseThere% = MouseRegs.AX
  IF MouseRegs.AX THEN MousePresent = -1
END FUNCTION

SUB MouseTrap (ULRow, ULColumn, LRRow, LRColumn) STATIC
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 7           'restrict horizontal movement
  MouseRegs.CX = ULColumn
  MouseRegs.DX = LRColumn
  CALL MouseInt(MouseRegs)

  MouseRegs.AX = 8           'restrict vertical movement
  MouseRegs.CX = ULRow
  MouseRegs.DX = LRRow
  CALL MouseInt(MouseRegs)
END SUB

SUB MoveCursor (X, Y) STATIC 'positions the mouse cursor
  IF NOT MousePresent THEN EXIT SUB
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  MouseRegs.AX = 4
  MouseRegs.CX = X
  MouseRegs.DX = Y
  CALL MouseInt(MouseRegs)
END SUB

SUB Prompt (Message$) STATIC 'prints prompt message
    V = CSRLIN               'save current cursor position
    H = POS(0)
    LOCATE 30, 1             'use 25 for EGA SCREEN 9
    CALL HideCursor          'this is very important!
    PRINT LEFT$(Message$, 79); TAB(80);
    CALL ShowCursor          'and so is this
    LOCATE V, H              'restore the cursor
END SUB

SUB ReadCursor (X, Y, Buttons)  'returns cursor and button
                                '  information
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 3
  CALL MouseInt(MouseRegs)

  Buttons = MouseRegs.BX AND 7
  X = MouseRegs.CX
  Y = MouseRegs.DX
END SUB

SUB ShowCursor STATIC        'turns on the mouse cursor
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 1
  CALL MouseInt(MouseRegs)
END SUB

SUB TextCursor (FG, BG) STATIC
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 10
  MouseRegs.BX = 0
  MouseRegs.CX = &HFF
  MouseRegs.DX = 0

  IF FG = -1 THEN        'maintain FG as the cursor moves?
    MouseRegs.CX = MouseRegs.CX OR &HF00
  ELSEIF FG = -2 THEN    'invert FG as the cursor moves?
    MouseRegs.CX = MouseRegs.CX OR &H700
    MouseRegs.DX = &H700
  ELSE                   'use the specified color
    MouseRegs.DX = 256 * (FG AND &HFF)
  END IF

  IF BG = -1 THEN        'maintain BG as the cursor moves?
    MouseRegs.CX = MouseRegs.CX OR &HF000
  ELSEIF BG = -2 THEN    'invert BG as the cursor moves?
    MouseRegs.CX = MouseRegs.CX OR &H7000
    MouseRegs.DX = MouseRegs.DX OR &H7000
  ELSE                   'use the specified color
    Temp = (BG AND 7) * 16 * 256
    MouseRegs.DX = MouseRegs.DX OR Temp
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  END IF

  CALL MouseInt(MouseRegs)
END SUB

FUNCTION WaitButton% STATIC     'waits for a button press
  IF NOT MousePresent THEN EXIT FUNCTION

  X! = TIMER                    'pause to allow releasing
  WHILE X! + .2 > TIMER         '  the button
  WEND

  DO                            'wait for a button press
    CALL ReadCursor(X, Y, Button)
  LOOP UNTIL Button

  IF Button AND 4 THEN Button = 3 'for three-button mice
  WaitButton% = Button            'assign the function
END FUNCTION

This program begins by declaring all of the support functions, and then
defines and dimensions the MouseRegs TYPE variable.  The integer array is
used to hold the custom graphics cursor shape information, which the
CursorShape routine requires.  The remainder of the program illustrates how
to use the various mouse routines in your own programs.

(2) Determining if a Mouse is Present

     The first function is MouseThere, which serves two important purposes:
The first is to determine if a mouse is present.  The second purpose of
MouseThere is to initialize the mouse driver to its default parameters.
This lets you be sure that the mouse color, shape, and other parameters are
in a known state.  Resetting the mouse is strongly recommended because some
programs do not bother to reset the mouse when they are finished.
     Although there is a mouse service to determine if the driver is
installed, you must also perform an additional test to prevent problems
with early computers running DOS version 2.  The problem arises because
these computers leave the mouse interrupt (&H33) undefined if no mouse is
present, and calling this interrupt is likely to make the PC crash.
     As you already know, the interrupt vector table in low memory holds
the segment and address for every interrupt service routine that is present
in the PC.  But who puts those addresses into the interrupt vector table?
All of the BIOS interrupt addresses are assigned by the BIOS as part of the
power-up code in your PC's ROM.  Likewise, DOS installs the addresses it
needs while it is being loaded from disk.
     The BIOS in modern computers assigns every interrupt vector to a valid
address, even those that it (the BIOS) does not use.  The code pointed to
by the unused interrupts is an assembly language Iret (Interrupt Return)
instruction.  So if no other routine is servicing that interrupt, calling
it merely returns with no change to the register contents.  But early
computers and early versions of DOS ignored Interrupt &H33, and left the
values in that vector address set to zero.  [Calling the "code" at address
zero is guaranteed to fail, since address zero holds other addresses and
not executable code.]  Therefore, to safely detect the presence of a mouse
requires first looking in low memory, to ensure that the interrupt address
there is valid.
     It is important to understand that you *must* use MouseThere once at
the start of your program, before any of the other mouse routines will
work.  All of the mouse routines check the global variable MousePresent
before calling MouseInt, and do nothing if it is zero.  This safety
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mechanism lets you freely call the various mouse services without regard to
whether or not a mouse is installed, to avoid the DOS 2 problem described
earlier.  Thus, the same program statements can accommodate a mouse if one
is present or not, without requiring many separate IF tests.
     For example, you will probably want to write programs that use a mouse
if one is present, but don't require it.  If you had to have a separate
block of code for each case, your program would be much larger and slower
than necessary.  Therefore, you can simply call these mouse routines
whether or not a mouse is present.  The code fragment that follows shows a
simple example of this in context.

     PRINT "Press a key or mouse button to continue: ";
     DO
       Temp$ = INKEY$
       CALL ReadCursor(X, Y, Buttons)
     LOOP UNTIL LEN(INKEY$) OR Buttons
     PRINT "Thank you."

If MouseThere determined that no mouse was present when it was called
earlier, then ReadCursor will do nothing and return no values.  Of course,
you will have to check for mouse events and act on them, but these can be
handled within the same blocks of code that also handle keyboard input.
     Once the program knows that a mouse is in fact present, it checks to
see if the display adapter is color or monochrome.  A color monitor
supports more mouse options such as changing the shape of the mouse cursor.
In this case the program assumes that you have a VGA adapter.  If you have
only an EGA, simply change the SCREEN 12 statement to SCREEN 9.  You will
also have to change the LOCATE command in the Prompt subprogram to use line
25 instead of line 30.  Although the cursor shape can be altered with CGA
and Hercules adapters, those are not accommodate here.
     Once the screen display mode is set, a filled box is drawn covering
the entire screen, to create an attractive blue background.  You should be
aware that the drivers included come with many older, inexpensive clone
mouse devices do not support the EGA and VGA display modes.  This is not a
limitation with the mouse hardware; rather, the problem lies in the driver
software.  Fortunately, the MOUSE.COM and MOUSE.SYS drivers that Microsoft
includes with BASIC work with most brands of mouse.  Furthermore, you are
allowed to distribute those drivers with your own programs, as long as you
include an appropriate copyright notice.  See the license agreement that
came with your version of BASIC for more information on displaying the
Microsoft copyright.

CONTROLLING THE TEXT CURSOR

After reading and displaying a list of sample choices that serve as a menu,
the program again checks to see which type of adapter is present.  If it is
monochrome, then a custom text cursor is defined using the TextCursor
routine.  This routine is appropriate for both monochrome and color
adapters, and offers several useful options that let you control fully how
the foreground and background colors will appear.  Also, an initial call to
TextCursor is needed with some non-Microsoft mouse drivers to ensure that
the cursor is displayed after calling ShowCursor.
     TextCursor expects two parameters to control the cursor's foreground
and background colors.  If a positive value is given for either parameter,
then that is the color the mouse cursor assumes as it travels around the
screen.  For example, if you use a color combination of 0, 4 the character
under the mouse cursor will be shown in black on a red background.  It is
important to understand that the normal mouse cursor color is actually the
character's background color.  The foreground indicates what color the text
is to become as the cursor passes over it.
     Using a value of -1 for either parameter tells the mouse driver to
leave that portion of the color alone when the cursor is positioned over a
character.  If you use a color combination of 7, -1 the text under the
mouse cursor will be shown in white and the background will be unchanged.
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Of course, if both the foreground and background are set to -1, the cursor
will never be visible.
     A value of -2 causes that color portion to be inverted using an XOR
process as the cursor moves around the screen.  That is, white becomes
black, green turns to magenta, and blue is translated to brown.  Although a
value of -2 for the background guarantees that the cursor is always
visible, it can also be distracting to see the mouse cursor color change
constantly when the screen itself uses many colors.  If you want to
experiment with the various TextColor options, add remarking apostrophes to
deactivate the three statements after the line IF PEEK(&H463) <> &HB4 THEN
near the beginning of the program.
     The ShowCursor subprogram simply tells the mouse drive to make the
mouse cursor visible, in much the same way LOCATE , , 1 option does with
the normal screen cursor.  The companion routine HideCursor turns the mouse
cursor off again.  These are very simple routines that do not require much
explanation; however, please understand that until you turn the cursor on
explicitly it remains hidden.  As a rule, you also want to ensure that the
cursor is turned off before you end your program and return to DOS.
     There is one irritating quirk about how the mouse driver keeps track
of whether the mouse cursor is currently visible or not.  When you use the
statement LOCATE , , 0 to turn off the regular text cursor, the BIOS
remembers that it is off.  And if you subsequently use the same statement
again the request is ignored.  The mouse driver, on the other hand,
remembers how many times you called HideCursor and requires a corresponding
number of calls to ShowCursor before it becomes visible.  However, the
reverse is not true.  If you turn on the cursor, say, five times in a row,
only one call to HideCursor is needed to turn it off.

READING THE MOUSE BUTTONS AND CURSOR POSITION

The next mouse routine is called ReadCursor, and it calls the service that
returns both the current mouse cursor position and also which buttons are
currently pressed.  Notice that the X and Y values returned assume graphics
pixel coordinates even when the display screen is in text mode!  Therefore,
when a monochrome display adapter is being used, the values returned range
from 0 to 639 horizontally (X), and 0 through 199 vertically (Y).  These
are the same values you would receive when in CGA black and white screen
mode 2.  When in graphics mode, the X and Y values are based on the current
SCREEN setting.  For example, in EGA screen mode 9, the returned value for
X ranges from 0 through 639, and Y is between 0 and 349.
     When your program is in text mode (SCREEN 0), the current X and Y
cursor location is based on the upper-left corner of the mouse cursor box.
Therefore, the actual horizontal range (X) is usually returned between 0
and 632 to account for a box width of 8 pixels.  The vertical location (Y)
ranges from 0 to 192 for the same reason: If the bottom of the cursor is at
the bottom of the screen, then the top is eight pixels higher.  In graphics
mode you are allowed to establish any portion of the mouse cursor as being
the *hot spot*, and this is discussed below in the section "Changing the
Mouse Cursor Shape".
     The buttons are returned bit coded--the lowest bit is set if button 1
is pressed, and the next bit is set when the second button is pressed.  If
a mouse has three buttons, the third bit may also be set to indicate that.
Isolating which bit or combination of bits is set is done using the AND
logic operator.  If Button AND 1 is non-zero then the first button is
pressed.  Similarly, Button AND 2 means the second button is being pressed.
However, testing for button 3 requires a value of 4, since that is the
value of the third bit.  The program fragment that follows shows this in
context, and you can press one or more buttons at a time.
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DO
  PRINT "Press Ctrl-Break to end."
  CALL ReadCursor(X, Y, Button)

  LOCATE 10, 1
  IF Button AND 1 THEN
    PRINT "BUTTON 1"
  ELSE
    PRINT "        "
  END IF

  LOCATE 10, 11
  IF Button AND 2 THEN
    PRINT "BUTTON 2"
  ELSE
    PRINT "        "
  END IF

  LOCATE 10, 21
  IF Button AND 4 THEN
    PRINT "BUTTON 3"
  ELSE
    PRINT "        "
  END IF
LOOP

Besides the ReadCursor routine which returns the cursor position and button
status, I have also included a related function called WaitButton.  If your
program will be waiting for a button and needs to know which button was
pressed, WaitButton does this using fewer bytes of compiler-generated code.
Since there are no passed parameters only five bytes are needed to call
WaitButton, compared to 17 needed to call ReadCursor.  WaitButton simply
waits in an empty loop until a button is pressed, and then reports which
button it was.

CHANGING THE MOUSE CURSOR SHAPE

The CursorShape routine lets you change the size and shape of the mouse
cursor when the display is in graphics mode.  The mouse driver routine that
is called requires the address of a block of memory 32 words long that
holds the new shape and color information.  The data in this memory block
is organized into two sections.  The first 16 words hold what is called the
*screen mask*, and the second 16 words hold the *cursor mask*.
     The bits in these masks interact to change the way the foreground and
background colors on the screen change as the cursor passes over them.  The
method used by the mouse driver to control the cursor shape and colors is
very complex, and the examples and discussions in Microsoft's documentation
do little to assist the programmer.  Therefore, I have provided a simple
mechanism that lets you draw the cursor shape using a series of BASIC DATA
statements.
     Using this method it is easy to control each individual pixel in the
mouse cursor, and determine if it is white, black, or transparent.  When
the bits in both the screen and cursor masks are both zero, the cursor will
be black.  And when the bits in both masks are set to 1, the color is XORed
(reversed) at that pixel position.  If a screen mask bit is 1 and its
corresponding bit in the cursor mask is 0, the cursor is transparent.
Reversing this to make the screen mask 0 and the cursor mask 1 makes the
cursor white at that position.  Thus, you can create nearly any shape for
the mouse cursor, and a wide variety of interesting color effects.
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     If your needs are modest or to minimize the number of DATA statements,
you can define only the cursor mask and use -1 for the first 16 elements in
the array by changing that portion of the program like this:

DefineCursor:

FOR X = 1 TO 32                'read 32 words of data
  IF X < 17 THEN               'set first 16 elements = -1
    Cursor(X) = -1
  ELSE                         'and for the second 16
    READ Dat$                  '  read the data and then
    Cursor(X) = Bin2Hex%(Dat$) '  convert to an integer
  END IF
NEXT

DATA "1100000000000000"        'use only 16 DATA items
DATA "1110000000000000"        '  in this section
 .
 .

The other two parameters required by CursorShape are the X and Y cursor hot
spots.  When you call ReadCursor to return the current mouse cursor
location and button information, the X and Y position returned identifies a
single pixel on the screen.  Which pixel within the mouse cursor that is
reported is the cursor hot spot.  When you use an arrow cursor shape, the
hot spot is typically the tip of the arrow.  This is located in the upper
left corner of the cursor box and is identified as location 0, 0.  However,
you can also make any other portion of the cursor the hot spot.  For
simplicity, the GOSUB routine at the DefineCursor label always uses 0, 0.
However, the cross hairs cursor really should use the values 8, 8 to set
the hot spot at the center of the block.

CONTROLLING THE MOUSE CURSOR POSITION AND RANGE

The MoveCursor routine lets you set a new position for the mouse cursor,
and it too expects pixel values even when the screen is in text mode.
Although MoveCursor is not demonstrated in this program, it is included in
the interest of completeness.
     The final mouse subprogram included lets you restrict the range of
mouse cursor travel, and it is called--appropriately enough--MouseTrap.
You pass the upper-left and lower-right boundaries to MouseTrap, and it in
turns passes those values on to the mouse driver.  Internally, the mouse
driver lets you restrict the range for horizontal and vertical motion
independently.  But for simplicity this routines requires both sets of
values at one time.
     Like the services that ReadCursor and MoveCursor call, these services
also expect the cursor bounds to be given as pixels even when in text mode.
Also, notice that the mouse driver always forces the cursor into the
restricted region for you.  That is, if the cursor is in the upper-left
corner and you call MouseTrap forcing it to stay inside the bottom half of
the screen, it will be moved to the top of that region.
     Be aware that MouseTrap is also required if you plan to use the 43- or
50-line EGA and VGA text modes.  By default, the mouse driver assumes that
a text screen has only 25 lines, and will not normally let the mouse cursor
be placed below that line.  If you have used WIDTH , 50 to put the screen
into the 50-line mode, the mouse cursor will not be allowed below line 25.
Therefore, you must use MouseTrap to increase the allowable cursor region
beyond the default range.  Also be aware that using values larger than the
current screen dimensions let the mouse disappear off the bottom of the
screen, or wrap around past the right edge and reappear on the left side.
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ACCESSING THE MOUSE DRIVER

All of the mouse routines considered so far are comprised of a simplified
interface to the mouse driver through the MouseInt routine.  MouseInt lets
you access any service supported by the mouse driver, including those that
I have not described here.  Similar to the various DOS and BIOS services,
the mouse driver expects a service number in the AX register.  The other
registers contain the various expected parameters and returned information,
and they vary from service to service.
     There are no errors returned by the mouse driver, so no mechanism is
needed to handle errors.  For example, if you tell the mouse driver to
position the cursor off the top edge of the screen, it simply ignores you.
     Unfortunately, discussing every possible mouse service goes beyond
what I could ever hope to include in a book about BASIC.  If you want to
learn more about the services that are available to you, I recommend
purchasing a good technical reference such as the Microsoft Mouse
Programmer's Reference.  Other mouse manufacturers also publish their own
technical manuals, and make them available to the public for a small
charge.  Thankfully, all of the mouse services are consistent across
brands, although some brands include more features than defined by
Microsoft.  Unless you write programs only for your own use, you should
avoid relying on services that are specific to a single manufacturer.

ACCESSING EXPANDED MEMORY
=========================

The last set of routines I will present show how you can use interrupts to
access an expanded memory (EMS) driver.  Expanded memory has been available
for many years, and it provides a way to exceed the normal 640K RAM barrier
imposed by the 8088 microprocessors.  Newer computers that use an 80286 or
later processors can use what is called Extended Memory (XMS), and this
type of memory will eventually become the standard way for all computers in
the future to access more than 1MB of memory.  Unfortunately, accessing the
extended memory beyond 1MB on an 80286-based PC is complicated by a design
deficiency in that CPU chip.  Many people are confused about the difference
between Expanded and Extended memory, so perhaps a brief explanation is in
order.
     Extended memory is a single contiguous block that starts at address
zero and extends through the highest address available, based on the amount
of memory that is present in a PC.  Expanded memory, on the other hand, is
more complex, and uses a technique called *bank switching*.  With bank
switching, a large amount of memory (up to 16 megabytes) is made available
to the CPU in 16K blocks.  Each of these blocks is called a page, and only
four of them can be accessed at one time.  Thus, the term bank switching is
appropriate because various banks of far memory are switched in and out of
a near memory address space.
     The EMS standard requires a 64K contiguous area of near memory within
the 1MB addressable range to be reserved for use by the EMS driver as a
*page frame*.  On my own PC the 64k address range from &HE000:0000 through
&HE000:FFFF is not used for any other purpose, and is therefore available
for use by an EMS driver.  At any given time, the four 16K blocks of memory
within this segment can be connected to memory that lies outside of the 1MB
normal address range.
     Hardware plug-in EMS boards such as the Intel Above Board contain
their expanded memory on the board itself.  EMS emulator software instead
converts the Extended memory on computers so equipped to be accessible
through the 64K segment within the EMS page frame.  This is achieved
through hardware switches that allow any area of memory to be remapped to
any other range of addresses.  In either case, however, Expanded memory is
made available to an application one page at a time as near memory.
     Each of the four 16K near memory pages in the EMS page frame are
called *physical pages*, because they reside in physical memory that can be
accessed directly by the CPU.  However, many pages of far EMS memory are
available--up to four at a time--and these are called *logical pages*.
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This is shown graphically in Figure 11-6.
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                                              ¦
                                                           ¦
                                              ¦
                                                           ¦
                                              ¦
                                        ------+------------¦
                                      /       ¦   Page 73  ¦
1MB boundary -->  +------------+    /   ------+------------¦
                  ¦  ROM BIOS  ¦  /   /       ¦   Page 72  ¦
               +->¦------------¦/   /   ------+------------¦
               ¦  ¦   Page 3   ¦  /   /       ¦            ¦
               ¦  +------------¦/   /         ¦            ¦
      Physical ¦  ¦   Page 2   ¦  /           ¦            ¦
      Pages    ¦  +------------+--------------+------------¦
               ¦  ¦   Page 1   ¦              ¦   Page 45  ¦
               ¦  +------------+--------------+------------¦
               ¦  ¦   Page 0   ¦   \          ¦            ¦
               +->+------------¦\    \--------+------------¦
                  ¦   DISPLAY  ¦  \           ¦   Page 38  ¦
                  ¦   MEMORY   ¦    \---------+------------¦
640K boundary --> ¦------------¦              ¦            ¦
                  ¦            ¦              ¦            ¦
                  ¦   Normal   ¦              ¦     EMS    ¦
                  ¦     DOS    ¦              ¦   Logical
                  ¦   Memory                       Pages   ¦
                               ¦              ¦
                  ¦                                        ¦
                               ¦              +------------+
                  ¦
    Address 0 --> +------------+

Figure 11-6: How EMS logical pages in far memory are mapped onto physical
pages in conventional memory.

Here, physical page 0 is connected to logical page 38 in expanded memory,
physical page 1 to logical page 45, and so forth.  Whenever a program wants
to access a particular logical page in expanded memory, it calls the EMS
driver telling it to map that page to one of the four physical pages in the
page frame segment.  Then, the EMS logical page can be accessed at the near
memory address within the page frame.
     For simplicity, all of the routines provided here to handle Expanded
memory use physical page 0 only.  Since these routines merely copy array
data back and forth between conventional and Expanded memory, the data can
be copied in blocks of 16K and there is no need to have to map multiple
pages simultaneously.  Therefore, these routines always map physical page 0
to whichever logical page needs to be accessed, and then copy the data in
that page only.

EMS SERVICES

As with the DOS services accessed through Interrupt &H21, the EMS driver
also uses handles to identify which data you are working with.  When memory
is allocated using EMS Interrupt &H67, you tell the driver how many 16K
pages you are requesting, and if there is sufficient memory available it
returns a handle.  It should come as no surprise to learn that these
parameters are passed using the CPU registers.  Also like DOS and the BIOS,
the EMS driver expects a service number in the AH Register.  For example,
the service that requests memory is specified with AH set to &H43.
     To minimize the amount of code that is added to your programs, I have
created a short assembly language subroutine called EMSInt that replaces
the Interrupt routine included with BASIC.  As with DOSInt and MouseInt,
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this routine lets you pass only the parameters that are actually needed, to
reduce the amount of compiler-generated code.  EMSInt needs access only to
the AX, BX, CX, and DX registers, so these are the only components in the
EMSType TYPE structure shown below.

     TYPE EMSType
       AX AS INTEGER
       BX AS INTEGER
       CX AS INTEGER
       DX AS INTEGER
     END TYPE
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Unlike BASIC's Interrupt routine that has to deal with three parameters and
code to generate any interrupt number, EMSInt itself is relatively simple:

;EMSINT.ASM

.Model Medium, Basic

EMSRegs Struc
  RegAX DW ?
  RegBX DW ?
  RegCX DW ?
  RegDX DW ?
EMSRegs Ends

.Code

EMSInt Proc Uses SI, ERegs:Word
  Mov  SI,ERegs          ;get the address of EMSRegs
  Mov  AX,[SI+RegAX]     ;load each register in turn
  Mov  BX,[SI+RegBX]
  Mov  CX,[SI+RegCX]
  Mov  DX,[SI+RegDX]

  Int  67h               ;call the EMS driver

  Mov  SI,ERegs          ;access EMSRegs again
  Mov  [SI+RegAX],AX     ;save each register in turn
  Mov  [SI+RegBX],BX
  Mov  [SI+RegCX],CX
  Mov  [SI+RegDX],DX

  Ret                    ;return to BASIC
EMSInt Endp
End
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If you plan to use the mouse and EMS routines in the same program, you
could use the MouseRegs variable for both and ignore the Segment portion
when call EMSInt.
     The program that follows combines a demonstration portion and a
collection of subprograms and functions.  Notice that like the various
mouse services, you *must* query EMSThere to ensure that an EMS driver is
loaded before any of the other routines can be used.
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'EMS.BAS, demonstrates the EMS memory services

DEFINT A-Z

DECLARE FUNCTION Compare% (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, _
  BYVAL Adr2, NumBytes)
DECLARE FUNCTION EMSErrMessage$ (ErrNumber)
DECLARE FUNCTION EMSError% ()
DECLARE FUNCTION EMSFree& ()
DECLARE FUNCTION EMSThere% ()
DECLARE FUNCTION PeekWord% (BYVAL Segment, BYVAL Address)

DECLARE SUB EMSInt (EMSRegs AS ANY)
DECLARE SUB EMSStore (Segment, Address, ElSize, NumEls, Handle)
DECLARE SUB EMSRetrieve (Segment, Address, ElSize, NumEls, Handle)
DECLARE SUB MemCopy (BYVAL FromSeg, BYVAL FromAdr, BYVAL ToSeg, _
  BYVAL ToAdr, NumBytes)

TYPE EMSType                    'similar to DOS Registers
  AX    AS INTEGER
  BX    AS INTEGER
  CX    AS INTEGER
  DX    AS INTEGER
END TYPE

DIM SHARED EMSRegs AS EMSType
DIM SHARED ErrCode
DIM SHARED PageFrame

CLS
IF NOT EMSThere% THEN           'ensure EMS is present
  PRINT "No EMS is installed"
  END
END IF

PRINT "This computer has"; EMSFree&;
PRINT "kilobytes of EMS available"

REDIM Array#(1 TO 20000)
FOR X = 1 TO 20000
  Array#(X) = X
NEXT

CALL EMSStore(VARSEG(Array#(1)), VARPTR(Array#(1)), 8, 20000, Handle)
IF EMSError% THEN
  PRINT EMSErrMessage$(EMSError%)
  END
END IF

REDIM Array#(1 TO 20000)
CALL EMSRetrieve(VARSEG(Array#(1)), VARPTR(Array#(1)), 8, 20000, Handle)
IF EMSError% THEN
  PRINT EMSErrMessage$(EMSError%)
  END
END IF

FOR X = 1 TO 20000              'prove it worked
  IF Array#(X) <> X THEN PRINT ".";
NEXT
END
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FUNCTION EMSErrMessage$ (ErrNumber) STATIC
  SELECT CASE ErrNumber
    CASE 128
      EMSErrMessage$ = "Internal error"
    CASE 129
      EMSErrMessage$ = "Hardware malfunction"
    CASE 131
      EMSErrMessage$ = "Invalid handle"
    CASE 133
      EMSErrMessage$ = "No handles available"
    CASE 135, 136
      EMSErrMessage$ = "No pages available"
    CASE ELSE
      IF PageFrame THEN
        EMSErrMessage$ = "Undefined error: " + STR$(ErrNumber)
      ELSE
        EMSErrMessage$ = "EMS not loaded"
      END IF
  END SELECT
END FUNCTION

FUNCTION EMSError% STATIC
  Temp& = ErrCode
  IF Temp& < 0 THEN Temp& = Temp& + 65536
  EMSError% = Temp& \ 256
END FUNCTION

FUNCTION EMSFree& STATIC
  EMSFree& = 0              'assume failure
  IF PageFrame = 0 THEN EXIT FUNCTION

  EMSRegs.AX = &H4200
  CALL EMSInt(EMSRegs)
  ErrCode = EMSRegs.AX      'save possible error from AH

  IF ErrCode = 0 THEN EMSFree& = EMSRegs.BX * 16
END FUNCTION

SUB EMSRetrieve (Segment, Address, ElSize, NumEls, Handle) STATIC
  IF PageFrame = 0 THEN EXIT SUB

  LocalSeg& = Segment           'use copies we can change
  LocalAdr& = Address

  BytesNeeded& = NumEls * CLNG(ElSize)
  PagesNeeded = BytesNeeded& \ 16384
  Remainder = BytesNeeded& MOD 16384
  IF Remainder THEN PagesNeeded = PagesNeeded + 1

  NumBytes = 16384              'assume we're copying a
                                '  complete page
  ThisPage = 0                  'start copying to page 0

  FOR X = 1 TO PagesNeeded      'copy the data
    IF X = PagesNeeded THEN     'watch out for last page
      IF Remainder THEN NumBytes = Remainder
    END IF

    IF LocalAdr& > 32767 THEN   'handle segment boundaries
      LocalAdr& = LocalAdr& - &H8000&
      LocalSeg& = LocalSeg& + &H800
      IF LocalSeg& > 32767 THEN



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 394   -

        LocalSeg& = LocalSeg& - 65536
      END IF
    END IF

    EMSRegs.AX = &H4400       'map physical page 0 to the
    EMSRegs.BX = ThisPage     '  current logical page
    EMSRegs.DX = Handle       '  for the given handle
    CALL EMSInt(EMSRegs)      'then copy the data there
    ErrCode = EMSRegs.AX      'save possible error from AH
    IF ErrCode THEN EXIT SUB
    CALL MemCopy(PageFrame, Zero, CINT(LocalSeg&), CINT(LocalAdr&), _
      NumBytes)

    ThisPage = ThisPage + 1
    LocalAdr& = LocalAdr& + NumBytes
  NEXT

  EMSRegs.AX = &H4500           'release memory service
  EMSRegs.DX = Handle
  CALL EMSInt(EMSRegs)
  ErrCode = EMSRegs.AX          'save possible error
END SUB

SUB EMSStore (Segment, Address, ElSize, NumEls, Handle) STATIC

  IF PageFrame = 0 THEN EXIT SUB

  LocalSeg& = Segment           'use copies we can change
  LocalAdr& = Address

  BytesNeeded& = NumEls * CLNG(ElSize)
  PagesNeeded = BytesNeeded& \ 16384
  Remainder = BytesNeeded& MOD 16384
  IF Remainder THEN PagesNeeded = PagesNeeded + 1

  EMSRegs.AX = &H4300       'allocate memory service
  EMSRegs.BX = PagesNeeded
  CALL EMSInt(EMSRegs)

  ErrCode = EMSRegs.AX      'save possible error from AH
  IF ErrCode THEN EXIT SUB
  Handle = EMSRegs.DX       'save the handle returned

  NumBytes = 16384          'assume we're copying a
                            '  complete page
  ThisPage = 0              'start copying to page 0

  FOR X = 1 TO PagesNeeded      'copy the data
    IF X = PagesNeeded THEN     'watch out for last page
      IF Remainder THEN NumBytes = Remainder
    END IF

    IF LocalAdr& > 32767 THEN   'handle segment boundaries
      LocalAdr& = LocalAdr& - &H8000&
      LocalSeg& = LocalSeg& + &H800
      IF LocalSeg& > 32767 THEN
        LocalSeg& = LocalSeg& - 65536
      END IF
    END IF

    EMSRegs.AX = &H4400       'map physical page 0 to the
    EMSRegs.BX = ThisPage     '  current logical page
    EMSRegs.DX = Handle       '  for the given handle
    CALL EMSInt(EMSRegs)      'then copy the data there
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    ErrCode = EMSRegs.AX      'save possible error from AH
    IF ErrCode THEN EXIT SUB
    CALL MemCopy(CINT(LocalSeg&), CINT(LocalAdr&), PageFrame, Zero, _
      NumBytes)

    ThisPage = ThisPage + 1
    LocalAdr& = LocalAdr& + NumBytes
  NEXT
END SUB

FUNCTION EMSThere% STATIC
  EMSThere% = 0                 'assume the worst
  DIM DevName AS STRING * 8
  DevName = "EMMXXXX0"          'search for this below

  '---- Try to find the string "EMMXXXX0" at offset 10 in the EMS handler.
  '     If it's not there then EMS cannot possibly be installed.
  Int67Seg = PeekWord%(0, (&H67 * 4) + 2)
  IF NOT Compare%(Int67Seg, 10, VARSEG(DevName$), VARPTR(DevName$), 8) THEN
    EXIT FUNCTION
  END IF

  EMSRegs.AX = &H4100     'get Page Frame Segment service
  CALL EMSInt(EMSRegs)
  ErrCode = EMSRegs.AX    'save possible error from AH

  IF ErrCode = 0 THEN
    EMSThere% = -1
    PageFrame = EMSRegs.BX
  END IF
END FUNCTION

EMS.BAS begins by declaring all of the subprograms and functions that it
uses, as well as the EMSType structure.  The three shared variables are
used by the various procedures, and should not be removed when you delete
the demo portion to create a reusable module.

DETERMINING IF EMS IS PRESENT

The first function used is EMSThere, which reports if an EMS driver is
loaded and operative.  EMSThere begins by assuming that an EMS driver is
not loaded, and assigns a function output value of 0.  Then it attempts to
find the device name "EMMXXXX0" in the header portion of the EMS device
driver.  Like the MouseThere function that checked the interrupt vector
table for a non-zero segment value, this preliminary check is also needed
to prevent a system lockup on older computers running DOS version 2.
     To search for this string EMSThere uses PeekWord to retrieve the
segment for Interrupt &H67, and then looks at the eight bytes at offset 10
within that segment.  If the Compare function finds the unique identifying
string, it knows that the driver is loaded and it is safe to invoke
Interrupt &H67.  Service &H41 returns either -1 in AX if the driver is
active, or 0 if it is not.  This service also returns the page frame
segment the driver is using in near memory, and EMSThere saves this value
in the shared variable PageFrame for access by the other routines.

DETERMINING AVAILABLE EMS MEMORY

The second function, EMSFree, returns the number of 16K EMS pages that are
available to your program.  The remainder of the demonstration simply
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dimensions a 20,000 element double precision array, and then saves it to
expanded memory.  Because this array exceeds 64K, you must start BASIC with
the /ah command line switch.  Otherwise you will receive a "Subscript out
of range" error message.
     EMSFree uses function &H42 to ask the EMS driver for the number of
free pages, and the driver returns the page count in BX.  Although it is
not shown here, service &H42 also returns the total number of pages in the
DX register.  Therefore, you could easily create a TotalPages function from
a copy of EMSFree by changing the line that assigns the function output to
instead be IF ErrCode = 0 THEN TotalPages& = EMSRegs.DX * 16.

STORING AND RETRIEVING DATA

The actual storing and retrieving of data to and from Expanded memory is
fairly complicated, because of the need to map different logical pages to
physical page zero.  Although Figure 11-6 shows a single group of logical
pages, the EMS driver really maintains a separate series of logical pages
for each active handle.
     EMSStore and EMSRetrieve store and retrieve data in Expanded memory
respectively, and both of these subprograms are designed to accommodate
huge arrays larger than 64k.  Therefore, additional work is needed to
calculate new segment values as each 16K portion has been processed.
     As with all of the EMS procedures shown here, EMSStore begins by
verifying that EMSThere has already been invoked, and that a valid page
frame segment has been obtained.  The next step is to make long integer
copies of the incoming segment and address parameters.  Because of the
segment arithmetic that is performed later in the routine, long integers
are needed to allow values greater than 32,767 to be compared.  Equally
important, a routine should never alter incoming parameters unless they
also return information or such changes are expected.
     Next, EMSStore determines the total number of bytes of EMS storage
that are needed, and from that calculates the total number of 16K pages.
Because the EMS driver allocates entire pages only, an odd number of bytes
requires an entire additional page.  BASIC's MOD function is used for this,
and if the result is non-zero, the TotalPages variable is incremented.
     Once the number of pages is known, service &H43 is called to allocate
the Expanded memory.  The remainder of the procedure walks through the
array data in 16K increments, mapping physical page zero to the next
logical page in sequence.  Note the code that tests the current address to
see if it is within 32K of spanning a segment boundary.  In that case, the
address is dropped by 32K, and the segment is increased by an equivalent
amount.  Because each new segment starts 16 bytes higher than the previous
one, 32K \ 16 is added to LocalSeg& rather than a full 32K.
     After the array is stored in EMS, it is redimensioned in the
demonstration and then retrieved using the EMSRetrieve subprogram.
EMSRetrieve is nearly identical to EMSStore, except it copies from EMS to
the array, and releases memory when it is finished rather than claim it at
the beginning.  The final step in the demonstration is to examine the value
in each element, to prove that the array was restored correctly.

STORING AND RETRIEVING DATA

The EMSError function retrieves the current value of ErrCode, and
manipulates it into a form useable by your programs.  EMS errors are
returned in the AH register, which requires dividing by 256 to derive a
single byte value.  But since EMS error numbers start at 128, the value
returned in AX appears negative to BASIC programs which treat all integers
as being signed.  This is why a long integer is used initially and then
converted to a positive value, before dividing to produce the final result.
     The EMSErrMessage function can be used to display an appropriate
message if an error is detected.  The incoming error code is filtered
through a series of CASE statements, based on the error values defined by
the EMS specification.
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SUGGESTED ENHANCEMENTS

The routines presented herein provide a limited set of services for
accessing Expanded memory.  However, there are several improvements you can
make, and a few other uses that I have not shown.  If you are using BASIC
PDS [or VB/DOS], one useful enhancement you can add is to change the
subprograms and functions to receive their parameters by value using the
BYVAL option.  In fact, this can also be done with the DOS and mouse
routines, to minimize the amount of code the BASIC compiler adds to your
final executable program.
     Although this demonstration shows storing array data only, you can
also use these routines to store and retrieve text and graphics screens.
This is much quicker than saving them to disk, as was shown in Chapter 6.
For example, to save a 25 line by 80 column color text screen in Expanded
memory you would use the appropriate segment and address like this:

     CALL EMSStore(&HB800, 0, 1, 4000, Handle)
     CALL EMSRetrieve(&HB800, 0, 1, 4000, Handle)

Just as you can cause problems by failing to close DOS handles during the
development of a program, the same problem can happen with an EMS driver.
Unfortunately, it is not as easy to know which handle numbers are still
open if you have not kept track of them yourself manually.  DOS issues its
handles using a sensible series of sequential numbers.  This is not
necessarily the case with EMS handles.  The EMM386.EXE driver provided by
Microsoft does issue sequential handles, starting with handle 1.  But many
drivers use other starting values, some work from high numbers backwards,
and yet others use a handle number sequence that is not in order.
     Finally, to learn about all of the possible EMS services you need a
good reference.  Although the primary services are shown here, there are
several others you may find useful.  For example, service &H46 lets you
retrieve the EMS version number, and service &H4C lets you see how many
pages are currently allocated for a given handle.  The EMS driver version
can be valuable, because newer drivers offer more features which you may
want to take advantage of.  Ray Duncan's book "Advanced MS-DOS" mentioned
earlier is one good source, and it lists each EMS service and the possible
errors that can be returned.

SUMMARY
=======

In this chapter you learned how BASIC--and indeed, all languages--use
interrupts to communicate with the operating system.  You learned what
interrupts are and how to access them, and how the CPU registers are used
to communicate information between your program and the interrupt handler
being invoked.  You also learned how some of the two-byte registers can be
treated as two one-byte registers, which requires multiplying and dividing
to access those portions individually.
     A number of complete programs were presented showing how to access the
BIOS, DOS, the mouse driver, and Expanded memory.  In the section on BIOS
interrupts, examples were given that showed how to simulate pressing the
PrtSc key, and also how to call the video service that clears or scrolls
only a portion of the display screen.
     The DOS examples included a complete set of subroutines to replace
BASIC's file handling statements.  One advantage gained by bypassing BASIC
is to read and write large amounts of data at one time.  Another is to
avoid the need for ON ERROR in certain programming situations.  Although
calling the DOS services directly can be beneficial in many cases, it also
requires more work on your part.  However, some services cannot be accessed
using BASIC alone, such as reading file and directory names, or determining
a file's attribute.  Where BASIC employs string descriptors to know how
long a string is, DOS instead uses a CHR$(0) zero byte to mark the end.
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     The mouse and Expanded memory discussions described how those
interrupt services are accessed, and provided practical advice and warnings
where appropriate.  Although a large number of interrupt routines were
described, there is a practical limit to how much information can be
provided here.  In particular, you will need a separate reference manual
that describes the details of each interrupt service routine in depth.
     In the next and final chapter you will learn how to program in
assembly language, and how to add assembly language routines to programs
you write using BASIC.  Assembly language is unlike any high-level
language, and it provides the ultimate means to exploit fully all of the
resources in a PC.

                               CHAPTER 12

                      ASSEMBLY LANGUAGE PROGRAMMING

This book has consistently presented programming techniques that reduce the
size of your programs, and make them run faster.  Most of the discussions
focused on ways to write efficient BASIC code, and several showed how to
access system interrupt services.  Where speed was critical or BASIC was
inflexible, I presented subroutines written in assembly language.
   Assembly language is the most powerful way to communicate with a PC, and
it offers speed and flexibility unmatched by any other language.  Indeed,
assembly language is in many ways the ultimate programming language because
it lets you control fully every aspect of your PC's operation.  Anything
that a PC is capable of doing can be accomplished using assembly language.
This final chapter explains assembly language in terms that most BASIC
programmers can understand.
   Why, you might ask, would a BASIC programmer be interested in assembly
language?  After all, the whole point of a high-level language such as
BASIC is to shield the programmer from the underlying hardware.  Without
having to worry about CPU registers and memory addresses, a BASIC
programmer can be immediately productive, and probably write programs with
fewer initial bugs.  However, there are three important reasons for using
assembly language:

   _ To speed up selected portions of a program

   _ To reduce the size of a program

   _ To perform services that BASIC simply cannot

It is important to understand that any high-level language will benefit
from the appropriate use of assembler.  And while it is possible to write
a major application using only assembly language, the increased complexity
and added time to develop and debug it are often not worth the trouble.
Using a high-level language--especially BASIC--for the majority of a
program and then coding the size- and speed-critical portions in assembly
language often is the most practical solution.
   Many BASIC programmers mistakenly believe that to achieve the fastest
and smallest programs they should learn C.  In my opinion, nothing could
be further from the truth.  Assembly language is barely more difficult to
use than C, and in fact the code is often more readable.  Further, no
high-level language can come even close to what raw 8086 code can achieve.
If you truly desire to become an advanced programmer, you owe it to
yourself to at least see what assembly language is all about.  I believe
there is no deeper satisfaction than that gained by understanding fully
what your computer is doing at the lowest level.
   This chapter assumes that you already understand basic programming
concepts such as variables, arrays, and subroutines.  As we proceed, most
of the examples will provide parallels to BASIC where possible.  But please
remember one important point: There is nothing inherently difficult about
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assembly language.  Attitude is everything, and if you can think of
assembler as a stripped-down version of BASIC, you will be successful that
much sooner.
   For ease of reading, I will refer to the 8088 microprocessor used in the
IBM PC throughout this chapter.  However, everything said about the 8088
also applies to the 8086, the 80286, the 80386/486, and the NEC V series
found in some older PC compatible computers.  I will also use the terms
assembly language and assembler interchangeably, although assembler can
also be used to mean the program that assembles your source files.
   All of the examples in this chapter are meant to be assembled with the
Microsoft Macro Assembler (MASM) version 5.1 or later.  MASM requires that
you save your source files as standard ASCII text, and most word processor
programs can do this.
   Some of the examples in this chapter are derived from those that used
CALL Interrupt in Chapter 11.  In most cases I have not bothered to restate
the same information from that chapter, and you may want to refer back for
additional information.
   Finally, many entire books have been written about assembly language,
and there is no way I can possibly teach you everything you need to know
here.  Rather, my intent is to provide a gentle introduction to the
concepts using practical and useful examples.

AS EASY AS BASIC
================

Assembly language uses the same general form as a BASIC program.  That is,
commands are performed in sequence until a GOTO or GOSUB is encountered.
In assembly language these are called Jump and Call, respectively.  Many
BASIC instructions have a direct assembler equivalent, although the syntax
is slightly different.  One important difference, however, is that the 8088
microprocessor can operate on integer numbers only.  Another is that for
the most efficiency, you are limited to only a few working variables.  I
will begin by showing some rudimentary assembly language instructions, so
you can see how they are analogous to similar commands in BASIC.  Consider
the following BASIC program fragment:

   AX = 5

Here, the value 5 is assigned to the variable AX.  The 8088 has several
built-in variables called *registers*, and one of them is called AX.  To
move the value 5 into the AX register you use the Mov instruction:

   Mov AX,5

As with BASIC, the destination variable in an assembly language program
is always shown on the left, and the source is on the right.  Now consider
addition and subtraction.  To add the value 12 to AX in BASIC you do this:

   AX = AX + 12

The equivalent 8088 command is:

   Add AX,12

Again, the variable or register on the left is always the one that receives
the results of any adding, moving, and so on.  Subtraction is very similar
to addition, replacing Add with Sub:

       BASIC:  AX = AX - 100
   Assembler:  Sub AX,100

Comparing and branching in assembly language is also quite similar to
BASIC.  But instead of this:
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   AX = AX + 2
   IF AX > 60 GOTO Finished

You'd do it in assembler this way:

   Add AX,2
   Cmp AX,60
   Ja  Finished

This tells the 8088 to add 2 to AX, then compare AX to 60, and finally to
*jump if above* to the code at label Finished.  There are several kinds of
conditional jump instructions in assembly language, and they often follow
a comparison as shown here.  In fact, all you can really do after a compare
is jump somewhere based on the results.  And while there is no direct
equivalent for this BASIC statement:

   IF AX = 10 THEN BX = BX - 1

You can change the strategy to this:

   IF AX <> 10 GOTO Not10
   BX = BX - 1
   Not10:
    .
    .

Now a direct translation is simple:

   Cmp AX,10
   Jne Not10
   Dec BX
   Not10:
    .
    .

Jne stands for *Jump if Not Equal*.  Also, notice the command Dec, which
means decrement by 1.  This is one case in which an assembler instruction
is actually more to the point than its BASIC counterpart, and is equivalent
to the BASIC command BX = BX - 1.  While Sub BX, 1 would work just as well,
using Dec is faster and generates less code, and we all know that speed is
the name of the game.
   The complement to Dec is Inc, short for *increment by one*.  You can use
Inc and Dec with most of the 8088's registers, as well as on the contents
of any memory location, which brings up an important issue.  At some point,
many programs will require more variables than can be held within the CPU's
registers.  All of the available free memory in a PC can be used as
variable storage, with only a few limitations:

   _ You must first tell the assembler how much space to set aside, much
   like you would when dimensioning an array. Moreover, MASM is pretty
   friendly and lets you use names for the memory locations.  In fact, in
   most cases you do not need to know the memory addresses variables will
   be stored in--the assembler handles that for you as well!

   _ Adding, subtracting, incrementing, and decrementing are all much
   faster when done within registers.  When an operation is performed on
   a memory variable, it must first be fetched by the CPU, manipulated, and
   then stored again.  Because the registers are within the CPU chip, those
   extra steps are not needed.  The steps to retrieve and then store memory
   variables is handled transparently by the 8088; I mention this merely
   to explain why register operations are faster.

   _ Some operations can be done only using registers.  If you want to
   multiply the memory variable Counter by 12, you first have to move the
   variable into AX, do the multiplication, and then move it back into
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   memory again.  And if AX is currently holding a needed value, it must
   be saved before multiplying and restored again afterward.  Although
   assembly language is not as complicated as many people think, it surely
   can be tedious at times.

Besides the CPU registers and conventional memory addresses, a special
portion of memory called the *stack* is also available for storage.  The
stack is much like the temporary memory on a four-function calculator, and
it is often used to store intermediate results.  The stack is also commonly
used to pass variables between programs, because all programs can access
it without having to know exactly where in memory it is located.  Again,
assembly language doesn't usually require you to deal with absolute memory
addresses at all--especially for subroutines that will be added to a BASIC
program.  The only exceptions might be when writing directly to the display
screen, or when looking at low memory, perhaps to see whether the Caps Lock
key is engaged.

SPAGHETTI CODE?

To write a routine that converts lower case letters to capital letters in
BASIC, you might use something like this:

   IF AL$ => "a" AND AL$ <= "z" THEN
     AL$ = CHR$(ASC(AL$) - 32)
   END IF

In assembly language each compare must be done separately, followed by a
jump based on the results.  Let's rephrase the BASIC example slightly:

   IF AL$ < "a" GOTO Done
   IF AL$ > "z" GOTO Done
   AL$ = CHR$(ASC(AL$) - 32)
   Done:
    .
    .

Now a conversion to assembler is easy:

   Cmp AL,"a"     ;compare AL to "a"
   Jb  Done       ;Jump if Below to Done
   Cmp AL,"z"     ;compare AL to "z"
   Ja  Done       ;Jump if Above to Done
   Sub AL,32      ;subtract 32 from AL
   Done:
    .
    .

Notice how the assembler allows the use of quoted constants.  When it sees
a character or string in double or single quotes, it knows you mean to use
the character's ASCII value.  Unlike BASIC with its strong variable typing
that prevents you from performing numeric operations on a string, assembly
language has very few such restrictions.  Also notice how much jumping
around is necessary to accomplish even the simplest of actions.
   As I mentioned earlier, assembly language can certainly be more tedious
than BASIC, although the logic is not really that different.  Such frequent
jumping around is called spaghetti code by some programmers, and it is
often used in a derogatory fashion when discussing BASIC's GOTO statement.
But this is the way that computers work, and I am amused by programmers who
argue so strongly against all use of the GOTO command.  While nobody could
seriously object to a well organized and structured programming style, all
programs are eventually converted to equivalent assembly language jumps and
branches.
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THE REGISTERS
=============

There are six general purpose registers available for you to use: AX, BX,
CX, DX, SI, and DI.  Each register may be used for the most common
operations like adding and subtracting, although some are specialized for
certain other operations.  However, most of the registers also have a
specialty.  For example, AX is the only register that can be multiplied or
divided.  The A in AX stands for Accumulator, and it often used for math
operations such as accumulating a running total.  Also, several assembler
instructions result in one byte less code when used with AX, when compared
to the same instructions using other registers.
   The B in BX means Base, and this register is frequently used to hold the
base address of a collection of variables or other data.  If you have a
text string in memory to be examined, you could put the address of the
first character in BX.  The rest of the string can then be found by
referencing BX.
   BX can also be used to specify computed addresses using addition or
subtraction.  For example, the instruction Mov AX,[BX+4] means to load AX
with the word four bytes beyond the address held in BX.  Likewise, the
instruction Add DL,[BX+SI-10] adds the value of the byte at that computed
address to the current contents of DL.  You may use BX this way with either
a constant number, the SI or DI register, or one of those registers and a
constant number.  However, only addition and substraction may be used, as
opposed to multiplication or division.  I will return to computed and
indirect addressing later in this chapter.
   The C in CX stands for Count, since CX is most often used as the counter
in an assembly language FOR/NEXT loop.  In fact, the assembly language
command Loop uses CX to perform an operation a specified number of times.
The comparison below illustrates this.

   BASIC:
        FOR CX = 1 TO 5
          GOSUB BeepTone
        NEXT

   Assembler:
        Mov  CX,5
        Do:  Call Beep_Tone
        Loop Do

Here, the Loop instruction automatically branches to the label Do: CX
times.  That is much faster and more efficient than this:

   Mov  CX,5
   Do:  Call Beep_Tone
   Dec  CX
   Cmp  CX,0
   Jne  Do

The DX register is a general purpose Data register, and is named
accordingly.  DX is also used in conjunction with AX when multiplying and
dividing.
   The last two general purpose registers are SI and DI.  SI stands for
Source Index, while DI means Destination Index.  It is not hard to guess
that these registers are well suited for copying data from one memory
location to another.  The 8088 has a rich set of instructions for moving
and comparing strings, using SI and DI to show where they are.
   Like BX, SI and DI may be used with a constant offset such as [SI+100]
to compute a memory address, or with a constant value and/or BX.  But
again, SI and DI are still general purpose registers, and they can be used
for common chores as well.  In many situations it really doesn't matter
whether you use BX or DI or SI or AX.
   There are two specialized registers called BP and SP.  BP (Base Pointer)
is another Base register like BX, only it is intended for use with the
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stack.  When you need to access data on the stack, BP is the most
appropriate register to use.  Like BX, BP can reference computed addresses
with a constant offset, with SI or DI, or with a constant and SI or DI.
   The SP (Stack Pointer) register holds the current address of the stack,
and it should never be altered unless you have a very good reason to do so.
   The last four registers are the segment registers, but I will mention
them only briefly right now.  As you undoubtedly know, the 8088 used a
segmented architecture; although it can utilize a megabyte of memory, it
can do so only in 64K portions at a time.  The CS register holds the
current Code Segment (your program code), DS holds the Data Segment (your
memory variables), SS holds the Stack Segment, and ES is an Extra Segment
that is often used to access arrays located in far memory.
   Each of the 8088 registers can hold one word (two bytes), allowing you
to store any integer number between 0 and 65535.  This range of values can
also be considered as -32768 to 32767.  But AX, BX, CX, and DX may also be
used as two separate one-byte registers with a range of either 0 to 255 or
-128 to 127.  One byte is often sufficient--for example, when manipulating
ASCII characters--and this ability to access each half individually
effectively adds four more registers.  Remember, the more variables you can
keep within registers, the faster and more efficient a program will be.
   When using the registers separately, the two halves are identified by
the letters H and L, for High and Low.  That is, the high portion of AX is
referred to as AH, while the low portion of DX is called DL.  This would
be represented with BASIC variables as follows:

   AX = AL + 256 * AH

Each half can also be represented as bit patterns:

              AX
   +----------------------+
    1011  0110  0111  0101
   +----------++----------+
        AH          AL

Notice that SI, DI, BP, and SP cannot be split this way, nor can the
segment registers CS, DS, SS, and ES.
   There is also another register called the Flags register, though it is
not intended for you to use directly.  After performing calculations and
comparisons, certain bits in the Flags register are set or cleared by the
CPU automatically, depending on the results.  For example, if you add a
register that holds the value 40000 to another register whose value is
30000, the Carry flag will be set to show that the result exceeded 64K.
The 8088 flags are also set or cleared to reflect the result of a Cmp
(Compare) instruction.  Although you will not usually access these flags
directly, they are used internally to process Jne, Ja, and the other
conditional jump commands.

VARIABLES IN ASSEMBLY LANGUAGE
==============================

All of the example routines shown so far have used the 8088 registers as
working variables.  Indeed, using registers whenever possible is always
desirable because they can be accessed very quickly.  But in many real-
world applications, more variables are needed than can fit into the few
available registers.  As with BASIC, MASM lets you define variables using
names you choose, and you must also specify the size of each variable.
   The first step is to define the amount of space that will be set aside
with the assembler instructions DB and DW.  These stand for Define Byte and
Define Word respectively, and they allocate either one byte of storage or
two.  You can also use DD to define a double word long integer variable.
Notice that these are not commands that the 8088 processor will execute;
rather, they inform the assembler to leave room for the data.  Some
examples are shown below:
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   MyByte DB 12h                     ;one byte, preset to 12h
   Buffer DB 15 Dup(0)               ;fifteen bytes, all 0
   Dummy  DW ?                       ;one word (two bytes), 0
   Msg    DB "Test message",13,10    ;message, CR, LF

In the first example one byte of memory is allocated using the name MyByte,
and the value 12 Hex is placed there at assembly time.  The second example
illustrates using the Dup (duplicate) command, and tells MASM to set aside
fifteen bytes filling each with the specified value.  In this case that
value is zero.  Initialized data is an important feature of assembly
language, and one that is sorely missing from BASIC.  By being able to
allocate data values at assembly time, additional code to assign those
values at runtime is not needed.
   Filling an area with zeroes can also be accomplished with a question
mark, and this is frequently used when the value that will eventually end
up there is not known in advance.  Both do the same thing in most cases,
however using "?" implies an unknown, as opposed to an explicit zero.  You
may use whichever method seems more appropriate at the time.  The last
example shows how text may be specified, as well as combining values in a
single statement.
   Since the assembler lets you use names for your data, fetching or
storing values can be done with the normal Mov instruction like this.

   Error_Code  DB ?
   Mov Error_Code,AL

This puts the contents of register AL into memory location Error_Code.
Getting it back again later is just as easy:

   Mov DH,Error_Code

Sometimes the assembler needs a little help when you assign variables.
When you move AL or DH in and out of a memory location, the assembler knows
that you are dealing with a single byte.  And if you specify BX or SI as
the source or destination operand, the assembler understands this to mean
two bytes, or one word.  But when literal numbers are used, the size of the
value is not always obvious.  Consider the following:

   Mov [BX],3Ch

Does this mean that you want to put the value 3Ch into the byte at the
address held in BX, or the value 003Ch into the *word* at that address?
There is no way for MASM to know what your intentions are, so you must
specify the size explicitly.  This is done with the Byte Ptr and Word Ptr
directives.  Here, Ptr stands for Pointer, and two examples are shown:
   Mov Byte Ptr [BX],15
   Mov Word Ptr ES:[DI],100

The first example specifies that the memory at address BX is to be treated
as a single byte.  Had Word been used instead, a 15 would be placed into
the byte at address held in BX, and a zero would be put into the byte
immediately following.  Words are always stored with the low-byte before
the high-byte in memory.
   Memory variables are accessed using the normal complement of
instructions.  For example, to add 15 to the variable Counter you will use
Add Counter,15.  And to multiply AX by the word variable Number you will
use Mul Word Ptr Number.  In MASM versions 5.0 and later, the Word Ptr
argument is not strictly necessary.  That is, if Number had been defined
using DW, then MASM knows that you mean to multiply by a word rather than
a byte.  But earlier versions of the assembler were not so smart, and an
explicit Word Ptr or Byte Ptr was required.
   Note, however, that you must still use Byte Ptr or Word Ptr to override
a variable's type.  For example, if Value was defined as a word but you
want to access just its lower byte, you must use Mov AL,Byte Ptr Value.
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Here, stating Byte Ptr explicitly tells MASM that you are intentionally
treating Value as a different data type.  Otherwise, it will issue a non-
fatal warning error message.
   Sometimes you may want to refer to the address of a variable, as opposed
to its contents.  For example, Mov AX,Variable tells MASM to move the value
held in Variable into the AX register.  But many DOS services require that
you specify a variable's address in a register.  This is done using the
Offset operator:  Mov DX,Offset Buffer.  Where Mov DX,Buffer places the
first two bytes of the buffer into DX, using Offset tells MASM that you
instead want the starting address of the buffer.
   You can also use the Lea (Load Effective Address) command to obtain an
address, but that is less frequently used.  Although Lea DX,Buffer can be
used to load DX with the starting address of Buffer, it is a slightly
slower instruction.  Lea is needed only when an address must be computed.
For example, the instruction Lea SI,[BX+DI] loads SI with the sum of the
BX and DI registers.  You may notice that Lea can provide a shortcut for
adding or subtracting certain register combinations.  Although this use of
Lea is uncommon, Lea can replace the following two instructions:

   Mov SI,BX
   Add SI,DI

To subtract two registers or a register and a constant value you could use
Lea AX,[BX-DI] or Lea SI,[BP-10].

CALCULATIONS IN ASSEMBLY LANGUAGE
=================================

When adding or subtracting you may use two registers, or a register and a
memory variable.  It is not legal to specify two memory variables as in
Add Var1,Var2.
   Multiplying and dividing are not so flexible; only AL and AX may be
multiplied.  When dividing, the numerator must be either in AX, or the long
integer comprised of DX:AX.  In this case, DX holds the upper word and AX
holds the lower one.  However, you may multiply or divide these registers
using either a register or a memory location.  Because of this restriction,
it is not necessary to specify the target operand size.  That is, Mul CL
means to multiply AL by CL leaving the result in AX, and Div WordVariable
divides DX:AX by the contents of WordVariable leaving the result in AX and
the remainder in DX.  Although you could use the commands Mul AL,CL and Div
AX,WordVariable, this is not necessary or common.
   All of the allowable combinations for multiplying and dividing are shown
in Figure 12-1.

Instruction          Operand    Result    Remainder
----------------     -------    ------    ---------
Mul ByteRegister        AL        AX         n/a
Mul ByteVariable        AL        AX         n/a
Mul WordRegister        AX       DX:AX       n/a
Mul WordVariable        AX       DX:AX       n/a

Div ByteRegister        AX        AL          AH
Div ByteVariable        AX        AL          AH
Div WordRegister      DX:AX       AX          DX
Div WordVariable      DX:AX       AX          DX

Figure 12-1: The allowable register/memory combinations for multiplying and
dividing.

In Figure 12-1 ByteRegister means any byte-sized register such as AL or
CH; WordRegister indicates any word-sized register like CX or BP.
Likewise, ByteVariable and WordVariable specify byte- and word-sized
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integer memory variables respectively.
   It's important to understand that you must never divide by zero, because
that will generate a critical error.  Because the result from dividing by
zero is infinity, the 8088 has no way to handle that--it can't simply
ignore the error.  Therefore, dividing by zero causes the CPU to generate
an Interrupt 0.  In a BASIC program that error is routed to BASIC's
internal error handling mechanism which either invokes the ON ERROR handler
if one is in effect, or ends your program with an error message.  In a
purely assembly language program, DOS intervenes printing an error message
on the screen, and then it ends the program.
   Related to division by zero is dividing when the result cannot fit into
the destination register.  For example, if AX holds the value 20000 and you
divide it by 2, the resulting 10000 cannot fit into AL.  Since this is
another unrecoverable error that cannot be ignored, the 8088 generates an
Interrupt 0 there as well.
   Besides the Div and Mul instructions, there are also signed versions
called Idiv and Imul.  Where Div and Mul treat the contents of AX or DX:AX
as an unsigned value, Idiv and Imul treat them as being signed.  You'll use
whichever command is appropriate, so the 8088 knows if values having their
highest bit set are to be treated as negative.  BASIC always uses Idiv and
Imul in the code it generates, since all integer and long integer values
are treated by BASIC as signed.
   Because only AX and DX:AX may be used for multiplying and dividing, this
affects your choice of registers.  The short example that follows shows how
you might select registers when translating a simple BASIC-like expression
that uses only integer (not long integer) variables.

   BASIC:
        Result = (Var1 + Var2 * (Var3 - Var4)) \ 100

   Assembler:
        Mov  AX,Var3          ;work from the innermost level out
        Sub  AX,Var4          ;so first perform Var3 - Var4
        Imul Word Ptr Var2    ;then multiply that by Var2
        Add  AX,Var1          ;add Var1 to what we have so far
        Mov  DX,0             ;next prepare to divide DX:AX
        Mov  CX,100           ;use CX for the divisor
        Idiv CX               ;do the division
        Mov  Result,AX        ;then assign Result ignoring the
                              ;  remainder left in DX

Because dividing by an integer value uses both DX and AX, it is necessary
to clear DX explicitly as shown unless you are certain it is already zero.
The use of CX to hold the value 100 is arbitrary.  If CX were currently in
use, any available word-sized register or memory location could be used.
If you compile this program statement and view the resultant code using
CodeView, you will see that BASIC does an even better job of translating
this particular expression to assembly language.

STRING PROCESSING INSTRUCTIONS
==============================

Besides being able to add, subtract, multiply, and divide, the 8088
provides four very efficient instructions for manipulating strings and
other data in memory.  Movs copies, or moves a string from place to
another; Cmps compares two ranges of memory; Stos fills, or stores one or
more addresses with the same value; and Scas scans a range of memory
looking for a particular value.  These instructions require either a byte
or word specifier.  For example, you would use Movsb to copy a byte, and
Cmpsw to compare two words.
   There are two important factors that contribute to the power and
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usefulness of these string instructions: each is only one byte long, and
they automatically increment or decrement the SI and DI registers that
point to the data being manipulated.  Thus, they are both convenient to
use, and also very fast.  Because it is common to access blocks of memory
sequentially a byte or word at a time, automatically advancing SI and DI
saves you from having to do that manually with additional instructions.
For example, after one pair of words has been compared, SI and DI are
already set to point at the next pair.
   You can also specify that SI and DI are to be decremented by first using
the Std (Set Direction) command.  The Direction Flag stores the current
string operations direction, which is either up or down.  If a previous Std
was in effect, then you'd use Cld (Clear Direction) to force copying and
moving to be forward.  In fact, BASIC *requires* you to clear the direction
flag to forward before returning from a routine that set it to backwards.

MOVS AND CMPS

Movs and Cmps use the DS:SI register pair to point to the first range of
memory being copied or compared, and ES:DI to point to the second range.
Each time a byte is being copied or compared, SI and DI are incremented or
decremented by one to point to the next address.  And when a word is being
accessed, SI and DI are incremented or decremented by two.
   Notice that there is no protection against SI or DI being incremented
or decremented through address zero, nor is there any indication that this
has happened.  Also notice that the name Movs is somewhat of a misnomer.
To me, moving something implies that it is no longer at its original
location.  Movs does not alter the source data at all--it merely places a
new copy at the specified destination address.

SCAS AND STOS

Scas compares the value in AL or AX with the range of memory pointed to
by ES:DI.  That is, Scasb compares AL and Scasw uses AX.  Stos also uses
ES:DI to show where the data being written to is located; Stosb stores the
contents of AL in the address at ES:[DI] and then increments or decrements
DI by one.  Likewise, Stosw stores the value in AX there and increments or
decrements DI by two.

REPEATING STRING OPERATIONS

If these four instructions merely acted on the data and incremented SI and
DI automatically, that would be very useful indeed.  But they also have
another talent: they recognize a Rep (Repeat) prefix to perform their magic
a specified number of times.  The number of iterations is specified by the
count held in CX.  Furthermore, the number of repetitions can be made
conditional when comparing and scanning, based on the data encountered.
   If you have, say, 20 bytes of data that need to be copied from one place
to another, you would first set CX to 20 and then use Rep Movsb.  And to
compare 100 words you would load CX with the value 100 and use Rep Cmpsw.
Stos also accepts a Rep prefix; Rep Stosb places the value in AL into CX
bytes of contiguous memory starting at the address specified in ES:DI.  For
each iteration the 8088 decrements CX, and when it reaches zero the copying
or comparing is complete.
   It is usually not valuable to scan a range of memory unconditionally and
repeatedly.  Therefore Scas is generally used in conjunction with either
Repe (Repeat while Equal) or Repne (Repeat while Not Equal).  Cmps is also
generally used with these conditional prefixes, to avoid wasting time
comparing bytes after a match or a difference was found.  In either case,
however, you load CX with the total number of bytes or words being compared
or scanned.
   Because each iteration decrements CX, you can easily calculate how many
bytes or words were actually processed.  Also, you can test the results of
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scanning and comparing using the normal methods such as Je and Jne.  The
following few examples show some ways these commands can be used.

   See if two 40-byte ranges of memory are the same:

        Mov  CX,20              ;comparing 20 words is faster than 40 bytes
        Repe Cmpsb              ;compare them
        Je   Match              ;they matched

   Copy a 2000-element integer array to color screen memory:

        Mov  AX,ArraySeg        ;set DS to the source segment
        Mov  DS,AX              ;through AX
        Mov  SI,ArrayAdr        ;point SI to the array start
        Mov  AX,&HB800          ;the color text screen segment
        Mov  ES,AX              ;assign that to ES
        Mov  DI,0               ;clear DI to point to address 0
        Mov  CX,2000            ;prepare to copy 2000 words
        Rep  Movsw              ;copy the data

   Search a DOS string looking for a terminating zero byte:

        Mov  AX,StringSeg       ;set ES to the string's segment
        Mov  ES,AX              ;(ES cannot be assigned directly)
        Mov  DI,Offset ZString  ;point DI to the string data
        Mov  CX,80              ;search up to 80 bytes
        Mov  AL,0               ;looking for a zero value
        Repne Scasb             ;while ES:[DI] <> AL
        ;-- Now DI points just past the terminating zero byte.
        ;-- The length of the string is (80 - CX + 1).

In the first example, it is assumed that DS:SI and ES:DI already point to
the correct segment and address.  By asking to compare only while the bytes
are equal, the result of the most recent byte comparison can be tested
using Je.  A common mistake many programmers make is comparing the bytes,
and then checking if CX is zero.  The reasoning is that if CX is zero then
they must have all matched; otherwise, the 8088 would have aborted the
comparisons early.  But CX will also be zero if all but the last byte
matched!  Therefore, you must check the zero flag using Je (or Jne if that
is more appropriate).
   Notice in the first example how 20 words are compared, rather than 40
bytes.  Although the net result is the same, word operations are faster on
80286 and later processors when the blocks of memory begin at an even
numbered address.  [Though you can't always know if a variable or block
of memory will begin at an even address, using the word version will be
more efficient at least some of the time.]
   The second and third examples include the code needed to set up the
appropriate segment and address values in DS:SI and ES:DI.  Although this
may seem like a lot of work, you can often do this setup only once and then
use the same registers repeatedly within a routine.  Unfortunately, you
are not allowed to assign a segment register from a constant number.  You
must first assign the number to a conventional register, and then use Mov
to copy it to the segment register.

THE STACK

The primary purpose of the stack is to retain the return address of a
program when a subroutine is called.  This is true not only for assembly
language, but for BASIC as well.  For example, when you use the BASIC
statement GOSUB 1200, BASIC must remember the location in memory of the
next command to execute when the routine returns.  It does this by placing
the address of the next instruction onto the stack *before* it jumps to the
subroutine.  Then when a RETURN instruction is encountered, the address to
return to is available.  The 8088 understands Calls and Returns directly,
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and it places and restores the addresses on the stack automatically.
   The stack is not unlike a stack of books on a table, and one of its
great advantages is that you don't need to know where in memory it is
actually located.  Items can be placed onto the stack either manually with
the Push instruction, or automatically by the 8088 processor as part of its
handling of Call and Return statements.  Values are retrieved from the
stack with the Pop command, among other methods.
   One important feature of the stack is when items are added and removed,
the stack pointer register is updated automatically to reflect the next
available stack location.  Thus, a program can access items on the stack
based on the stack pointer, rather than have to know the exact address at
any given time.  This simplifies exchanging information between programs,
since neither has to know how the other operates.  This mechanism also
makes it possible for programs written in one language to communicate with
subroutines written in another.
   Figure 12-2 shows how the stack operates.

           ¦
¦
           ¦
¦
+----------¦
¦  Item 1  ¦ <-- first item that was pushed
+----------¦
¦  Item 2  ¦ <-- second item that was pushed
+----------¦
¦  Item 3  ¦ <-- third item that was pushed
+----------¦
¦  Item 4  ¦ <-- last item that was pushed (SP points here)
+----------¦
¦   Next   ¦ <-- next available stack location
+----------¦
           ¦ +-- the stack grows downward
¦            ¦   as new items are added
           ¦ ¦
¦            ¦
             \/

Figure 12-2: The organization of the CPU stack.

As each item is pushed onto the stack, it is placed two bytes below the
address held in the stack pointer.  Then the stack pointer is decremented
by two, to show the next available stack location.  Therefore, the stack
grows downward as new items are added.  Note that only full words may be
pushed onto the stack, so all of the items shown here are two bytes in
size.  Also note that the stack pointer holds the address of the last item
that was pushed.

PASSING PARAMETERS
==================

Imagine you have a BASIC subroutine that does something to the variable X.
The code to assign X, process, and print X might look like this:

   X = 12
   GOSUB 2000     'the routine at line 2000 manipulates X
   PRINT X

In assembly language you could push the value 12 onto the stack, and then
call the subroutine.  The subroutine, expecting the value there would
retrieve it, do its work, and then place the result back again before
returning.  This is similar, but not identical, to how variables are passed
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between programs.  Most high-level languages including BASIC pass variables
to subroutines by placing their *addresses* on the stack.  A called routine
can then access the variable via its address, either to read it or to
assign a new value.
   If BASIC let you access the registers directly, it could pass variables
through them, as you saw when telling DOS which of its services to do.  But
BASIC doesn't allow that and moreover, with a limited number of registers,
only a few variables or addresses could be accommodated.  The stack can
hold any number of arguments, by pushing the address of each in turn.
   When you use the BASIC CALL command and pass a variable name to a SUB
or FUNCTION procedure, BASIC first pushes the address of that variable onto
the stack, before jumping to the code being called.  And if more than one
variable is specified, all of the addresses are pushed.  The example below
shows how you might call a routine that returns the current default drive.

   CALL GetDrive(Drive%)

When GetDrive begins, it knows that the stack is holding the address of
Drive%.  The segment and address of the calling BASIC program is also on
the stack; however, GetDrive is not concerned with that.  The important
point is that it can find the address on the stack using the SP (Stack
Pointer) register.  When GetDrive begins the stack is set up as shown in
Figure 12-3.

           ¦ ^
¦            ¦
           ¦ ¦
¦            +-- higher addresses
+----------¦
¦  Drive%  ¦ <-- the address of Drive% that BASIC pushed
+----------¦
¦ Ret Seg  ¦ <-- BASIC's segment to return to
+----------¦
¦ Ret Adr  ¦ <-- BASIC's address to return to (SP holds this address)
+----------¦
¦   Next   ¦ <-- the next available stack location
+----------¦
           ¦
¦
           ¦
¦

Figure 12-3: The state of the stack within a procedure when one variable
address was passed.

Notice that while GetDrive can get at the address of Drive% through SP,
an extra step is still required to get at the *data* held in Drive%.  Let's
digress for a moment to reconsider the difference between memory addresses
and values.  The assembler command Mov AX,12 puts the value 12 into
register AX.  But suppose you want to put the contents of *memory location*
12 into AX.  You indicate this to the assembler by using brackets, as shown
in the two equivalent examples following.

   Mov AX,[12]    ;load AX from address 12

   Mov BX,12      ;assign BX to the value 12
   Mov AX,[BX]    ;load AX from the address held in BX

The first statement loads AX from the contents of memory at address 12.
The second first loads BX with the number 12, and then uses BX to identify
that address, moving the contents of that address into AX.  This is an
important distinction, and is illustrated in Figure 12-4 using parallels
to BASIC's PEEK and POKE commands.
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     BASIC                      Assembler
--------------------       ---------------------
BP = SP                    Mov BP,SP
AL = PEEK(BP + 8)          Mov AL,[BP+8]
SI = 12                    Mov SI,12
POKE SI, 12                Mov Byte Ptr [SI],12

Figure 12-4: Similarities between BASIC's PEEK and POKE, and the assembly
language Mov instruction.

Although you can easily find the address of Drive% by looking at SP, an
extra step is required to get at the actual value.  The example that
follows shows how to do this, except there is one added complication.  You
are not allowed to use SP for addressing, except with 386 and later
microprocessors.  Since you undoubtedly want your programs to work with as
many computers as possible, a different strategy must be used.
   As I mentioned earlier, the BP register is a base register that is meant
for accessing data on the stack.  Therefore, you must first copy SP into
BP, and then use BP to access the stack.  Then you can find where Drive%
is located, and put the current drive number into that address as shown
following:

   Mov  BP,SP      ;put the current stack pointer into BP
   Mov  SI,[BP+4]  ;put the address of Drive% into SI
   Mov  AH,19h     ;tell DOS we want the default drive
   Int  21h        ;call DOS to do it
   Mov  [SI],AL    ;put the answer into Drive%

Notice how brackets are used to indicate the addresses.  You must first
determine the address of Drive%'s address (whew!), before you can put the
value held in AL there.  This is called indirect addressing, because a
register is used to hold the address of the data.  Again, notice how the
8088 accepts addition on the fly when you tell it BP+4.
   The complete working GetDrive routine has two small added complications.
Beside being unable to use SP for addressing memory, BASIC also requires
you to not change BP either.  The obvious solution, therefore, is to first
save BP on the stack before changing it, and then restore BP later before
returning to BASIC.  The other complication is caused by the very fact that
BASIC put extra information (Drive%'s address) onto the stack.  But neither
is insurmountable, as shown here:

   Push BP          ;save BP before changing it
   Mov  BP,SP       ;put the stack pointer into BP
   Mov  SI,[BP+6]   ;put the address of Drive% into SI
   Mov  AH,19h      ;tell DOS we want default drive
   Int  21h         ;call DOS to do it
   Mov  [SI],AL     ;put the answer into Drive%
   Pop  BP          ;restore BP to its original value
   Ret  2           ;return to BASIC

Notice that here, the address of Drive% is at [BP+6] rather than [BP+4]
as it was in the previous listing.  Since BP was pushed at the start of the
procedure, the stack pointer is two bytes lower when it is subsequently
assigned to BP.  When SI is loaded, [BP] points to the saved version of
itself, [BP+2] and [BP+4] point to the address and segment to return to,
and [BP+6] holds the address of Drive%'s address.  This is illustrated in
Figure 12-5.

           ¦
¦
           ¦
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¦
+----------¦
¦  Drive%  ¦ <-- [BP+6] points here
+----------¦
¦ Ret Seg  ¦ <-- [BP+4] points here
+----------¦
¦ Ret Adr  ¦ <-- [BP+2] points here
+----------¦
¦ Saved BP ¦ <-- [BP] points here
+----------¦
¦   Next   ¦ <-- the next available stack location
+----------¦
           ¦
¦
           ¦
¦

Figure 12-5: The state of the stack within a procedure after BP has been
pushed.

Normally when a Ret command is encountered, the 8088 pops the last four
bytes from the stack automatically, and returns to the segment and address
contained in those bytes.  But that would leave the 2-byte address of
Drive% still cluttering up the stack.  To avoid this problem the 8088 lets
you specify a *parameter count* as part of the Ret instruction.
   For each variable address that is passed with a CALL from BASIC, you
must add 2 to the Return instruction in your assembler routine.  This is
the number of bytes to remove from the stack, with two being used for each
incoming two-byte address.  Had two variables been passed, the program
would have used Ret 4 instead.  Although it is possible to have the calling
program clean up the stack itself, that would be wasteful.
   For every occurrence of every call that passes parameters, BASIC would
have to include additional code following the call to increment SP
accordingly.  Pushing a parameter's address onto the stack leaves that much
less stack space available.  Therefore, someone has to reverse the process
and either pop the addresses or use Add SP,Num to adjust the stack pointer.
By having the called routine handle it, that code is needed only once.  In
fact, this is an important deficiency of C, because by design C requires
the caller to clean up the stack.
   [If you've managed to persevere this far you'll be pleased to know that
in practice, the assembler can be told to handle most or all aspects of
stack addressing for you.  This is discussed in the sections that follow.]
   It is also possible to tell BASIC to pass some types of parameters by
value using the BYVAL option in the DECLARE or CALL statements.  When BYVAL
is used, BASIC places the actual value of the variable onto the stack,
rather than its address.  This has several important benefits.  First, the
assembly language routine can use one less instruction.  Second, when a
constant number is passed, BASIC does not need to make a copy of it in
DGROUP.  This copying was described in Chapter 2.
   However, BYVAL is appropriate only when a parameter does not have to be
returned, and only when the values are integers.  If you pass a double
precision parameter using BYVAL, all eight bytes are placed on the stack
using four separate instructions rather than only two needed to pass the
address.  You can also instruct BASIC to pass the full, segmented address
of a parameter, and that is discussed in the section "Dynamic Arrays."

PROCEDURES IN ASSEMBLY LANGUAGE
===============================

All of the discussions so far have focused on how to write the instructions
for an assembly language subroutine.  However, none have described how
these routines are added to a BASIC program, or how a complete procedure
is defined.  Furthermore, the previous examples have not shown a key step
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that is needed with all such external routines: establishing the code and
data segments.
   Before an external routine can be linked to a BASIC program you must
establish a public procedure name that LINK can identify.  I will first
show the formal method for defining a procedure and its segments, and then
show the newer, simplified methods that were introduced with MASM version
5.1.  The simplified syntax is used for all of the remaining examples in
this chapter [so don't worry if the setup details for this first example
appear overwhelming].
   The simplest complete subprogram you are likely to encounter is probably
the PrtSc routine that follows--all it does is call Interrupt 5 to send the
contents of the current display screen to LPT1.

Code    Segment Word Public 'Code'
Assume  CS:Code
Public  PrtSc
PrtSc   Proc Far       ;this is equivalent to SUB PrtSc STATIC in BASIC

Int  5                 ;call BIOS interrupt 5
Ret                    ;return to BASIC

PrtSc   Endp           ;this is equivalent to BASIC's END SUB
Code    Ends
End

The first three lines tell the assembler that the code is to be placed in
the segment named Code, and that the name PrtSc is to be made public.  The
fourth line defines the start of a procedure.  The actual code occupies
the next two lines.  Of course, you must tell the assembler where the
procedure ends, which in this case is also the end of the code segment.
Had several procedures been included within the same block of code, each
procedure would show a start and end point, but there would only be a
single code segment.  The final End statement is needed to tell the
assembler that this is the end of listing, although you might think that
MASM would be smart enough to figure that out by itself!
   Notice that there are two kinds of procedures: Far and Near. External
routines that are called from BASIC are always Far, because BASIC uses what
is called a *medium model*.  This means the procedure does not necessarily
have to be within the same code segment as the main BASIC program.  The
medium model allows the combined programs to exceed the usual 64k limit
when linked to a final .EXE file.
   When BASIC executes a CALL command, it uses a two-word address as the
location to jump to.  One of the words contains a segment, and the other
an address within that segment.  Then when your program finally returns,
the 8088 must know to remove two words from the stack--a segment and an
address--to find where to return to in the calling BASIC program.
   A near procedure, on the other hand, calls an address that is only one
word long.  And when the procedure returns, only a single word is popped
from the stack.  Again, the assembler does the bulk of the dirty work for
you.  You just have to remember to use the word Far.

SIMPLIFIED DIRECTIVES

Fortunately, Microsoft realized what a pain dealing with segments and
procedures and offsets from BP can be, and they enhanced MASM beginning
with version 5.0 to handle these details automatically for you.  Rather
than require the programmer to define the various code and data segments,
all that is needed are a few simple key words.
   The first is .Model Medium, which tells MASM that the procedures that
follow will be Far.  Used in conjunction with .Code and .Data, .Model
Medium tells MASM that any data you define should be placed into a group
named DGROUP.  Adding ,Basic after the .Model directive also declares your
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procedures as Public automatically, so BASIC can access them when your
program is linked.
   By using the name DGROUP, the linker automatically gathers all of your
DB and DW data variables, and places them into the same segment that BASIC
uses.  While this has the disadvantage of impinging on BASIC's near data
space, it also means that on entry to the routine the DS register (which
BASIC sets to hold the DGROUP segment) hold the correct segment value for
your variables as well.
   To show the advantages of simplified directives, contrast the earlier
PrtSc with this version that does exactly the same thing:

.Model Medium, Basic

.Code

PrtSc Proc
  Int 5
  Ret
Endp
End

MASM 5.1 introduced additional simplified directives that let you access
incoming parameters by name, rather than as offsets from BP.  All of the
remaining examples in this chapter take advantage of simplified directives,
as the following revised listing for GetDrive illustrates.

;Syntax: CALL GetDrive(Drive%)

.Model Medium, Basic

.Data
   ;-- if variables were needed they would be placed here

.Code
GetDrive Proc, Drive:Word

  Mov  AH,19h      ;tell DOS we want the default drive
  Int  21h         ;call DOS to do it
  Mov  BX,Drive    ;put the address of Drive% into BX
  Cbw              ;clear AH to make a full word
  Mov  [BX],AL     ;then store the answer into Drive%
  Ret              ;return to BASIC

GetDrive Endp      ;indicate the end of the procedure
End                ;and the end of the source file

As you can see, this looks remarkably like a BASIC SUB or FUNCTION
procedure, with the incoming parameter listed by name and type as part of
the procedure declaration.  This greatly simplifies maintaining the code,
especially if you add or remove parameters during development.  If incoming
parameters are defined as shown here using Drive%, code to push BP and then
move SP into BP is added for you automatically.  When you refer to one of
the parameters, the assembler substitutes [BP+##] in the code it generates.
Note, however, that the Word identifier for Drive refers to the 2-byte size
of its address, and not the fact that Drive% is a 2-byte integer.
   Also notice the new Cbw command, which is used here to clear the AH
register.  Cbw (Convert Byte to Word) expands the byte value held in AL to
a full word in AX.  A full word is needed to ensure that both the high- and
low-byte portions of Drive% are assigned, in case it held a previous value.
If the value in AL is positive (between 0 and 127), AH is simply cleared
to zero.  And if AL is negative (between -128 and -1 or between 128 and
255), Cbw instead sets all of the bits in AH to be on.  Thus, the sign of
the original number in AL is preserved.
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   A complementary statement, Cwd (Convert Word to Double Word), converts
the word in AX to a double-word in DX:AX.  Again, if AX is positive when
considered as a signed number, DX is cleared to zero.  And if AX is
currently negative, DX is set to FFFFh (-1) to preserve the sign.  Cbw and
Cwd are both one-byte instructions, so even with unsigned values they are
always smaller and faster for clearing AH or DX than Mov AH,0 and Mov DX,0
which require two bytes and three bytes respectively.
   Finally, the Ret command that exits the procedure is translated by MASM
to include the correct stack adjustment value, based on the number of
incoming parameters.  If you have multiple exit points from the procedure
(equivalent to EXIT SUB), the exit code will be generated multiple times.
That is, each occurrence of Ret is replaced with a code sequence to pop the
saved registers, and preform the 3-byte Ret # instruction.  Therefore, you
should always use a single exit point in a routine, and jump to that when
you need to exit from more than one place.

CALLING INTERRUPTS
==================

Chapter 11 explained how interrupts work, and mentioned that only assembly
language can call an interrupt directly.  An assembler program uses the Int
instruction, and this tells the 8088 to look in the interrupt vector table
in low memory to obtain the interrupt procedure's segment and address.
Then the procedure is called as if it were a conventional subroutine.
   All of the DOS and BIOS services are accessed using interrupts, though
there are so many different services that you also have to pass a service
number to many of them.  Most of the DOS services are accessed through
interrupt 21h.  Where BASIC uses the &H prefix to indicate a hexadecimal
value, assembly language uses a trailing letter H.  If you specify a number
without an H it is assumed by MASM to be regular decimal.  Note that MASM
doesn't care if you use upper- or lowercase letters, and knows that either
means hexadecimal.
   When specifying hexadecimal values to MASM, the first character must
always be a digit.  That is, 1234h is acceptable, but &HB800 must be
entered as 0B800h.  Using B800h will generate a syntax error.

DOS AND BIOS SERVICES

You have already seen how to call the BIOS routine that prints the screen
and the DOS routine that returns the current drive.  Let's continue and see
how to call some of the other useful routines in the BIOS and DOS.
   The next example program, DosVer, shows how to call the DOS service that
returns the DOS version number.  Like many of the assembler routines that
you can use with BASIC, DosVer relies on an existing DOS service to do the
real work.  In this program you will also learn how to push and pop values
on the stack.
   The syntax for DosVer is CALL DosVer(Version%), where Version% returns
with the DOS version number times 100.  That is, if your PC is running DOS
version 3.30, then Version% will be assigned the value 330.  Manipulating
floating point numbers is much more difficult than integers, and the added
complexity is not justified for this routine.
   The DOS service that retrieves the version number returns with two
separate values--the major version number (3 in this case) and the minor
number (30).  These values are returned in AL and AH respectively.  The
strategy here is to first multiply AL by 100, and then add AH.  The last
step is to assign the result to the incoming parameter Version%.
   Unfortunately, when you use AL for multiplication, the value 100 must
be in a register or memory location.  You can't just use MUL AL,100 though
it would sure be nice if you could.  Further, whenever AL is multiplied the
result is placed into the entire AX register.  Therefore, DosVer also uses
BX to temporarily store the original contents of AX before the two are
added together.
   As you already have learned, the only register that can be multiplied
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is AX, or its low-byte portion, AL.  MASM knows if you plan to multiply AX
or AL based on the size of the argument.  For example, Mul BX means to
multiply AX by BX and leave the result in DX:AX.  Mul CL instead multiplies
AL by CL and leaves the answer in AX.
   The complete DosVer routine is shown following, and comments explain
each step.

;DOSVER.ASM, retrieves the DOS version number

.Model Medium, Basic

.Code

DOSVer Proc, Version:Word

  Mov  AH,30h      ;service 30h gets the version
  Int  21h         ;call DOS to do it

  Push AX          ;save a copy of the version for later
  Mov  CL,100      ;prepare to multiply AL by 100
  Mul  CL          ;AX is now 300 if running DOS 3.xx

  Pop  BX          ;retrieve the version, but in BX
  Mov  BL,BH       ;put the minor part into BL for adding
  Mov  BH,0        ;clear BH, we don't want it anymore
  Add  AX,BX       ;add the major and minor portions

  Mov  BX,Version  ;get the address for Version%
  Mov  [BX],AX     ;assign Version% from AX
  Ret              ;return to BASIC

DOSVer Endp
End

Notice the extra switch that is done with BH and BL.  AX is saved onto the
stack because multiplying the byte in AL leaves the result as a full word
in AX, thus destroying AH.  When the version is popped into BX, the minor
part is in BH.  But you are not allowed to add registers that are different
sizes (AX and BH).  Further, any number in the high half of a register is
by definition 256 times the value of the same number in a low half.
Therefore, BH is first copied to BL to reflect its true value.  BH is then
cleared so it won't affect the result, and finally AX and BX are added.
   A better way to save AX and then restore it to BX would be to simply use
Mov BX,AX immediately after the call to Interrupt 21h.  I used Push and Pop
just to show how this is done.  As you can see, it is not necessary to pop
the same register that was pushed.  However, every Push instruction must
always have a corresponding Pop, to keep the stack balanced.  If a register
or other value is on the stack when the final Ret is encountered, that
value will be used as the return address which is of course incorrect.
   Division also acts on AX, or the combination of DX:AX.  When you use
the command Div BL, the 8088 knows you want to divide AX because BL is a
byte-sized argument.  It then leaves the result in AL and the remainder,
if any, is placed into AH.  Similarly, Div DX means that you are dividing
the long integer in DX:AX, because DX is a word.  The result of this
division is assigned to AX, with the remainder in DX.

ACCESSING BASIC STRINGS IN ASSEMBLY LANGUAGE
============================================

As Chapter 2 explained, strings are stored very differently than regular
numeric variables.  BASIC lets you find the address of any variable with
the VARPTR function.  For integer or floating point numbers, the value
VARPTR returns is the address of the actual data.  But for strings, VARPTR
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instead returns the address of a string descriptor.
   DOS employs a different method entirely for its strings, using a CHR$(0)
to mark the end.  This is describes separately later in the section "DOS
Strings."

BASIC NEAR STRINGS

A BASIC string descriptor is a table containing information about the
string--that is, its length and address.  In Microsoft compiled BASIC a
string descriptor is comprised of two words of information.  For QuickBASIC
and near strings when using BASIC PDS, the first word contains the length
of the string and the second holds the address of the first character.
Consider the following BASIC instructions:

   X$ = "Assembler"
   V = VARPTR(X$)

V now holds the starting address of the four-byte descriptor for X$.  For
the sake of argument, let's say that V is now 1234.  Addresses 1234 and
1235 will together contain the length of X$ which is 9, and addresses 1236
and 1237 will contain yet another address--that of the first character in
X$.  You can therefore find the length of X$ using this formula:

   Length = PEEK(V) + 256 * PEEK(V + 1)

And the first character "A" can be located with this:

   Addr = PEEK(V + 2) + 256 * PEEK(V + 3)

You could then print the string on the screen like this:

   FOR C = Addr TO Addr + 8
     PRINT CHR$(PEEK(C));
   NEXT

Therefore, this is a BASIC model for how strings are located by an assembly
language program.  When you call an assembler routine with a string
argument, BASIC first pushes the address of the descriptor onto the stack,
before calling the routine.  The next example is called Upper, because it
capitalizes all of the characters in a string.  Even though BASIC offers
the UCASE$ and LCASE$ functions, these are relatively slow because they
return a copy of the data that has been manipulated.  Upper instead
capitalizes the data in place very quickly.
   The strategy is to first get the descriptor address from the stack.
Then Upper puts the length into BX and the address of the string data into
SI.  Upper steps through the string starting at the end, decrementing BX
by one for each character.  When BX crosses zero, it is done.  A BASIC
version is shown first, followed by the assembly language equivalent.
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Upper in BASIC:

SUB Upper(Work$) STATIC

  '-- load SI with the address of Work$ descriptor
  SI = VARPTR(Work$)

  '-- assign LEN(Work$) to BX
  BX = PEEK(SI) + 256 * PEEK(SI + 1)

  '-- the address of the first character goes in SI
  SI = PEEK(SI + 2) + 256 * PEEK(SI + 3)

More:
  BX = BX - 1                'point to the end of Work$
  IF BX < 0 GOTO Exit        'no more characters to do
  AL = PEEK(SI + BX)         'get the current character
  IF AL < ASC("a") GOTO More 'skip conversion if too low
  IF AL > ASC("z") GOTO More 'or if too high
  AL = AL - 32               'convert to upper case
  POKE SI + BX, AL           'put character back in Work$
  GOTO More                  'go do it all again

Exit:                        'return to caller

END SUB

Upper in assembly language:

Upper Proc, Work:Word

  Mov  SI,Work    ;load SI with Work$'s descriptor address
  Mov  BX,[SI]    ;put LEN(Work$) into BX
  Mov  SI,[SI+2]  ;SI holds address of the first character

Next:
  Dec  BX         ;point to the next prior character
  Js   Exit       ;if sign is negative BX is less than 0
  Mov  AL,[BX+SI] ;put the current character into AL
  Cmp  AL,"a"     ;compare it to ASC("a")
  Jb   More       ;jump if below to More
  Cmp  AL,"z"     ;compare AL to ASC("z")
  Ja   More       ;jump if above to More
  Sub  AL,32      ;convert AL to upper case
  Mov  [BX+SI],AL ;put AL back into Work$
  Jmp  More       ;jump to More

Exit:
  Ret             ;return to BASIC

Upper Endp
End
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What's Your Sign?

Notice that for expediency, these routines work backwards from the end of
the string.  There are a number of shortcuts that you can use in assembly
language, and one important one is being able to quickly test the result
of the most recent numeric operation.  If the program worked forward
through the string, it would take three lines of code to advance to the
next character, and also require saving the string length separately:

   Inc  BX           ;point to the next character
   Cmp  BX,Length    ;are we done yet?
   Jne  More         ;no, continue

Notice the use of a new form of conditional jump--Js which stands for *Jump
if Signed*.  Here the code tests the sign of the number in BX, and jumps
if it is negative.  Though I haven't mentioned this yet, a conditional jump
doesn't always have to follow a compare.  Although a comparison will set
the flags in the 8088 that indicate whether a particular condition is true,
so will several other instructions.  Some of these are Add, Sub, Dec, and
Inc, but not Mov.  So instead of having to include an explicit comparison:

   Dec  BX           ;decrement BX
   Cmp  BX,0         ;compare it to zero
   Jl   More         ;jump if less to More

All that is really needed is this:

   Dec  BX
   Js   More

The Dec instruction sets the Sign Flag automatically, just as if a separate
compare had been performed.

Conditional Jump Instructions

Besides Je, Jne, and Js, there are a few other forms of conditional jump
instructions you should understand.  Figure 12-6 lists all of the ones you
are likely to find useful.

Command   Meaning
-------   --------------------------------------
  Je      Jump if equal
  Jne     Jump if not equal
  Ja      Jump if above (unsigned basis)
  Jna     Jump if not above (unsigned basis)
  Jb      Jump if below (unsigned basis)
  Jnb     Jump if not below (unsigned basis)
  Jg      Jump if greater (signed basis)
  Jng     Jump if not greater (signed basis)
  Jl      Jump if less (signed basis)
  Jnl     Jump if not less (signed basis)
  Jc      Jump if Carry Flag is set
  Jnc     Jump if Carry Flag is clear
  Js      Jump if sign flag is set
  Jns     Jump if sign flag is not set
  Jcxz    Jump if CX is zero

Figure 12-6: The 8088 conditional jump instructions.

You should know that Je and Jne also have an alias command name: Jz and
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Jnz.  These stand for *Jump if Zero* and *Jump if Not Zero* respectively,
and they are identical to Je and Jne.  In fact, though I didn't mention
this earlier, the Repe and Repne string repeat prefixes are sometimes
called Repz and Repnz.
   Because Je and Jz cause MASM to generate the identical machine code
bytes, they may be used interchangeably.  In some cases you may want to use
one instead of the other, depending on the logic in your program.  For
example, after comparing two values you would probably use Je or Jne to
branch if they are equal or not equal.  But after testing for a zero or
non-zero value using Or AX,AX you would probably use Jz or Jnz.  This is
really just a matter of semantics, and either version can be used with the
same results.
   Also, please understand that Jnb is not the same as Ja.  Rather, the
case of being Not Below is the same as being Above Or Equal.  In fact, MASM
recognizes Jae (Jump if Above or Equal) to mean the same thing as Jnb.
Likewise, Jbe (Jump if Below or Equal) is the same as Jna, Jge (Jump if
Greater or Equal) is the same as Jnl, and Jle (Jump if Less or Equal) is
identical to Jng.  Again, which form of these instructions you use will
depend on how you are viewing the data and comparisons.
   Note the special form of conditional jump, Jcxz.  Jcxz stands for Jump
if CX is Zero, and it combines the effects of Cmp CX,0 and Je label into
a single fast instruction.  Jcxz is also commonly used prior to a Loop
instruction.  When you use Loop to perform an operation repeatedly, CX must
be assigned initially to the number of times the loop is to be executed.
But if CX is zero the loop will execute 65536 times!  Thus, adding Jcxz
Exit avoids this undesirable behavior if zero was passed accidentally.
   Finally, you must be aware that a conditional jump cannot be used to
branch to a label that is more than 128 bytes earlier, or 127 bytes farther
ahead in the code.  A condition jump instruction is only two bytes, with
the first indicating the instruction and the other holding the branch
distance.  If you need to jump to a label farther away than that you must
reverse the sense of the condition, and jump to a near label that skips
over another, unconditional jump:

   Cmp  AX,BX             ;we want to jump to Label: if AX is greater
   Jna  NearLabel         ;so jump to NearLabel if it's NOT greater
   Jmp  Label             ;this goes to Label: which is farther away
   NearLabel:
    .
    .

As used here, the unconditional Jmp instruction can branch to any location
within the current code segment.  There is also a short form of Jmp, which
requires only two bytes of code instead of three.  If you are jumping
backwards in the program and the address is within 128 bytes, MASM uses the
shorter form automatically.  But if the jump is forward, you should specify
Short explicitly: Jmp Short Label.  Some non-Microsoft assemblers do not
require you to specify Short; the newest MASM version 6.x also adjusts its
generated code to avoid the extra wasted byte.

DOS STRINGS

When string information is passed to a DOS routine, for example when giving
a file or directory name, the string must end with a CHR$(0).  In DOS
terminology this is called an ASCIIZ string.  (Do not confuse this with a
CHR$(26) Ctrl-Z which marks the end of a file.)  Unlike BASIC, DOS does
not use string descriptors, so this is the only way DOS can tell when it
has reached the end.  By the same token, when DOS returns a string to a
calling program, it marks the end with a trailing zero byte.
   When passing a string to a DOS service from BASIC you must either
concatenate a CHR$(0) manually, or add extra code within the assembler
routine to copy the name into local storage and add a zero byte to the
copy.  From BASIC you would therefore use something like this:
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   CALL Routine(FileName$ + CHR$(0))

BASIC FIXED-LENGTH STRINGS

Fixed-length strings and the string portion of a TYPE variable do not use
a string descriptor, which you might think would require a different
strategy to access them.  But whenever a fixed-length string is used as an
argument to an assembler routine or BASIC subprogram, BASIC first copies
it into a temporary conventional string, and it is the temporary string
that is passed to the routine.  When the routine returns, BASIC copies the
characters back into the original fixed-length string.  Thus, any routine
written in assembly language that expects a descriptor will work correctly,
regardless of the type of string being sent.
   Of course, this copying requires BASIC to generate many extra bytes of
assembler code for each call.  If you do not want BASIC to create a
temporary string copy from one of a fixed-length, you must first define the
string as a TYPE like this:

   TYPE Flen
     S AS STRING * 20
   END TYPE
   DIM FString AS FLen

Though this appears to be the same as defining FString as a string with a
fixed length of 20, there is an important difference: declaring it as a
TYPE tells BASIC not to make a copy.  That is, BASIC does not treat FString
as a string, as long as the ".S" portion that identifies it as a string is
not used.  Here's an example based on the FLen TYPE that was defined above:

   DIM FString AS FLen           'FString is a TYPE variable
   FString.S = "This is a test"  'assign the string portion
   CALL Routine(FString)         'call the routine without .S

Here, the address of the first character in the string is passed to the
routine, as opposed to the address of a temporary string descriptor.  We
have told BASIC to call Routine, and pass it the entire FString TYPE but
without interpreting the .S string component.  This next example does cause
BASIC to create a temporary copy:

   CALL Routine(FString.X)

The short assembly language routine that follows expects the address of a
fixed-length string with a length of 20, as opposed to the address of a
string descriptor.  The routine then copies the characters to the
upper-left corner of a color monitor.

   Push BP         ;access the stack as usual
   Mov  BP,SP
   Mov  SI,[BP+6]  ;SI points to the first character
   Mov  DI,0       ;the first address in screen memory
   Mov  AX,0B800h  ;color monitor segment when in text mode
   Mov  ES,AX      ;move into ES through AX
   Mov  CX,20      ;prepare to copy 20 characters
   Cld             ;clear the direction flag to copy forward

More:
   Movsb           ;copy a byte to screen memory
   Inc  DI         ;skip over the attribute byte
   Loop More       ;loop until done
   Pop  BP         ;restore BP
   Ret  2          ;return to BASIC
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Recall that the color monitor segment value of 0B800h must be assigned to
ES through AX, because it is not legal to assign a segment register from
a constant.  Also, notice the way that DI is cleared to zero.  Although Mov
DI,0 indeed moves a zero into DI, this is not the most efficient way to
clear a register.  Any time a numeric value is used in a program (0 in this
case), that much extra space is needed to store the actual value as part
of the instruction.  A preferred method for clearing a register is with
the Xor instruction.  That is, Xor DI,DI gives the same result as Mov DI,0
except it is one byte shorter and slightly faster.
   When Xor is performed on any two values, only those bits that are
different are set to 1.  But since the same register is used here for both
operands, all of the result bits will be cleared to 0.  The code for using
Xor is decidedly less obvious, but you'll see Xor used this way very often
in assembly listings in magazines and books.  Another, equally efficient
way to clear a register is to subtract it from itself using Sub AX,AX.

FAR STRINGS IN BASIC PDS

Accessing near strings in QuickBASIC and BASIC PDS is a relatively simple
task, because both the descriptor and the string data are known to be in
near DGROUP memory.  But BASIC PDS also supports far strings, where the
data may be in a different segment.  The composition of a far string
descriptor was shown in Chapter 2; however, you do not need to manipulate
these descriptors yourself directly.
   BASIC PDS includes two routines--StringLength and StringAddress--that
do the work of locating far strings for you.  Further, because Microsoft
could change the way far strings are organized in the future, it makes the
most sense to use the routines Microsoft supplies.  If the layout of far
string descriptors changes, your program will still work as expected.
   StringLength and StringAddress expect the address of the string
descriptor, and they return the string's length and segmented address
respectively.  Note that while far string data may be in nearly any
segment, the descriptors themselves are always in DGROUP.  Also note that
these routines are not very well-behaved.  In particular, registers you may
be using are changed by the routines.  To solve this problem and also to
let you get all of the information in a single call, I have written the
StringInfo routine.  StringInfo is contained in the FAR$.ASM file on the
accompanying disk.
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;from an idea originally by Jay Munro
.Model Medium, Basic
  Extrn StringAddress:Proc ;these are part of PDS
  Extrn StringLength:Proc

.Code
StringInfo Proc Uses SI DI BX ES

  Pushf                    ;save the flags manually

  Push ES                  ;save ES for later
  Push SI                  ;pass incoming descriptor
  Call StringAddress       ;call the PDS routine

  Pop  ES                  ;restore ES for StringLength
  Push AX                  ;save offset and segment
  Push DX                  ;  returned by StringAddress

  Push SI                  ;pass incoming descriptor
  Call StringLength        ;get the length
  Mov  CX,AX               ;copy the length to CX

  Pop  DX                  ;retrieve the saved Segment
  Pop  AX                  ;and the address

  Popf                     ;restore the flags manually
  Ret                      ;restore registers and return

StringInfo Endp
End

StringInfo is called with DS:SI pointing to the string descriptor, and it
returns the length in CX and the address of the string data in DX:AX.
Although StringInfo could be designed to return the segment in DS or ES,
it is safer to assign the segment registers yourself manually.
   Notice the Uses clause--this tells MASM that the named registers must
be preserved, and generates additional code to push those registers upon
entry to the procedure, and pop them again upon exit.
   Also notice the new Extrn directive at the beginning of the source file.
These tell the assembler that the stated routines are not in the current
source file.  MASM then places the external name in the object file header,
with instructions to LINK to fill in the address portion of the Call.  Data
must also be declared as external if it is not in the same source file as
the routine being assembled.  When a data item is to be made available to
other modules, you must also have a corresponding Public statement in that
file for the same reason:

   .Model Medium, Basic
   .Data
     Public MyData
     MyData DW 12345
      .
      .

ACCESSING ARRAYS
================

As you have seen, a conventional variable is passed to an assembly language
subroutine by placing its address onto the stack.  If the variable is a
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string, then the address passed is that of its descriptor, and the string
data address is read from there.  Accessing array elements is only slightly
more involved, because array elements are always stored in adjacent memory
locations.  Let's look first at integer arrays.
   When BASIC encounters the statement DIM X%(100) in your program, it
allocates a contiguous block of memory 202 bytes long.  (Unless you first
used the statement OPTION BASE 1, dimensioning an array to 100 means 101
elements.)  The first two bytes in this block hold the data for X%(0), the
next two bytes hold X%(1), and so forth.  When you ask VARPTR to find
X%(0), the address it returns is the start of this block of memory.
   The address of subsequent array elements may then be easily computed
from this base address.  But with a dynamic array, the segment that holds
the array may not be the same as the segment where regular variables are
stored.  Also, huge arrays that span more than 64K require extra care when
crossing a 64K segment boundary.
   String arrays are structured in a similar fashion, in that each element
follows the previous one in memory.  For each string array element that is
dimensioned, four bytes are set aside.  These bytes comprise a table of
descriptors which contain the length and address words for each element in
the array.  But the important point is that once you know where one element
or string descriptor is located, it is easy to find all of those that are
adjacent.  Following is a QuickBASIC example that shows how to locate
Array$(15), based on the VARPTR address of Array$(0).

DIM Array$(100)
Array$(15) = "Find me"

Descriptor = VARPTR(Array$(0))
Descriptor = Descriptor + (4 * 15)

Length = PEEK(Descriptor) + 256 * PEEK(Descriptor + 1)
PRINT "Length ="; Length

Addr = PEEK(Descriptor + 2) + 256 * PEEK(Descriptor + 3)
PRINT "String = ";
FOR X = Addr TO Addr + Length - 1
  PRINT CHR$(PEEK(X));
NEXT

DYNAMIC ARRAYS

Most of the routines shown so far manipulated variables that are located
in near memory.  BASIC can store numeric, TYPE, and fixed-length string
arrays in far memory, and additional steps are needed to read from and
write to those arrays.
   When an assembly language routine receives control after a call from
BASIC, it can access your regular variables because they are in the default
data segment.  Most memory accesses assume the data is in the segment held
in the DS register.  For example, the statement Mov [BX],AX assigns the
value in AX to the memory location identified by BX within the segment held
in DS.  Likewise, Sub [DI+10],CX subtracts the value held in CX from the
memory address expressed as DI+10, where that address is again in the
default data segment.
   It is also possible to specify a segment other than the current default.
One way is with a *segment override* command, like this:

   Mov ES:[BX],AX

Here, the segment held in ES is used instead of DS.  A segment override
adds only one byte of code, so it is quite efficient.  If you plan to
access data in a different segment many times, you can optionally set DS
to that segment.  However, it is mandatory that you reset DS to its
original value before returning to BASIC.  You must also understand that
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changing DS means you no longer have direct access to DGROUP anymore.  In
that case you could use the stack segment as an override, since the stack
segment is always the same as the data segment in a BASIC program.  The
next short example shows this in context.

   Push DS                ;save DS
   Mov DS,FarSegment      ;now DS points to your far data
    .                     ;access that far data here
    .
   Mov AX,SS:[Variable]   ;access Variable in DGROUP
    .                     ;access more far data here
   Pop DS                 ;restore DS before returning

When Microsoft introduced QuickBASIC version 2.0, one of the most exciting
new features it offered was support for dynamic numeric arrays.  Unlike
QuickBASIC near strings, string arrays, and non-array variables, these
arrays are always located outside of BASIC's near 64K data segment.  This
means that an assembler routine needs some way to know both the address and
the segment for an array element that is passed to it.
   In general, routines you design that work on an entire array will be
written to expect a particular starting element.  The routine can then
assume that all of the subsequent elements lie before or after it in
memory.  Unfortunately, this does not always work unless you add extra
steps.  If you call an assembly language routine passing one element of a
far-memory dynamic array like this:

   CALL Routine(Array(1))

BASIC makes a copy of the array element into a temporary variable in near
memory, and then passes the address of that copy to the routine.  Thus,
while the routine can still receive an array element's value, it has no way
to determine its true address.  And without the address, there is no way
to get at the rest of the array.
   Since being able to pass an entire array is obviously important, BASIC
supports two options to the CALL command--SEG and BYVAL.  The SEG keyword
indicates that both the address and the segment are to be passed on the
stack, and it also tells BASIC not to make a copy of the array element.
SEG is used with an array element (or any variable, for that matter) like
this:

   CALL Routine(SEG Array%(1))

You could also send the segment and address manually, like this:

   CALL Routine(BYVAL VARSEG(Array%(1)), BYVAL VARPTR(Array%(1)))

In both cases, BASIC first pushes the segment where the element resides
onto the stack, followed by the element's address within that segment.  By
pushing them in this order the routine can conveniently use either Lds
(Load DS) or Les (Load ES) to get both the segment and address in one
operation:

   Les DI,[BP+6]       ;if using manual stack addressing
or
   Les BX,[StackArg]   ;if using MASM's simplified directives

Les loads four bytes in one operation, placing the lower word at [BP+6]
into the named register (DI in the first example case), and the higher word
at [BP+8] into ES.  Lds works the same, except the higher word is instead
moved into DS.  Once the segment and address are loaded, you can access all
of the array elements:

   Push DS              ;save DS
   Lds  SI,[BP+6]       ;now DS:SI points at first element
   Mov  [SI],AX         ;assign Array%(1) from AX
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   Add  SI,2            ;now SI points at the next element
   Mov  [SI],BX         ;assign Array%(2) from BX
   Pop  DS              ;restore DS
    .                   ;continue
    .

If Les were used instead of Lds, then an ES: override would be needed to
assign the elements.  Although you must always preserve the contents of
DS regardless of the version of BASIC, some registers need to be saved only
when using BASIC PDS far strings.  Other registers do not need to be saved
at all.  Figure 12-7 shows which registers must be preserved based on the
version of BASIC.

 QuickBASIC and       BASIC PDS
PDS near strings     far strings
---------------      ----------
      DS                 DS
      SS                 SS
      BP                 BP
      SP                 SP
                         ES
                         SI
                         DI

Figure 12-7: The registers that must be preserved in an assembly language
subroutine.

Besides having to save and restore the registers shown in Figure 12-7, you
must also be sure that the Direction Flag is cleared to forward before
returning to BASIC.  The Direction Flag affects the 8088 string operations,
and is by default set to forward.  You can usually ignore the direction
flag unless you set it to backwards explicitly with the Std instruction.
In that case, you must use a corresponding Cld command.

Huge Arrays

A huge array is one that spans more than one 64K segment, and as you can
imagine, it requires extra steps to access all of the elements.  That is,
the assembler routine must know which elements are in what segment, and
manually load those segments as needed.  The following code fragment shows
how to walk through all of the elements in a huge integer array, and just
for the sake of the example adds each element to determine the sum of all
of them.
   A simple setup example and call syntax for this routine is as follows:

   REDIM Array&(1 TO 30000)
   FOR X% = 1 TO 30000
     Array&(X%) = X%
   NEXT

   CALL SumArray(SEG Array&(1), 30000, Sum&)
   PRINT "Sum& ="; Sum&

And here's the code for the SumArray routine:
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.Model Medium, Basic

.Code

SumArray Proc Uses SI, Array:DWord, NumEls:Word, Sum:Word

  Push DS          ;save DS so we can restore it later
  Push SI          ;PDS far strings require saving SI too

  Xor  AX,AX       ;clear AX and DX which will accumulate
  Mov  DX,AX       ; the total

  Mov  BX,NumEls   ;get the address for NumElements%
  Mov  CX,[BX]     ;read NumElements% before changing DS
  Lds  SI,Array    ;load the address of the first element
  Jcxz Exit        ;exit if NumElements = 0

Do:
  Add  AX,[SI]     ;add the value of the low word
  Adc  DX,[SI+2]   ;and then add the high word
  Add  SI,4        ;point to the next array element

  Or   SI,SI       ;are we beyond a 32k boundary?
  Jns  More        ;no, continue

  Sub  SI,8000h    ;yes, subtract 32k from the address
  Mov  BX,DS       ;copy DS into BX
  Add  BX,800h     ;adjust the segment to compensate
  Mov  DS,BX       ;copy BX back into DS

More:
  Loop Do          ;loop until done

Exit:
  Pop  SI          ;restore SI for BASIC
  Pop  DS          ;restore DS and gain access to Sum&
  Mov  BX,Sum      ;get the DGROUP address for Sum&
  Mov  [BX],AX     ;assign the low word
  Mov  [BX+2],DX   ;and then the high word

  Ret              ;return to BASIC

SumArray Endp
End
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The segment bounds checking is handled by the six lines that start with
Or SI,SI.  The idea is to see if the address is beyond 32767, subtract
32768 if it is, and then adjust the segment to compensate.  The most direct
way would have been with Cmp SI,32767 and then Ja More, but Cmp used this
way generates three bytes of code, whereas Or creates only two bytes.
Since Or sets the Sign flag if the number is negative (above 32767), you
can use it to know when the address adjustment is needed.
   Because it is not legal to add or subtract a segment register, DS is
first copied to BX, 800h is added to that, and the result is then copied
back to DS.  800h is used instead of 8000h (32768) because a new segment
begins every 16 bytes.  [That is, adding 800h to a segment value is the
same as adding 8000h to the address.]
   SumArray also introduces a new instruction:  Adc means Add with Carry,
and it is used to add long integer values that by definition span two
words.  When you add two registers--say, AX and BX--if the result exceeds
65535 only the remainder is saved.  However, the Carry Flag is set to
indicate the overflow condition.  Adc takes this into account, and adds
one extra to its result if the Carry Flag is set.  Therefore, whenever two
long integers are added you'll use Add to combine the lower words, and Adc
for the high words.  Similarly, subtracting long integers requires that you
use Sub to subtract the lower words and then Sbb (Subtract with Borrow) on
the upper words.
   Although the details are hidden from you, when more than one parameter
is passed to an assembly language routine it is the last in the list that
is at [BP+6] on the stack.  The previous argument is at [BP+8], and the one
before that is at [BP+10].  Because the stack grows downward as new items
are pushed onto it, each subsequent item is at a lower address.
   Finally, in a real program this routine would probably be designed as
a function.  Using a function avoids having to pass the Sum& parameter to
receive the returned value, and helps reduce the size of the program.

ASSEMBLER FUNCTIONS
===================

Designing a procedure as a function lets you return information to a
program, but without the need for an extra passed parameter.  Functions are
also useful because BASIC performs any necessary data type conversion
automatically.  For example, if you have written a function that returns
an integer value, you can freely assign the result to a single precision
variable.
   You can also test the result of a function directly using IF, display
it directly with PRINT, or pass it as a parameter to another procedure.
Some typical examples are shown here:

   SingleVar! = MyFunction%

   IF YourFunction&(Argument%) > 1004 THEN ...

   PRINT HisFunction$(Any$)

Beginning with QuickBASIC version 4.0, functions written in assembly
language may be added to a BASIC program.  To have a function return an
integer value, simply place the value into the AX register before returning
to BASIC.  If the function is to return a long integer, both DX and AX are
used.  In that case, DX holds the higher word and AX holds the lower one.

STRING FUNCTIONS

String functions are only slightly more complicated to design.  A string
function also uses AX as a return value, but in this case AX holds the
address of a string descriptor you have created.  The complete short string
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function that follows accepts an integer argument, and returns the string
"False" if the argument is zero or "True" if it is not.
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;Syntax:
;DECLARE FUNCTION TrueFalse$(Argument%)
;Answer$ = TrueFalse$(Argument%)

.Model Medium, Basic

.Data
  DescLen DW 0
  DescAdr DW 0
  True    DB "True"
  False   DB "False"

.Code
TrueFalse Proc, Argument:Word

  Mov  DescLen,4            ;assume true
  Mov  DescAdr,Offset True

  Mov  BX,Argument          ;get the address for Argument%
  Cmp  Word Ptr [BX],0      ;is it zero?
  Jne  Exit                 ;no, so we were right
  Inc  DescLen              ;yes, return five characters
  Mov  DescAdr,Offset False ;and the address of "False"

Exit:
  Mov  AX,Offset DescLen    ;show where the descriptor is
  Ret                       ;return to BASIC

TrueFalse Endp
End

Although the function is declared using a dollar sign in the name, the
actual procedure omits that.  [The dollar sign merely tells BASIC what type
of information will be returned.  It is not part of the actual procedure
name.]  TrueFalse begins by defining a string descriptor in the .Data
segment.  It is also possible to store strings and other data in the code
segment and access it with a CS: segment override.  However, data that is
returned as a function must be in DGROUP, and so must the descriptor.
   The first two statements assign the descriptor to an output string
length of four characters, and the address of the message "True".  Then,
the address of Argument is obtained from the stack, and its value is
compared to zero.  If it is not zero, then the descriptor is already
correct and the function can proceed.  Otherwise, the descriptor length is
incremented to reflect the correct length, and the address portion is
reassigned to show where the string "False" begins in memory.  In either
case, the final steps are to load AX with the address of the descriptor,
and then return to BASIC.
   MASM also lets you access data using simple arithmetic.  For example,
the descriptor could have been defined as a single pair of words with one
name, and the second word could be accessed based on the address of the
first one like this:

   .Data
     Descriptor DW 0, 0
     True       DB "True"
     False      DB "False"

   .Code
      .
      .
     Inc  Descriptor
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     Mov  Descriptor+2,Offset False
      .
      .

Far String Functions

Far string functions require more work to write than near string functions,
because of the added overhead needed to support far strings.  Fortunately,
BASIC includes routines that simplify the task for you.  Actually, the
routines to create and assign strings have always been included; it's just
that Microsoft never documented how to do it before BASIC 7.0.  Later in
this chapter I'll show code to create strings that works with all versions
of BASIC 4.0 or later.
   The StringAssign routine expects six arguments on the stack, for the
segment, address, and length of both the source and destination strings.
StringAssign can assign from or to any combination of fixed- and variable-
length strings.  If the length argument for either string is zero, then
StringAssign knows that the address is that of a descriptor.  Otherwise,
the address is of the data in a fixed-length string.
   Because of the added overhead of obtaining values and pushing them on
the stack, I have created a short wrapper program that does this for you.
MakeString accepts the same arguments as StringAssign, but they are passed
using registers rather than on the stack.  Of course, calling one routine
that in turn calls another takes additional time.  But the savings in code
size when MakeString is called repeatedly will overshadow the very slight
additional delay.
   MakeString is called with DX:AX holding the segmented address of the
source string, and CX holding its fixed length.  If the source is a
conventional string, CX is set to zero to indicate that.  The destination
address is identified with DS:DI, using BX to hold the length.  Again, BX
holds zero if the destination is not a fixed-length string.

;from an idea originally by Jay Munro
.Model Medium, Basic
  Extrn STRINGASSIGN:Proc

.Code
MakeString Proc Uses DS

  Push DX           ;push the segment of the source string
  Push AX           ;push the address of the source string
  Push CX           ;push the string length
  Push DS           ;push the segment of the destination
  Push DI           ;push the address of the destination
  Push BX           ;push the destination length

  Call STRINGASSIGN ;call BASIC to assign the string
  Ret

MakeString Endp
End

Now, with the assistance of MakeString, TrueFalse$ can be easily modified
to work with BASIC 7 far strings:
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.Model Medium, Basic
  Extrn MakeString:Proc        ;this is in FAR$.ASM

.Data
  Descriptor DW 0, 0           ;the output string descriptor
  True       DB "True"
  False      DB "False"

.Code
TrueFalse Proc Uses ES DS SI DI, Argument:Word

  Mov  CX,4             ;assume true
  Mov  AX,Offset True

  Mov  BX,Argument      ;get the address for Argument%
  Cmp  Word Ptr [BX],0  ;is it zero?
  Jne  @F               ;no, so we were right

  Inc  CX               ;yes, assign five characters
  Mov  AX,Offset False  ;and use the address of "False"

@@:
  Mov  DX,DS                ;assign the segment and address
  Mov  DI,Offset Descriptor ;  of the destination descriptor
  Xor  BX,BX                ;assign to a descriptor
  Call MakeString           ;let MakeString do the work

  Mov  AX,DI            ;AX = address of output descriptor
  Ret                   ;return to BASIC

TrueFalse Endp
End

Notice the introduction of the new at-symbol (@) assembler directive.  The
at-symbol and double at-symbol label are quite useful, because they let you
avoid having to create unique label names each time you specify the target
of a jump.  As with BASIC, creating many different label names is a
nuisance, and also impinges on the assembler's working memory.  When a
label is defined using @@: as a name, you can jump forward to it using @F
or backwards using @B.  Multiple @@: labels may be used in the same
program, and @F and @B always branch to the nearest one in the stated
direction.

FLOATING POINT FUNCTIONS

Single and double precision functions are handled in yet another manner.
Although a single precision value could be returned in the DX:AX register
combination, a double precision result would need four registers, which is
impractical.  Further, a floating point number is most useful to BASIC if
it is stored in a memory location, rather than in registers.
   When BASIC invokes a floating point function it adds an extra, dummy
parameter to the end of the list of arguments you pass.  If no parameters
are being used, it creates one.  This parameter is the address into which
your routine is to place the outgoing result.  Because of this added
parameter, it is essential that you account for it when returning to BASIC.
Thus, a function without arguments must use Ret 2, a function with one
argument needs Ret 4, and so forth.  Since we're using MASM's simplified
directives, all that is needed is to create an extra parameter name.
   The short double precision function that follows squares a double
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precision number much faster than using Value# ^ 2, and also shows how to
perform simple floating point math using assembly language.  You will
declare and invoke Square like this:

   DECLARE FUNCTION Square#(Variable#)
   Result = Square#(Variable#)
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;SQUARE.ASM, squares a double precision number
;
;WARNING: This file must be assembled using /e (emulator).

.Model Medium, Basic

.Code

.8087                   ;allow 8087 instructions

Square Proc, InValue:Word, OutValue:Word

  Mov  BX,InValue       ;get the address for InValue
  FLd  QWord Ptr [BX]   ;load InValue onto the 8087 stack
  FMul QWord Ptr [BX]   ;multiply InValue by itself

  Mov  BX,OutValue      ;get the address for OutValue
  FStp QWord Ptr [BX]   ;store the result there
  FWait                 ;wait for the 8087 to finish

  Mov  AX,BX            ;return DX:AX holding the full
  Mov  DX,DS            ;  address of the output value
  Ret                   ;return to BASIC

Square Endp
End

This Square function illustrates several important points.  The first is
the use of MASM's /e switch, which lets an assembly language routine share
BASIC's floating point emulator.  When a BASIC program begins, it looks to
see if an 8087 coprocessor is installed in the host PC.  If so, it uses one
set of library routines; otherwise it uses another.
   The library routines that use an 8087 simply modify the caller's code
to change the floating point interrupts that BASIC generates into actual
8087 instructions.  It then returns to the instruction it just created and
executes it.  Although this adds to the time needed to perform a floating
point operation, the code is patched only once.  Thus, statements within
a FOR or DO loop operate very quickly after the first iteration.  This is
very much like the method used by the BRUN library described in Chapter 1.
   When no coprocessor is detected, the floating point interrupts that
BASIC generates are used to invoke routines in BASIC's floating point
software emulator.  As its name implies, an emulator imitates the behavior
of a coprocessor using assembly language commands.  A coprocessor can
perform a variety of floating point operations, including addition,
multiplication, and rounding, as well as some transcendental functions such
as logarithms and arctangents.
   When you use the /e switch, MASM adds extra information to the object
file header that tells LINK where to patch your 8087 instructions.  LINK
can then change your code to the equivalent floating point interrupts,
similar to the way BASIC patches its own code to change the interrupts to
8087 instructions.  Therefore, when you write floating point code that will
be called from BASIC, your routine can tie into BASIC's emulator, and use
it automatically if no coprocessor is installed.
   Also, notice the .8087 directive which tells MASM not to issue an error
message when it sees those instructions.  Other, similar directives are
.80287 and .80387, and also .80286 and .80386.  These directives inform
MASM that you are intentionally using advanced commands that require these
processors, and have not made a typing error.
   The actual body of the Square function is fairly simple.  First, the
address of the incoming value is retrieved from the system stack, and then
the data at that address is loaded onto the coprocessor's stack using the
FLd (Floating point Load) instruction.  Since this is a double precision
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value, QWord Ptr (Quad Word Pointer) is needed to indicate the size of the
data.  Had the incoming value been single precision, DWord Ptr (Double
Word Pointer) would be used instead.  One important feature of an 8087 or
software emulator is that a number may be converted from one numeric format
to another simply by loading it as one data type, and then saving it as
another.
   The next instruction, FMul (Floating point Multiply), multiplies the
value currently on the 8087 stack by the same address.  Since the original
value is still present, there's no need to make a new copy.  Next, the
destination address is placed into BX, and the result now on the 8087 stack
is stored there.  The trailing letter p in the FStp instruction specifies
that the value loaded earlier is to be popped from the coprocessor stack.
   A complete discussion of 8087 instructions and how the coprocessor stack
operates goes beyond what I can hope to cover here.  When in doubt about
what instruction is needed, I suggest that you code a similar sample in
BASIC, and then examine the code BASIC generates using CodeView.  There are
also several books that focus on writing floating point instructions in
assembly language.
   The last 8087 instruction is FWait, and it tells the 8088 to wait until
the coprocessor has finished, before continuing.  Because an 8087 is a true
coprocessor, it operates independently of the main 8088 CPU.  Once a value
is loaded and the 8087 is instructed to perform an operation, the 8087
returns immediately to the program that issued the instruction and
continues to process the numbers in the background.  If Square exited
immediately and BASIC read the returned value, there's a good chance that
the 8087 did not finish and the value has not yet been stored!  In that
case, whatever happened to be in memory at that time would be the value
that BASIC uses, which is obviously incorrect.
   Experienced 8087 programers know how long the various coprocessor
instructions take to complete, and with careful planning the number of
FWait commands can be kept to a minimum.  However, the code that BASIC
generates always finishes with an FWait.  Of course, there is no need to
wait when the emulator is in use.  In fact, an FWait is patched by BASIC
to do nothing (Mov AX,AX), rather than waste time invoking an empty
interrupt handler repeatedly.
   As shown, Square can be added to a Quick Library for use with either
QuickBASIC or BASIC PDS.  Unfortunately, the information link needs to
patch 8087 instructions is available only with BASIC PDS.  Therefore, the
following file is included in the libraries on the accompanying disk, to
supply the external data that LINK requires.

;FIXUPS.ASM, deciphered by Paul Passarelli

  FIARQQ  Equ 0FE32h
  FJARQQ  Equ 04000h
  FICRQQ  Equ 00E32h
  FJCRQQ  Equ 0C000h
  FIDRQQ  Equ 05C32h
  FIERQQ  Equ 01632h
  FISRQQ  Equ 00632h
  FJSRQQ  Equ 08000h
  FIWRQQ  Equ 0A23Dh

  Public  FIARQQ
  Public  FJARQQ
  Public  FICRQQ
  Public  FJCRQQ
  Public  FIDRQQ
  Public  FIERQQ
  Public  FISRQQ
  Public  FJSRQQ
  Public  FIWRQQ
End
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These values are added to the floating point instruction bytes during the
linking process, and the addition converts those statements into equivalent
BASIC floating point interrupt commands.  For example, the 8087 statement
Fld DWord Ptr [1234h] is represented in memory as the following series of
Hexadecimal bytes:

   9B D9 06 34 12

After LINK adds the value FIDRQQ (5C32h) to the first two bytes of this
command the result is:

   CD 35 06 34 12

And when disassembled back to assembler mnemonics, the CD35h displays as
Int 35h.  The three bytes that follow are always left unchanged, and they
specify the type of operation--DWord Ptr on a memory location--and the
address of that location.

Floating Point Comparisons

At the core of any sorting or searching routine is an appropriate
comparison function.  Previous chapters showed how to compare string data,
and as you can imagine comparing floating point values is much more
complex.  But now that you know how to tap into BASIC's floating point
routines it is almost trivial to effect a floating point comparison.  The
routines that follow let you compare either single- or double precision
values, by passing them as arguments.
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;COMPAREFP.ASM, compares floating point values

;WARNING: This file must be assembled using /e (emulator)

.Model Medium, Basic
  Extrn B$FCMP:Proc   ;BASIC's FP compare routine

.8087                 ;allow coprocessor instructions

.Code

CompareSP Proc, Var1:Word, Var2:Word

  Mov  BX,Var2        ;get the address of Var1
  Fld  DWord Ptr [BX] ;load it onto the 8087 stack
  Mov  BX,Var1        ;same for Var2
  Fld  DWord Ptr [BX]
  FWait               ;wait until the 8087 says it's okay
  Call B$FCMP         ;compare the values, (and pop both)

  Mov  AX,0           ;assume they're the same
  Je   Exit           ;we were right
  Mov  AL,1           ;assume Var1 is greater
  Ja   Exit           ;we were right
  Dec  AX             ;Var1 must be less than Var2
  Dec  AX             ;decrement AX to -1

Exit:
  Ret                 ;return to BASIC

CompareSP Endp

CompareDP Proc, Var1:Word, Var2:Word

  Mov  BX,Var2        ;as above
  Fld  QWord Ptr [BX]
  Mov  BX,Var1
  Fld  QWord Ptr [BX]
  FWait
  Call B$FCMP

  Mov  AX,0
  Je   Exit
  Mov  AL,1
  Ja   Exit
  Dec  AX
  Dec  AX

Exit:
  Ret

CompareDP Endp
End
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Like the Compare3 function shown in Chapter 8, CompareSP and CompareDP are
integer functions that return -1, 0, or 1 to indicate if the first value
is less than, equal to, or greater than the second.  Therefore, to use
these from BASIC you would invoke them like this:

   IF CompareSP%(Value1!, Value2!) = -1 THEN
     'the first value is smaller than the second
   END IF

And to test if the first is equal to or greater than the second you would
instead do this:

   IF CompareSP%(Value1!, Value2!) >= 0 THEN
     'the first value is equal or greater
   END IF

You can also use these functions from assembly language.  But if you do
this, I suggest a simple modification.  A comparison routine meant to be
called from another assembler routine would not generally return the result
in the registers.  Rather, it would leave the flags set appropriately for
a subsequent Ja or Jne branch.
   Fortunately, BASIC's B$FCMP routine already does this.  Therefore, you
will make a copy of the COMPAREF.ASM source file, and delete the six lines
between the call to B$FCMP and the Ret instruction.  You can also remove
the Exit: label if you like, although its presence causes no harm.  Of
course, the code itself is so simple that the best solution may be to
simply duplicate the same instructions inline in your routine.

EXPLOITING MASM'S FEATURES
==========================

Each example I have shown so far introduced another useful MASM feature.
For example, you learned how MASM lets you establish data memory with an
initial value, so you don't have to assign it explicitly.  But there are
several other features you should know about as well.  One is conditional
assembly.

CONDITIONAL ASSEMBLY

With conditional assembly you can specify that only certain portions of a
file are to be assembled.  This makes it easier to maintain two different
versions of a routine, for example one for near strings and one for far
strings.  If you had to create two separate copies of the source file, any
improvements or bug fixes that you add would have to be done twice.
   There are two ways that a section of code can be optionally included or
excluded.  One is to define a constant at the beginning of the source file,
and then test that constant using a form of IF and ELSE test.  Like BASIC,
MASM lets you define constant values using meaningful names.  The problem
with this method--albeit a minor one--is that you must alter the code prior
to assembling each version.  The example that follows shows how this kind
of conditional assembly is employed.

   MyConst = 1
    .
    .
   IF MyConst
          ;do whatever you want here
   ELSE   ;the ELSE is optional
          ;do whatever else you want here
   ENDIF
    .
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    .

The idea is that if you want the code that follows the IF test to be
assembled, you would use a non-zero value for MyConst.  If you wanted to
create an alternate version using the code within the optional ELSE block,
you would change the value to be zero.
   You can also use IFE (If Equal to zero) to test if a constant is zero.
And this brings up another interesting MASM feature.  There are actually
two types of constants you can define.  The constant MyConst shown above
is called a *redefinable* constant, because you can actually change its
value during the course of a program.  The other type of constant is
defined using the Equ (Equate) directive, and may not be changed:

   YourConst Equ 100

Redefinable constants are often used in repeating macros, and macros are
discussed later in this section.
   The other way to tell MASM that it is to assemble just a portion of the
file is with IFDEF.  IFDEF (If Defined) tests if a constant has been
defined at all, as apposed to comparing for a specific value.  The value
of this approach is that you can define a constant on the MASM command line
when you run it.  The first example below tells MASM to assemble the code
within the IFDEF block, and the second tells it to not to.

   C:\ASM\> masm program /def myconst ;

   C:\ASM\> masm program ;

Here's the portion of the routine that is being assembled conditionally:

   IFDEF MyConst
     ;do something optional here
   ENDIF

Likewise, IFNDEF (If Not Defined) tests if a constant has not been defined
when reversing the logic is more sensible to you.  MASM includes a great
number of such conditional tests, and only by reading that section of the
MASM manual will you become familiar with those that are the most useful.

COMMENT BLOCKS

Another useful MASM feature that I personally would love to see added to
BASIC is multi-line comment blocks.  The Comment command accepts any single
character you choose as a delimiter, and considers everything thereafter
to be comments until the same character is encountered.  Many programmers
use a vertical bar, because it is not a common character:

   Comment |
   This program is intended to blah blah blah, and it works
   by loading AX with blah blah blah.
   |

Besides avoiding the need to place an explicit semicolon on each comment
line, this also makes it easy to remark out large sections of code while
you are debugging a routine.

QUOTED STRINGS

Yet another useful feature is MASM's willingness to use either single or
double quotes to indicate ASCII text and individual characters.  In BASIC,
if you want to specify a double quote you must use CHR$(34)--it simply is
not legal to use """, where the quote in the middle is the character being
defined.  [With the introduction of VB/DOS triple quotes may now be used
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for this purpose.]  If you need to define a double quote simply surround
it with apostrophes like this:

   SomeData DB '"'
   Mov  AH, '"'

Or you can place a single quote within double quotes like this:

   Add DL, "'"

MASM can use either convention as needed, which is a feature I personally
like a lot.

LENGTH AND ADDRESS SELF-CALCULATION

Whenever MASM sees the dollar sign ($) operator it interprets that to mean
*here*, or the current address.  This can be used both for data and code,
though it is more common with data as the example below illustrates.

   .Data
     Descriptor DW MsgLen, Address
     Message    DB "This is a message."
     Address =  Offset Message
     MsgLen  =  $ - Address

The expression $ - Address tells the assembler to take the current data
address, and subtract from that the address where Message begins.  This is
a very powerful concept because it frees the programmer from many tedious
calculations.  In particular, if the string contents are changed at a later
time, the new length is recalculated by MASM automatically.

DEFINING DATA STRUCTURES

To assist you in manipulating data structures, MASM offers the Struc
directive.  This is identical to BASIC's TYPE statement, whereby you define
the organization of a collection of related data items.  The example below
shows how to define a custom data structure using BASIC, followed by an
equivalent MASM Struc definition.

BASIC:

   TYPE MyType
     LastName  AS STRING * 15
     FirstName AS STRING * 12
     ZipCode   AS STRING * 5
     RecordPtr AS LONG
   END TYPE
   DIM MyVar AS MyType

MASM:

   Struc MyStruc
     LastName  DB 15 Dup (?)
     FirstName DB 12 Dup (?)
     ZipCode   DB  5 Dup (?)
     RecordPtr DD  ?
   MyStruc Ends
   MyVar DB Size MyStruc Dup (?)

Like BASIC, defining a structure merely establishes the number and type
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of data items that will be stored; memory is not actually set aside until
you do that manually.  In BASIC, you must use DIM to establish the memory
that will hold the TYPE variable.  In assembly language you instead use DB
in conjunction with the Size directive, to set aside the appropriate number
of bytes.
   Each component of the Structure is defined using an identifying name and
a corresponding data type.  Then, whenever a structure member is referenced
in your assembler routine, MASM replaces it with a number that shows how
far into the structure that member is located.  MASM uses the same syntax
as BASIC, with a period between the data name and the structure identifier.
Here are a few examples:

   Mov  AL,[BX+MyVar.LastName]   ;same as Mov AL,[BX+15]
   Les  DI,[MyVar.RecordPtr]     ;loads ES:DI from RecordPtr

MINIMIZING DGROUP USAGE
=======================

In many cases you will store the variables your routines need in DGROUP
using the .Data directive.  As with static subprograms and functions in
BASIC, this data will not change between subroutine calls.  But this also
means that these variables are combined into the same 64k segment that is
shared with BASIC.  When there are many variables or many different
routines each with their own variables, this can significantly reduce the
amount of near memory available to BASIC.  There are two effective
solutions to this problem.

LOCAL VARIABLES

One way to reduce the DGROUP impact of many variables is to place some of
them onto the system stack.  MASM lets you do this automatically with its
Local directive, or you can do it manually by subtracting the requisite
number of bytes from SP.  Of course, there is only so much room on the
stack, so this approach is most useful when there are many routines and
each has less than 1K or so of data.  Stack variables are also useful when
programming for OS/2 or Windows.  These operating systems require that all
of your procedures be reentrant so static variables cannot be used.
   The example below creates room for fifty words of local storage on the
stack, and then clears the variables to zero.

   Routine Proc Uses ES DI, Param1:Word, Param2:Word
     Sub  SP,100         ;50 words = 100 bytes
     Push SS             ;assign ES from SS
     Pop  ES
     Mov  DI,SP          ;point DI to the start of storage
     Xor  AX,AX          ;fill with zeros
     Mov  CX,50          ;clear fifty words
     Rep  Stosw          ;store AX CX times at ES:[DI]
      .                  ;the routine continues
      .
     Add  SP,100         ;restore SP to what it had been
     Ret                 ;return to BASIC
   Routine Endp

MASM can also do this automatically for you using Local like this:

   Routine Proc Uses ES DI, Param1:Word, Param2:Word
     Local Buffer [100]:Byte
     Lea  DI,Buffer      ;clear the stack variables here
      .                  ;the routine continues
      .
     Ret                 ;return to BASIC
   Routine Endp
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As you can see, Local lets you refer to the start of the local stack data
area by name.  Notice how Lea is required here, because the address of
Buffer is expressed as an offset from BP.  That is, MASM translates the
Lea instruction to Lea DI,[BP-100].  You cannot use Mov DI,Offset Buffer
because Buffer's address (which is based on the current setting of the
stack pointer) is not known when the routine is assembled or linked.
   In this case only one local block is defined, so you could also use Mov
DI,SP to set DI to point to the start of the data.  It is not strictly
necessary to clear the stack space before using it, but it is important to
understand that whatever junk happened to be in memory at that time will
still be there after using Local.
   It is also important to be aware of a number of bugs with the Local
directive.  I have found that limiting the use of Local to a single set of
data as shown here is safe with all MASM versions through 5.1.  Using
multiple Local directives defined with data structures can result in the
wrong part of the stack being written to when a structure member is
accessed by name.

STORING DATA IN THE CODE SEGMENT

Another time-honored technique for conserving DGROUP memory is to place
selected variables into the code segment.  In most cases storing data for
a routine in the code segment will make your programs slightly larger and
slower, because of the need for an added CS: segment override.  But when
large amounts of data must be accommodated, this can be very valuable
indeed.  One advantage to using the code segment is that you can establish
initial values for the data, which is not possible when using the stack.
   As an example of this technique, I have written a string function called
Message$ that stores a series of messages in the code segment.  In this
case only a single CS: segment override is needed, so the impact of using
the code segment for data is insignificant.  Message$ is designed to be
declared and invoked as follows:

   DECLARE FUNCTION Message$(BYVAL MsgNumber%)
   Result$ = Message$(AnyInt%)

Message$ is table driven, which makes it simple to modify the routine to
change or add messages without having to make any changes to the function's
structure.  As shown here, Message$ is designed to return the name of a
weekday, given a value between one and seven.  You can easily modify it to
return other strings of nearly any length.
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.Model Medium, Basic
  Extrn B$ASSN:Proc         ;BASIC's assignment routine

.Data
  Descriptor DD 0           ;the output string descriptor
  Null$      DD 0           ;use this to return a null
                            ;  (needed for BASIC PDS only,
.Code                       ;  but okay with QuickBASIC)

Message Proc Uses SI, MsgNumber:Word

  Mov  SI,Offset Messages   ;point to start of messages
  Xor  AX,AX                ;assume an invalid value

  Mov  CX,MsgNumber         ;load the message number
  Cmp  CX,NumMsg            ;does this message exist?
  Ja   Null                 ;no, return a null string
  Jcxz Null                 ;ditto if they pass a zero

Do:                         ;walk through the messages
  Lods Word Ptr CS:0        ;load and skip over this message's length
  Dec  CX                   ;show that we read another
  Jz   Done                 ;this is the one we want

  Add  SI,AX                ;skip over the message text
  Jmp  Short Do             ;continue until we're there

Done:
  Or   AX,AX                ;are we returning a null?
  Jz   Null                 ;yes, handle that differently
  Push CS                   ;no, pass the source segment

Done2:
  Push SI                   ;and the source address
  Push AX                   ;and the source length

  Push DS                   ;pass the destination segment
  Mov  AX,Offset Descriptor ;and the destination address
  Push AX
  Xor  AX,AX                ;0 means assign a descriptor
  Push AX                   ;pass that as well

  Call B$ASSN               ;let B$ASSN do the dirty work
  Mov  AX,Offset Descriptor ;show where the output is
  Ret                       ;return to BASIC

Null:
  Push DS                   ;pass the address of Null$
  Mov  SI,Offset Null$
  Jmp  Short Done2

Message Endp

;----- DefMsg macro that defines messages
DefMsg Macro Message
  LOCAL MsgStart, MsgEnd    ;;local address labels
  NumMsg = NumMsg + 1       ;;show we made another one
  IFB <Message>             ;;if no text is defined
    DW 0                    ;;just create an empty zero
  ELSE                      ;;else create the message
    DW MsgEnd - MsgStart    ;;first write the length
    MsgStart:               ;;identify the starting address
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      DB Message            ;;define the message text
    MsgEnd Label Byte       ;;this marks the end
  ENDIF
Endm

Messages Label Byte         ;the messages begin here
NumMsg = 0                  ;tracks number of messages
                            ;DO NOT MOVE this constant
DefMsg "Sunday"
DefMsg "Monday"
DefMsg "Tuesday"
DefMsg "Wednesday"
DefMsg "Thursday"
DefMsg "Friday"
DefMsg "Saturday"
End

After declaring BASIC's B$ASSN routine as being external, Message$ defines
two string descriptors in the Data segment.  The first is used for the
function output when returning a normal message, and the second is used
only when returning a null string.  In truth, the need for a separate
output descriptor and the slight added steps to detect the special case of
a null output string is needed only with BASIC PDS far strings.  And this
brings up an important point.
   It is impossible to write one assembly language subroutine that can work
with both QuickBASIC and BASIC PDS far strings using the normal, documented
methods.  To create a string function for use with QuickBASIC and PDS near
strings, you define and fill in a string descriptor in DGROUP, and assign
its address in AX before returning to BASIC.  And to return a far string
as a function for PDS requires calling the internal STRINGASSIGN routine
that Microsoft provides with PDS.  STRINGASSIGN works with both near and
far strings in PDS, but is not available in QuickBASIC.
   The trick is to use the *undocumented* name B$ASSN, which is really the
same thing as STRINGASSIGN.  The big difference, though, is that B$ASSN is
available in all versions of BASIC 4.0 and later.  When near strings are
used the B$ASSN routine is extracted from the near strings library.  When
linking with far strings a different version is used, extracted by LINK
from the far strings library.  This is a powerful concept to be sure, and
one we will use again for other examples later on in this chapter.
   Message$ begins by loading SI with the starting address of a table of
messages.  These messages are located at the end of the source file in the
code segment, and each is preceded with the length of the text.  Although
it may not be obvious from looking at the source listing, the message data
is actually structured like this:

   DW 6
   DB "Sunday"
   DW 6
   DB "Monday"
    .
    .

Next, AX is cleared to zero just in case the incoming string number is
illegal.  Later in the program AX holds the length of the output string;
clearing it here simply makes the program's logic more direct.
   CX is then loaded with the message number the caller asked for.  If CX
is either higher than the available number of messages or zero, the program
jumps to the code that returns a null string.  Otherwise, a small loop is
entered that walks through each message, decrementing CX as it goes.  When
CX reaches zero, SI is pointing at the correct message and AX is holding
its length.  Otherwise, the current length is added to SI, thus skipping
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over that data.
   Notice the unusual form of the Lodsw statement, to allow it to work with
a CS: override.  MASM has a number of quirks that are less than intuitive,
and this is but one of them.  Normally you would use either Lodsb or Lodsw,
to indicate loading either a byte into AL or a word into AX.  But when you
use a segment override MASM requires omitting the "b" or "w" Lods suffix,
and you must state Byte Ptr or Word Ptr explicitly.  Then, a dummy argument
must be placed after the override colon.

MASM MACROS

The last new feature this listing introduces is the use of macros.  The
most basic use of MASM macros is to define a block of code once, and then
repeat it multiple times with a single statement.  This is not unlike
keyboard macro programs such as Borland's SuperKey, that let you assign a
string of text to a single key.  For example, you could press Alt-S and
SuperKey will type "Very truly yours", five Enter keys, and then your name.
   MASM macros also offer many other interesting and useful capabilities,
including the ability to accept arguments.  [I should mention that the main
point of the DefMsg macro is to make this function easy to modify, so you
can create other, similar string functions from this same routine.]  Before
attempting to explain the DefMsg (Define Message) macro I designed for use
with Message$, let's consider some macro basics.
   Say, for example, you find that a particular routine needs to push the
same five registers many times during the course of a procedure.  To
simplify this task you could define a macro--perhaps named PushRegs--that
performs the code sequence for you.  Such a macro definition would look
like this:

   PushRegs Macro
     Push AX
     Push BX
     Push SI
     Push DS
     Push ES
   PushRegs Endm

Now, each time you want to execute this series of instructions you would
simply use the command PushRegs.  Please understand that a macro is not the
same as a called subroutine.  The assembler still places each Push command
in sequence into your source code each time the macro is invoked.  But a
simple macro like this can reduce the amount of typing you must do, and
minimize errors such as pushing registers in the wrong order.  And in some
cases Macros also make your code easier to read.
   As I mentioned, a MASM macro can accept arguments, and it can even be
designed to accept a varying number of them.  If you need to push three
registers but which ones may change, you would define PushRegs like this:

   PushRegs Macro Reg1, Reg2, Reg3
     Push Reg1
     Push Reg2
     Push Reg3
   Endm

Then to push AX, SI, and DI you would invoke PushRegs as follows:

   PushRegs AX, SI, DI

Of course, a corresponding PopRegs macro would be defined similarly.  Once
a macro has been defined you can pass any legal argument to it.  For
example, you could also use this:

   PushRegs AX, Word Ptr [BP-20], IntVar
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Here, you are pushing AX, the word 20 bytes below where BP points to on
the stack, and the integer variable named IntVar.
   A useful enhancement to this macro would let you pass it a varying
number of parameters.  The PushM macro that follows accepts any number of
arguments (up to eight), and pushes each in sequence.

   PushM Macro A,B,C,D,E,F,G,H     ;;add more place-holders to suit
     IRP CurArg, <A,B,C,D,E,F,G,H> ;;repeat for each argument
       IFNB <CurArg>               ;;if this arg is not blank
         Push CurArg               ;;push it
       ENDIF
     Endm                          ;;end of repeat block
   Endm                            ;;end of this macro

From this you can create a complementary PopM macro by changing the name,
and also changing the Push instruction to Pop.
   The IRP command works much like a FOR/NEXT loop in BASIC, and tells MASM
to repeat the following statements for each argument that was given.  IFNB
(If Not Blank) then tests each argument to see if it was in fact present
in the incoming list of parameters.  In this case, CurArg assumes the name
of the argument, and the Push instruction is expanded to specify that name.
   There is no disputing that the syntax of a MASM macro is confusing at
best.  Having to enclose some arguments in angle brackets but not others
requires frequent visits to the MASM manual.  Further, a MASM macro is
virtually impossible to debug.  If you write a macro incorrectly or create
a syntax error, MASM reports an error at the line where the macro was
invoked, rather than at the line containing the error in the macro.  It is
not uncommon to receive a number of errors all pointing to the same source
line, with no indication whatsoever where the error really is.
   Now consider how the DefMsg macro operates.  DefMsg begins by defining
a single incoming parameter named Message.  Two local labels--MsgStart and
MsgEnd--are defined, and these are needed so MASM can calculate the length
of the messages.  Although labels within a macro do not have to be declared
as local, you would get an error if the macro were used more than once.
Like BASIC, the assembler requires that each label have a unique name.  By
using local labels MASM generates a new, unique internal name for each
macro invocation, instead of the actual label name given.
   The next statement increments a MASM variable named NumMsg.  To avoid
an error caused by calling Message$ with an invalid message number, it
compares the number you pass to the number of messages that are defined.
This test occurs in the fourth line of the procedure, at the Cmp CX,NumMsg
statement.  NumMsg is a constant, except it may be redefined within the
routine.  (When a constant is assigned using the word Equate, its value
may not be changed by either your source code or by a macro.)  But when a
variable is defined using an equals sign (=), MASM allows it to be altered
as it assembles your program.  Understand that the resulting number is
added to your program as a constant.  However, its value can be changed
during the course of assembly.  Therefore, each time DefMsg is invoked, it
increments NumMsg.  MASM places the final value into the Cmp instruction,
as if you had defined it using a fixed known value.
   The IFB (If Blank) test checks to see if DefMsg was given a parameter
when it was invoked.  In most cases you will probably want to define a
series of consecutive messages.  As it is used here, seven different day
names are returned in sequence.  But there may be times when you want to
leave a particular message number blank.  For example, you could create a
series of messages that correspond to BASIC's error numbers.  BASIC file
error numbers range from 50 through 76, but there are no messages numbers
60, 65, or 66.  You could therefore leave those blank, and invoke a
modified copy of Message$ like this:

   CALL DOSMessage$(51 - ERR)

When DefMsg is used with no argument, it merely creates a zero word at
that point in the code segment.  Otherwise, the length of the message is
stored, followed by the message text.  The statement DW MsgEnd - MsgStart
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is replaced with the difference between the addresses, which MASM
calculates for you.  This is similar to the earlier example that showed how
a dollar sign ($) can simplify defining strings that may change.
   The last macro I will describe here is Rept, which means "Repeat the
following statements a given number of times".  In the simplest sense, Rept
could be used to generate a series of the same instructions:

   Rept 100
     Xor  AX,AX
     Push AX
     Call SomeProc
   Endm

A Rept macro is not invoked by name; rather, it is added inline to a
program (or included within a macro that is called by name).  In most cases
you would use a coding loop to repeat a block of code, since a Rept macro
actually generates the same code repeatedly in the program.  But there are
situations where timing is very critical, and a loop is always somewhat
slower than a sequence of inline instructions.
   Another good use for Rept is in conjunction with redefinable equates,
such as this example which defines the letters of the alphabet:

   Alphabet:
   Char = 0
   Rept 26                ;;do this 26 times
     DB "A" + Char        ;;define ASC("A") + Char
     Char = Char + 1      ;;increment Char
   Endm

Although the MASM manual states that you must use double semicolons for
remarks within a macro as shown here, I have used a single semicolon
without problems.
   There are other macro commands and features I will not describe here,
because I have not found them to be particularly useful.  However, macros
can be recursive, multiple macros may be nested, and even redefined on the
fly.  I urge you to refer to the documentation that Microsoft provides for
more information on those advanced features.

SEGMENT NAMING
==============

Aside from the short PrtSc example shown earlier in this chapter, we have
relied upon MASM's simplified segmentation directives to spare us from the
nuisance of defining and naming segments.  Indeed, when writing routines
that will be added to BASIC it is rarely necessary to do this manually, so
why bother?
   One place where naming segments explicitly is useful is when you have
many internal procedures that are never called from BASIC directly.  If,
for clarity and organization reasons, you decide to store those routines
in different files, you still may want to access the routines using near
calls.  Since a near call is two bytes shorter than a far call and also
operates slightly faster, this can make a difference when there are many
Call commands within the routines.
   As LINK pulls all of the various pieces of your program together from
separate object and library files, it reads the segment names and combines
those with the same name.  Thus, a routine in one source file can call a
routine in a different file, and LINK will place both routines into the
same segment if they use the same segment name.  This is of course needed
to ensure that the called routine is reachable by the caller (within 64K).
   All of the standard segment names that Microsoft recommends are listed
in the MASM manual, along with instructions for creating your own names.
Therefore, I won't belabor that here.
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ACCESSING BASIC INTERNALS
=========================

In preceding sections you learned that it is possible--even desireable--
to call BASIC's internally routines directly.  Besides those that have
already been described, there are several other useful routines that can
be accessed from assembly language.  One of these is B_ONEXIT, which lets
you tap into BASIC's termination procedure.
   When a BASIC program ends by running out of statements, or by using END,
STOP, or SYSTEM, BASIC makes a call to a central routine that in turn tells
DOS to end the program.  If a fatal error occurs and there is no ON ERROR
handler, BASIC also calls a routine that prints an error message.  B_ONEXIT
lets you tell BASIC the segment and address of a routine you want called
as part of the termination process.  B_ONEXIT is supported only in
QuickBASIC version 4.5 and BASIC PDS.
   One reason you might want to use B_ONEXIT is to ensure that interrupts
taken over by your assembler routine are restored properly.  Taking over
interrupts will be described later in the section "Handling Interrupts."
Here's a program fragment showing how B_ONEXIT is set up and called:

Extrn B_ONEXIT:Proc     ;declare B_ONEXIT as external
Push CS                 ;pass your code segment
Mov  AX,Offset TermProc ;and the address of the routine
Push AX                 ;  that is to be called
Call B_ONEXIT           ;register it with B_ONEXIT
  .
  .

TermProc Proc           ;this is the routine to be called
  .                     ;do whatever you need to here
  .
  Ret                   ;don't forget to return!
TermProc Endp

BASIC's INTERNAL DATA

There are two internal variables BASIC maintains that you will find useful.
One is the current DEF SEG setting, and it is stored in the integer
variable named B$SEG.  The other is the current color value that is used
by PRINT and CLS.  The foreground and background colors are stored combined
in a single word named B$FBColors.  The reason these are useful is because
you may want to change and then restore them from inside a BASIC
subprogram.  Much of the benefit of reusable programming is lost if you
cannot put things back to the way they were originally.
   For example, if you have written a BASIC routine that prints an error
message in bright red at the bottom of the screen, you will need to use a
subsequent COLOR command to put the color back to what it had been.  But
what color do you use?  The same holds true for a routine that changes the
current DEF SEG setting, perhaps before loading or saving a file using
BLOAD or BSAVE.  If you cannot return that to its original value, extra
work is needed in the main program each time the routine is used.
   Access to B$SEG requires a single assembler instruction, as shown in the
complete GetSeg function shown following.  Declare and use GetSeg like
this:

   DECLARE FUNCTION GetSeg%()
   SavedSeg = GetSeg%
    .
    .
   DEF SEG = SavedSeg

;GETSEG.ASM
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.Model Medium, Basic

.Data
  Extrn B$Seg:Word

.Code
GetSeg Proc

  Mov  AX,B$Seg   ;load the value from B$Seg
  Ret             ;return with the function output in AX

GetSeg Endp
End

Because BASIC combines its colors into a single word, a few extra steps
are needed to separate them.  Call GetColor like this:

   CALL GetColor(FG%, BG%)

FG% and BG% are returned to you holding the current foreground and
background color values.  Here's how GetColor works:

;GETCOLOR.ASM
.Model Medium, Basic
.Data
  Extrn B$FBColors:Word

.Code

GetColor Proc, FG:Word, BG:Word

  Mov  DX,B$FBColors    ;load the combined colors
  Mov  AL,DL            ;copy the foreground portion
  Cbw                   ;convert it to a full word
  Mov  BX,FG            ;get the address for FG%
  Mov  [BX],AX          ;assign FG%
  Mov  AL,DH            ;load the background portion
  Mov  BX,BG            ;get the address for BG%
  Mov  [BX],AX          ;assign BG%
  Ret                   ;return to BASIC

GetColor Endp
End

One unfortunate problem is that GetColor cannot be used in the editing
environment.  When BASIC compiles a PEEK or POKE statement, it generates
inline code that loads ES with the segment from B$SEG, and then reads or
writes the data at the specified address.  Therefore, the current segment
must be available to BASIC routines that use PEEK or POKE in a Quick
Library.  But the color values are accessed only by routines in BASIC's
runtime library, so the information is not made available to procedures in
a Quick Library.  Because of this issue, the GetColors routine is provided
on the accompanying disk only in the BASIC.LIB and BASIC7.LIB linking
libraries.
   There are several other internal data items you may want to know about,
and one that I have found useful is called __osversion.  This byte holds
the major DOS version number; for example, if DOS 3.x is running then
__osversion will hold the value 3.  Even though it is trivial to query DOS
for the number, why bother since you can get it this way with a single Mov.

BASIC's INTERNAL ROUTINES
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Besides the procedures and internal data I have described previously, there
are many others you will no doubt find useful.  You can, for example, call
SETMEM prior to claiming memory from DOS.  And although the B$ASSN routine
can assign any type of data from any other type including strings, a
simplified version is also present to assign to and from conventional
strings only.
   As you have seen, the beauty of using BASIC's own routines is that
identical code can be used for both near and far strings.  In either case,
the string descriptors are known to reside in DGROUP, and the internal
routines are designed to operate on those descriptors.  You don't even have
to know which of the string libraries (near or far) is being used.
   There are also several math routines that can be accessed directly,
including those that multiply, divide, and compare long integers.  Even if
you know how to do that, it's always easier to call BASIC's routines.  This
result in less code as well.  And if you need to read the current cursor
position, you can access CSRLIN and POS(0) directly.  In some cases, you
can't read that information from the BIOS, so calling BASIC is the only
reliable way to get it.
   The following section documents the BASIC internal routines that I have
found useful when called from assembly language.  I have purposely omitted
routines that handle BASIC commands such as PRINT, INKEY, GET, and PUT.
Even though several of these were described throughout the course of this
book, they have little relevance within a called assembler routine.
   BASIC's internal services that follow are listed in alphabetical order,
based on their call names.  Be sure to declare them as external procedures
in your routine's source code.

B$CPI4: Compare Two Long Integers

B$CPI4 expects two long integer arguments to be placed onto the stack by
value, and it returns the result of its comparison in the Flags register.
For example, to see if Var1 is greater than Var2 you'd use code like this:

   Push Word Ptr [Var1+2]   ;first push Var1's high word
   Push Word Ptr [Var1]     ;and then its low word
   Push Word Ptr [Var2+2]   ;next do the same for Var2
   Push Word Ptr [Var2]
   Call B$CPI4              ;compare them
   Jg   Label               ;Var1 is indeed greater

Remember that long integers are compared by BASIC on a signed basis, so
you should use Jg or Jl rather than Ja or Jb.  The letters CPI4 stand for
Compare Integer 4 bytes.

B$CSRL: CSRLIN Function

B$CSRL is called with no arguments, and it returns BASIC's current row in
AX as follows:

   Call B$CSRL
    .                       ;do what you want with AX

B$DVI4: Divide Two Long Integers

Like B$CPI4, B$DVI4 (Divide Integer 4 bytes) expects the incoming integer
arguments to be passed by value on the stack.  The result is then returned
in DX:AX as a long integer:

   Push Word Ptr [Var2+2]   ;always push the high word first
   Push Word Ptr [Var2]     ;then the low word
   Push Word Ptr [Var1+2]   ;ditto for Var2
   Push Word Ptr [Var1]
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   Call B$DVI4              ;divide them
    .                       ;now DX:AX holds Var1 \ Var2

Notice that with B$DVI4, the divisor is pushed first onto the stack,
followed by the dividend.

B$FPOS: POS(0) Function

Even though the argument passed to BASIC's POS(0) is ignored, it is still
expected mainly for historical reasons.  Therefore, you must push
something--anything--onto the stack before calling B$FPOS:

   Push AX
   Call B$FPOS
    .                       ;now AX holds the column

As with all of BASIC's functions that return an integer, B$FPOS returns
the current column in AX.  The leading F in FPOS stands for Function.

B$FRI2: FRE() Function

B$FRI2 (Free Integer 2 bytes) requires an incoming integer argument by
value on the stack, and for safety you should use this for the -1 and -2
variations only.
   Using -1 reports the total amount of memory that is available to BASIC,
so you might use this before calling SETMEM to release memory for your own
uses.  Although B$FRI2 uses an integer for an argument, it returns a long
integer in DX:AX.  You can also use an argument of -2 to see how much stack
space is available:

   Mov  AX,-2
   Push AX
   Call B$FRI2
   .              ;now DX:AX holds the available stack space

B$RDIM: REDIM Statement

In most cases you will probably not find the ability to call REDIM directly
very valuable.  One notable exception is explained later in the section
entitled "Reading the Array Descriptor," where I show how to size and then
load a string array with all of the files that match a given search
specification.
   B$RDIM is fairly complicated to set up and call, because it accepts a
varying number of parameters.  This is needed because BASIC accepts a
variable number of dimensions, and the same routine is used for all cases.
The following example shows how to prepare and call this routine when
resizing a one-dimensional array.

   Mov  AX,LBound           ;first pass the lower bound value
   Push AX
   Mov  AX,UBound           ;then pass the upper bound
   Push AX
   Mov  AX,ElementLength    ;next the length of each element
   Push AX
   Mov  AX,Features         ;see the accompanying text for
   Push AX                  ;  information on these two items
   Mov  AX,Offset ArrayDescriptor
   Push AX
   Call B$RDIM              ;call REDIM to do it

Chapter 2 described the array descriptor in detail, including the Features
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word.  However, you must not use REDIM to create a new array where none
existed before.  Instead, you will read the current features from the
existing array descriptor, and pass the same values on again to B$RDIM.
This will be shown in context momentarily.

B$STDL: String Delete

You can call B$STDL to delete a string or string array element, and it
requires less code than assigning the string from another, null string.
The single argument is the address of a string descriptor:

   Mov  AX,Offset Descriptor
   Push AX
   CALL B$STDL

B$SETM: SETMEM Function

B$SETM expects a long integer argument by value on the stack; if the value
is negative then that much memory is released back to DOS, and thus taken
from your BASIC program.  However, you should call B$SETM again later with
a positive value when you are finished, so the BASIC program can reclaim
that memory.  Since SETMEM is a function, B$SETM also returns the amount
of memory currently available in the DX:AX register pair.

B$SASS: String Assign

Where B$ASSN is capable of assigning any mix of conventional and fixed-
length strings, B$SASS works with conventional strings only.  However, it
requires only two parameters instead of six:

   Mov  AX,Offset Source$
   Push AX
   Mov  AX,Offset Destination$
   Push AX
   CALL B$SASS

Note that if the destination string is not null, its current contents are
released after assigning it from Source$.  This is the normal way that
strings are assigned, and B$ASSN also works like this.

Finding Other Routines

The routines just described are those that I personally have found to be
useful.  Discovering other routine names and how they are called is in
fact quite simple.  If you wanted to access, say, COMMAND$, you would write
a one-line BASIC program, and then examine the code that is generated using
Microsoft CodeView.  CodeView lets you see which and how many parameters
are being passed as well as the routine name being called, making
exploration both easy and fun.
   BASIC string functions such as COMMAND$ and ENVIRON$ return the DGROUP
address of the result string descriptor in AX, just like an assembly
language function you would write.  If you do call a built-in BASIC
function, be sure to also pass its output descriptor to B$STDL (String
Delete) when you are done with it.  Otherwise, the string space it uses
[and the temporary output descriptor] will never be released.

READING THE ARRAY DESCRIPTOR

Chapter 2 described the BASIC array descriptor in detail, and discussed
each of the components it contains.  Understanding how an array descriptor
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works opens many opportunities to assembly language programmers, because
it lets you write routines that accept an array passed with empty
parentheses.  This was shown in the Sort routine introduced in Chapter 8,
although the techniques used there were not detailed.
   As an example of the possibilities direct access to an array descriptor
offers, I will show a subroutine that accepts a file specification, and
returns a string array filled with the names of all matching files.
GetNames calls upon three internal BASIC routines: B$FLEN, B$RDIM, and
B$ASSN.  B$FLEN returns the length of a string, and is used here to know
how long the file specification is.  B$RDIM redimensions the passed string
array to the correct number of elements, based on the number of matching
file names that are found.  B$ASSN then assigns each element to those
names.
   This next short BASIC program shows how GetNames is set up and used.

DECLARE FUNCTION GetNames%(Array$())
REDIM Array$(1 TO 1)            'use REDIM, not DIM
Array$(1) = "*.*"               'any valid spec is okay
NumFiles% = GetNames%(Array$()) 'load all names at once

IF NumFiles% = 0 THEN           'were any files found?
  PRINT "No matching files."    'no, say so and end
  END
END IF

FOR X% = 1 TO NumFiles%         'yes, print each name
  PRINT Array$(X%)
NEXT
PRINT NumFiles; "matching files were found"

As you can see, you must establish the array initially using REDIM.  To
avoid the need for an extra parameter, the file specification is passed in
the first element of the array.  Furthermore, GetNames returns the number
of files that matched as an integer result.  If no files were encountered,
GetNames leaves the array as it was.
   When GetNames is called, the array may already contain other data, and
it can have any legal upper and lower bounds.  As long as the lowest
element number contains a valid search specification, the spec can be found
and the array will be redimensioned starting at element number one.  The
GETNAMES.BAS demonstration program on the accompanying disk adds to this
short example by sorting the names after they are read.
   A complete description of how GetNames works follows this source
listing.
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;GETNAMES.ASM, loads a group of file names into an array

.Model Medium, Basic
  Extrn B$RDIM:Proc       ;this redimensions an array
  Extrn B$ASSN:Proc       ;this assigns a string
  Extrn B$FLEN:Proc       ;this returns a string's length

  DTAType Struc           ;define the DOS DTA structure
    Intern  DB 21 Dup (?) ;this is used by DOS internally
    FAttr   DB ?          ;this holds the file attribute
    FTime   DW ?          ;this holds the file time
    FDate   DW ?          ;this holds the file date
    FSize   DD ?          ;this holds the file size
    FName   DB 13 Dup (?) ;this holds each file name
  DTAType Ends

.Data
  DTA DB Size DTAType Dup (?) ;DOS places file info here
  NumFiles   DW 0             ;how many names were read
  SpecLength DW 0             ;remembers file spec length

.Code

GetNames Proc Uses SI DI, Array:Word

  Local Buffer[80]:Byte  ;copy the spec here, add a zero

;-- Create a local Disk Transfer Area for our own use.
  Lea  DX,DTA            ;show DOS where the new DTA goes
  Mov  AH,1Ah            ;set DTA service
  Int  21h               ;call DOS to do it

;-- Read the array descriptor, get the search spec from the first element,
;   then copy it to the stack appending a CHR$(0) byte (ASCIIZ string).
  Mov  SI,Array          ;get address of array descriptor
  Mov  BX,[SI+0Ah]       ;now BX holds adjusted offset
  Mov  AX,4              ;each element is four bytes long
  Mul  Word Ptr [SI+10h] ;multiply by first element number
  Add  BX,AX             ;BX holds first element's address

  Push DS                ;push source segment and address
  Push BX                ;  for call to B$ASSN later on
  Xor  AX,AX             ;tell B$ASSN source is descriptor
  Push AX                ;using a value of zero

  Push BX                ;pass descriptor addr to B$FLEN
  Call B$FLEN            ;this returns the length in AX
  Mov  SpecLength,AX     ;save length locally for a moment

  Lea  AX,Buffer         ;get the destination address
  Push SS                ;pass the segment to assign into
  Push AX                ;and then the address
  Push SpecLength        ;we're assigning a fixed length
  Call B$ASSN            ;copy the file spec to the stack

  Lea  BX,Buffer         ;retrieve start address of spec
  Mov  DX,BX             ;copy to DX where DOS expects it
  Add  BX,SpecLength     ;point just past end of string
  Mov  Byte Ptr [BX],0   ;and append trailing zero byte

;-- Count the number of names that match the search specification.
  Mov  AH,4Eh            ;specify Find First matching name
  Mov  CX,00100111b      ;this matches any type of file
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  Xor  BX,BX             ;BX counts the number of names

CountNames:
  Int  21h               ;see if there's a matching name
  Jc   DoneCount         ;carry set means no more names
  Inc  BX                ;otherwise, we found another one
  Mov  AH,4Fh            ;find the next matching name
  Jmp  CountNames        ;continue until there are no more

DoneCount:
  Mov  NumFiles,BX       ;remember how many files we found
  Or   BX,BX             ;did we fail on the first name?
  Jz   Exit              ;yes, return a count of zero

;-- Now that we know how many file names there are, REDIM the string array.
  Mov  AX,1              ;specify an LBOUND of 1
  Push AX                ;pass that on to B$RDIM
  Push BX                ;and pass on the new UBOUND value
  Mov  AL,4              ;each descriptor takes four bytes
  Push AX                ;pass that on too

  Mov  BX,Array          ;get array descriptor again
  Mov  AX,[BX+08]        ;load the existing Features word
  Push AX                ;use that again for this call
  Push BX                ;show where array descriptor is
  Call B$RDIM            ;finally, redimension the array

;-- This is the main processing loop that reads and assigns each name
;   that is found.
  Mov  AH,4Eh            ;specify Find First matching name
  Lea  DX,Buffer         ;load address of file spec again
  Mov  BX,Array          ;get array descriptor address too
  Mov  BX,[BX+0Ah]       ;reload the adjusted offset value
  Add  BX,4              ;BX is first descriptor address

Do:
  Mov  CX,00100111b      ;specify any type of file again
  Int  21h               ;see if there's a matching name
  Jc   Exit              ;carry set means no more names
  Push BX                ;otherwise, save the address

;-- Search for the zero that marks the end of this name.
  Mov  DI,Offset DTA.FName
  Push DS                ;in anticipation of call below
  Push DI                ;DI too while the address handy

  Push DS                ;ensure that ES=DS
  Pop  ES
  Mov  CL,13             ;search up to 13 characters
  Repne Scasb            ;do the search
  Mov  AL,CL             ;save the remainder in AL

  Mov  CL,13             ;calc number of chars to copy
  Sub  CL,AL             ;the answer is now in CX
  Dec  CX                ;don't include the zero byte
  Push CX                ;pass that on to B$ASSN

  Push DS                ;show where destination string is
  Push BX
  Xor  AX,AX             ;zero means B$ASSN is assigning
  Push AX                ;  to a conventional string
  Call B$ASSN            ;assign this element to the name

  Pop  BX                ;retrieve the descriptor address
  Add  BX,4              ;point to the next element



Ethan Winer: PC Magazine's BASIC Techniques and Utilities Book     - 456   -

  Mov  AH,4Fh            ;specify Find Next matching name
  Jmp  Do                ;and keep on keepin' on

Exit:
  Mov  AX,NumFiles       ;assign the function output
  Ret                    ;return to BASIC

GetNames Endp
End

GetNames begins by declaring the three BASIC routines it will call as being
external.  Next the DTA structure is defined, to simplify access to the
file name address when it assigns each element in the string array.  The
only data items are the DTA itself, two working variables, and the local
stack buffer.  Since the incoming file specification needs to be converted
to an ASCIIZ string for DOS, GetNames copies that specification into Buffer
and then appends a CHR$(0) zero byte to the end.
   Once the DTA has been established, the next step is to read the file
specification passed in the first element, and copy it into local storage.
B$FLEN is used to obtain the length of the string, so GetNames will know
how far into the buffer the zero byte will be placed.  The last preparatory
steps call B$ASSN telling it to copy from a conventional string (the array
element) to a fixed-length string (Buffer), and then store the zero byte.
   The actual body of the program is broken into two portions.  The first
simply calls DOS repeatedly to count the file names, to know how many
elements are needed.  The count is then saved in NumFiles; if none were
found GetNames exits without doing anything else.  Otherwise, the incoming
string array is redimensioned from 1 to the number of files.
   The second portion again reads each file name through DOS, but this time
the names are actually assigned to the array elements using B$ASSN.  This
time, however, B$ASSN assigns a conventional string from the fixed-length
string portion of the DTA.  Since the source is now of a fixed-length,
GetNames needs to know how long each name is.  The longest possible name
is 13 bytes long (eight for the name, a period, three for an extension, and
one more for the terminating zero byte).  Therefore, ES:DI is set to point
to the start of the DTA, AX is set to zero to search for the zero byte, and
CX is loaded with the number of characters to scan.
   Once the zero is found--and it always will be--the count that remains
in CX is subtracted from 13 to obtain the actual length of the current
name.  Because that calculation includes the unwanted CHR$(0), CX is
decremented by one.
   There is one small related trick that bears explaining.  Just before the
call to B$RDIM, AX is loaded with the number 1, to specify that as the
first element number.  This three-byte instruction sets AL to 1, and clears
AH to 0.  Three lines below that only AL is assigned, which is sufficient
because we know that AH is already zero.  Because the number being assigned
is one byte long, assigning AL requires only two bytes.
   Admittedly, the savings is small, but the affect on code readability is
minimal once you know about such tricks.  And a byte saved is always
welcome in assembly language programming.  The same trick is used when
setting CL to 13, where CH is known to be zero after assigning the file
attribute of 00100111b to all of CX.

HANDLING INTERRUPTS
===================

The last programming technique I want to describe is writing an interrupt
handler you can attach to a BASIC program.  There are several applications
for this, such as tapping into the timer interrupt to display an on-screen
clock.  Instead of having to constantly print TIME$ during your INKEY$
input loops, such a routine would act as a sort of TSR, getting control at
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each timer tick and displaying the time automatically.
   The example I will show here takes over the keyboard interrupt, and
disables the Ctrl-Alt-Del key sequence.  This lets you prevent rebooting
with its corresponding loss of data, should someone press those keys
inadvertently (or on purpose!).  NoReboot is called as follows:

   CALL NoReboot(BYVAL InstallFlag%)

If InstallFlag is non-zero, you are telling NoReboot to install itself and
take over the keyboard interrupt to prevent rebooting.  An argument of
zero instead unhooks the interrupt, and re-enables those keys.  Although
you could certainly modify NoReboot to use BASIC's B_ONEXIT service to
deinstall itself automatically, I have left that feature out on purpose in
the interest of clarity.  This also lets you activate NoReboot selectively
in your program, since there is no way to revoke a request to B_ONEXIT.
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;NOREBOOT.ASM, traps Ctrl-Alt-Del within a BASIC program

.Model Medium, Basic

.Code

NoReboot Proc Uses DS, InstallFlag:Word

  Cmp  InstallFlag,0     ;are they asking to install?
  Je   Deinstall         ;no, so deinstall it

  Cmp  CS:Old9Seg,0      ;yes, are we already installed?
  Jne  Exit              ;yes, and don't do that again!

  Mov  AX,3509h          ;ask DOS for current Int 9 vector
  Int  21h               ;DOS returns it in ES:BX
  Mov  CS:Old9Adr,BX     ;save it locally
  Mov  CS:Old9Seg,ES

  Mov  AX,2509h          ;point Int 9 to our own handler
  Mov  DX,Offset NewInt9
  Push CS                ;copy CS into DS
  Pop  DS
  Int  21h

Exit:
  Ret                    ;return to BASIC

;-- Control comes here when a key is pressed or released.
NewInt9:
  Sti                    ;enable further interrupts
  Push AX                ;save the registers we're using
  Push DS

  In   AL,60h            ;read the keyboard scan code
  Cmp  AL,83             ;is it the Delete key?
  Jnz  Continue          ;no, continue on to the BIOS

  Xor  AX,AX             ;see if Alt and Ctrl are pressed
  Mov  DS,AX             ;by looking at address 0:417h

  Mov  AL,DS:[417h]      ;get shift status at 0000:0417h
  Test AL,8              ;is Alt key depressed?
  Jz   Continue          ;no, continue on to the BIOS
  Test AL,4              ;is Ctrl key depressed?
  Jz   Continue          ;no, continue on to the BIOS

  In   AL,61h            ;send an acknowledge to keyboard
  Mov  AH,AL             ;otherwise the Ctrl-Alt-Del
  Or   AL,80h            ;  keystroke will still be
  Out  61h,AL            ;  hanging around the next time
  Mov  AL,AH             ;  a program asks for a key
  Out  61h,AL
  Mov  AL,20h            ;indicate end of interrupt to the
  Out  20h,AL            ;  8259 interrupt controller chip

  Pop  DS                ;ignore, simply return to caller
  Pop  AX
  Iret                   ;use this special Ret when
                         ;  returning from an interrupt
Continue:
  Pop  DS                ;restore the saved registers
  Pop  AX
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  Jmp  DWord Ptr CS:Old9Adr   ;continue on to the BIOS by
                              ;  jumping to the address
                              ;  that was saved during
                              ;  initialization
DeInstall:
  Mov  AX,2509h          ;restore original Int 9 handler
  Mov  DX,CS:Old9Adr     ;from segment and address saved
  Mov  DS,CS:Old9Seg     ;  earlier
  Int  21h               ;DOS does this for us
  Mov  CS:Old9Seg,0      ;clear this as an installed flag
  Jmp  Short Exit        ;and then exit back to BASIC

NoReboot Endp

  Old9Adr   DW 0         ;remembers original Int 9 address
  Old9Seg   DW 0         ;these must be stored in the code
                         ; segment because DS is undefined
                         ; when NewInt9 receives control
End

The first thing NoReboot does is look to see if the caller is installing
or deinstalling.  If installation is requested, the saved Interrupt 9
segment is checked, to be sure that it holds the initial value of zero.
It is important to prevent multiple installations, because installing saves
the current interrupt handler's address.  If NoReboot installed itself
twice, it would save its own address on top of the original BIOS handler's
saved address.  And once that address is lost, it is impossible to restore
it again later.
   Assuming it is safe to be installed, the next step is to ask DOS for the
current interrupt handler's address using service 35h.  This service
expects the service number in AH, and the interrupt number in AL.  To save
a byte, both values are loaded at once.  Service 35h returns the segment
and address in ES:BX, and these are saved in the code segment.  Because the
original address will be called from within the interrupt handler, CS is
the only register whose contents are known.  Accessing data in DGROUP is
more difficult, because an interrupt can occur at any time, and DS will
likely not be holding the correct segment.  [That is, execution could be
at any point in the program when Ctrl-Alt-Del is pressed, including within
a routine that has changed DS.  So when NoReboot receives control it can't
be certain that DS holds the segment for .Data variables it has defined.]
   Once the original interrupt handler address has been saved, NoReboot
calls DOS again, but this time to assign the segment and address of its
replacement handler in the interrupt vector table.  It is easy to access
the interrupt vector table directly using Mov instructions, but it is even
easier to have DOS do that.
   Finally, NoReboot returns to the calling BASIC program, and all
subsequent key presses are now routed to the NewInt9 procedure.
   NewInt9 must perform a few tricks, partly because it is handling a
hardware interrupt.  All interrupt handlers begin with the instruction Sti,
which tells the 8088 to allow further interrupts to occur and be processed.
Next, the two registers being used are saved on the stack, so they can be
restored again later.  Because a keyboard interrupt can occur at any time
interrupting the process that is currently running, it is imperative that
you not alter any aspect of the 8088's current state.  This includes the
settings of the Flags register as well.  However, the Flags register is
saved automatically by the 8088 as part of its handling of interrupts, so
the flags don't have to be saved or restored manually using Pushf and Popf.
   The next sequence of instructions reads the key that was pressed from
the keyboard's I/O port (60h), and compares that to the scan code for the
Del key.  If any other key was pressed, NoReboot jumps to the original
keyboard handler in the ROM BIOS.  Otherwise, it examines low memory to see
if both the Ctrl and Alt keys are also currently pressed.  Unless all three
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conditions are met, control passes on to the BIOS.  But if Ctrl-Alt-Del is
pressed, NoReboot handles the keystroke entirely on its own and ignores it.
In that case DS and AX are restored, and NoReboot exits back to the
underlying program.
   Notice the special form of return command, Iret (Interrupt Return).
Like a conventional far return, Iret pops the address and segment to return
to from the stack, but it also pops the Flags register that was stored
there by the 8088 automatically.
   The final section of code restores the original interrupt vector, and
clears the Old9Seg variable to zero.  This lets NoReboot know that it is
not installed, in case you call it again later.
   This same technique can be applied to handle other interrupt services,
and I encourage you to experiment on your own.  You could, for example,
write a routine that takes over the communications interrupt, and displays
a flashing box in a corner of the screen whenever characters are received.
Likewise, you could modify this routine to create an on-screen display of
the Caps Lock and Num Lock state.  Each time one of those keys is pressed
you would either print or clear a status message.

DEBUGGING WITH CODEVIEW
=======================

As useful as CodeView can be for a purely BASIC program, it is even more
necessary when writing in assembly language.  CodeView lets you step
through the code that BASIC generates to set up and call your subroutine,
and then step through the routine a line at a time.  Being able to watch
your program as it executes helps you to quickly zero in on any problems.
Further, CodeView shows you the current CPU register contents, as well as
the value of memory locations about to be read from or written to.
   To debug an assembly language subroutine with CodeView, you must first
assemble it using the /Zi option switch:

   masm routine /zi;

Then you link the routine to your BASIC program using the /Co option.  Of
course, the BASIC program must also have been compiled using /Zi:

   bc program /o /zi;
   link program routine /co;

Finally, you start CodeView specifying the name of the BASIC program:

   cv program

Once the BASIC source code is showing on the screen you can step and trace
through it as described in Chapter 4.  As with BASIC subprograms and
functions, to step into an assembler routine you press F8 at the CALL
statement.  If the routine is designed as a function you instead press F8
at the line in which the function is referenced.
   Once CodeView has traced into the routine, you can press F3 to view the
source code only, the assembly code only, or both intermixed.  I usually
prefer to view only my original source, but that hides the data memory
addresses that MASM and LINK assigned.  Usually you will not need to know
those addresses, but there are times when this can be helpful.  For
example, when a program is not working correctly, the bug could be caused
by a different portion of the program overwriting the named variables.
   Besides the F3 key, you can also use F4 and F7, and these have the same
meaning as the same keys when used in the BASIC editor.  Indeed, debugging
an assembly language subroutine is quite similar to debugging a BASIC
program as far as which keys are used.

MASM 6.0 ENHANCEMENTS
=====================
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All of the discussions in this chapter have focused on using MASM version
5.1.  However, Microsoft's more recent version 6.0 introduces a number of
significant changes and new features.  Perhaps the most useful new feature
in this release is the greatly improved documentation.  The manuals that
came with past versions of MASM were very dry, containing reams of facts
but no practical advice or guidance.  The new documentation include both
facts and programming tips, and this addition is welcome indeed.
   If you already have existing assembly language source code, you may have
to change it to accommodate the new MASM 6.0 conventions.  In particular,
MASM's handling of data structures has changed substantially, and in many
cases code that used to work correctly no longer does.  However, you can
optionally use the /Zm command line switch, to tell MASM 6.0 to behave like
the earlier 5.1 version.
   A new MASM.EXE program launcher is also included to offer a similar
capability.  Where older versions of MASM were named MASM.EXE, the new
program is called ML.EXE.  The MASM.EXE that now comes with MASM 6.0 simply
passes the /Zm option on to ML, along with some other option switches that
are needed to tell ML to mimic the older assembler's behavior.

IMPROVED ASSEMBLY OPTIMIZATIONS

Before MASM 6.0, a conditional jump was limited to a distance no greater
than 128 bytes earlier or 127 bytes farther ahead in the code.  When there
was no way to restructure your code to accommodate this inherent 8088
limitation, you had to use a conditional jump around another unconditional
jump like this:

   ;if AX < 12 go to FarLabel
     Cmp  AX,12              ;compare AX to 12
     Jnl  NearLabel          ;jump if not less over far jump
     Jmp  FarLabel           ;perform the far jump
   NearLabel:
      .                      ;program continues
      .
      .                      ;this label is more than
   FarLabel:                 ;  127 bytes past Jnl

MASM 6.0 avoids this limitation and lets you use Jl to the far label
directly, although it really just replaces your use of Jl with code
equivalent to that shown above.
   Another, similar optimization affects unconditional jumps.  As I
mentioned earlier, each time MASM 5.1 encounters a label in your source
code, it remembers its address in the resultant object code.  Then if you
jump backwards to that label later, MASM knows if it can use the shorter
two-byte form of the Jmp instruction.  But a forward jump to a near label
requires you to explicitly state Jmp Short to obtain this code savings,
since MASM 5.1 does not yet know the target label's address.  Without
Short, MASM 5.1 uses a long jump on a trial basis.  If the jump turns out
to be within the near range MASM goes back and patches the code to a short
jump followed by a byte-wasting Nop (No Operation) instruction.
   MASM 6.0 avoids this problem by processing your source file in multiple
passes.  That is, MASM reads your code and assembles what it can, using far
jumps when the target address has not yet been encountered.  Then it
processes that intermediate code again modifying its earlier output as
appropriate.  If a three-byte jump can be replaced with the two-byte
version, MASM 6.0 rewrites the code sliding subsequent instructions back
a byte.  MASM 6.0 is called an *n-pass assembler*, because as many passes
as needed are performed until the code is as small as possible.

NEW SIMPLIFIED DIRECTIVES

Besides the improved optimizing, MASM 6.0 offers several features borrowed
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from high-level languages.  These include .IF, .ELSE, and .ELSEIF; .WHILE
and .ENDW; and .REPEAT and .UNTIL.  Unfortunately, these new constructs are
modeled after the C language, and provide little if any clarification to
BASIC programmers.  For example, you can now write code such as this:

   .IF (AL < "0") || (AL > "9")

which is equivalent to this BASIC statement:

   IF AL < ASC("0") OR AL > ASC("9")

Even worse, the MASM manual does not document each directive showing
precisely what it does to your code.
   Like C, BASIC's AND is replaced with a double ampersand (&&), testing
for equality uses a double equals sign (==), and NOT is replaced with an
exclamation point (!).  Therefore, you could write assembly language source
statements like these next two examples:

   .IF (AX != 14) && (BX < 10) ;IF AX <> 14 AND BX < 10 THEN
     Mov  AX,SomeVar           ;divide SomeVar by CX
     Cwd
     Div  CX
     Mov  SomeVar,AX
   .ENDIF

   .REPEAT
     Mov  AH,1                 ;ask for a keyboard character
     Int  21h                  ;through DOS
   .UNTIL (AL == 13)           ;loop until they press Enter

PROTO and INVOKE are two other new simplified directives, and it's hard
for me to recommend using them for similar reasons.  PROTO mimics C's
function prototype capability, and lets you define a called procedure and
its arguments.  INVOKE then calls that routine passing the arguments you
give it.  To define a procedure called, say, MyProc, you would use PROTO
like this:

   MyProc PROTO Var1:Word, Var2:Word, Var3:DWord

Then to call MyProc you use INVOKE as follows:

   INVOKE MyProc, BX, 100, LongVar

Thus, PROTO and INVOKE are very similar to DECLARE SUB and CALL in BASIC.
The problem is that you have no way to know what code MASM generates for
this command unless you create a sample program, assemble it, and examine
the result using CodeView.  In particular, how does the value 100 used here
get onto the stack?  As it turns out, assembling the preceding INVOKE
command results in the following code:

   Push BX
   Mov  AX,100
   Push AX
   Push Word Ptr [LongVar+2]
   Push Word Ptr [LongVar]

As you can see, even if AX is holding an important value, its contents are
destroyed when MASM assigns the value 100 prior to placing it on the stack.
While I applaud Microsoft's attempts to make assembly language easier to
use, such behavior can and will introduce subtle bugs.  These bugs can be
even harder to track down than usual, because you did not make the coding
error, the assembler did!  Since the whole point of programming in assembly
language is to control fully what the CPU is doing, such hidden behavior
can have disastrous effects.
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   One new feature that I do find useful, however, is the ability to
continue a line with a trailing comma.  Often, a single source statement
will extend into the comments column, spoiling the appearance of your
listing.  You can now avoid this by placing a comma in the middle of a
logical line, and then continuing the remainder of the statement on the
next line.
   Another very useful feature is MASM 6's ability to accept wild cards on
the command line.  For example, you can assemble all of the files in the
current directory using the command masm *.asm;.

TRICKS OF THE TRADE
===================

The final topic I want to present is a variety of assembly language
programming short cuts and other techniques I have developed over the
years.  In preceding sections you saw how Xor or Sub can be used to clear
a register, using less code than Mov.  And if you know that the high-byte
portion of a register or memory variable is already zero, you can save a
byte by assigning only the lower byte.  And to clear both AX and DX you can
use Xor with AX, and then Cwd to extend the zero into DX using only one
additional byte.  As you might imagine, there are many other ways to be
clever in assembly language.

MINIMIZE CODE TO ACCESS PARAMETERS

When parameters are accessed within an assembly language subroutine, the
usual way to get at them is through BP.  Even when you use MASM's
simplified directives, code to push BP, assign it from SP, and then
reference the address on the stack is added to your program.  In that case,
the steps are simply hidden from you.  Because BASIC (and indeed, every
high-level language) requires you to preserve BP, one byte each is needed
for the Push and Pop instructions.
   You can eliminate that overhead by taking advantage of the fact that the
stack is always kept in DGROUP, and that SS and DS are equal.  The trick
is to use BX as a stack reference, because it doesn't need to be preserved.
Unfortunately, this precludes using the simplified methods for parameter
access.  But when speed or code size are paramount or you have many
routines, stack addressing via BX affords a real savings.  Here's how you
will design the routine, using an example that accesses an incoming string:

   GetString Proc       ;one parameter, not shown

     Mov  BX,SP         ;address the stack manually using BX
     Mov  BX,[BX+04]    ;get the address for the string
     Mov  CX,[BX]       ;get the length of the string
     Jcxz Exit          ;quit if the string is null
     Mov  BX,[BX+02]    ;get address of first character

   Exit:
     Retf 2             ;specify far return with 2 bytes

   GetString Endp
   End

Because BP has not been pushed onto the stack, the incoming string
descriptor address is at [BX+4] rather than [BX+6].  Other than that, the
remainder of the routine proceeds as usual.

BYTE SAVERS

Another useful trick lets you save a byte when adding two to a variable.
As you know, Inc and Dec when used with a register are always better than
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Add and Sub, because they are one-byte instructions.  Therefore, two Inc
or Dec commands in a row are still better than Add AX,2 which requires
three bytes.  However, you must never do this with SP.  The stack pointer
must always hold an even number, and it is possible that an interrupt could
come along after the first Inc or Dec, but before the second has executed.
Which brings up a related byte saver.
   If you need only a single word of local stack storage, don't use Sub
SP,2 to allocate the space and Add SP,2 later to clear it.  Instead, simply
use Push AX, or Push with any other register.  Likewise, just before
returning to BASIC, pop any register that doesn't return information, such
as CX or BX.

Rep Always Clears CX

Another trick you can take advantage of is that CX is often zero after a
repeating string command that uses Rep.  Zero is a common value in assembly
language programming, and you can usually save a byte by using a register
instead of a constant zero.  In particular, if you are copying a file name
to a buffer and adding a CHR$(0) to the end, you can use code like this:
    .
    .                   ;set up DS:SI and ES:DI here
   Mov  CX,NumBytes
   Rep  Movsb
   Mov  [DI],CL         ;tack a zero byte onto the end
    .
    .

This trick is made even more valuable by the fact that DI is left pointing
at the byte just past the data that was just copied.  Of course, CX is not
necessarily zero after Repe or Repne, because those forms of Rep can
terminate before CX is exhausted.

Use AX Where Possible

Another little-known fact is that memory operations that use AX are one
byte smaller than equivalent operations on any other register.  That is,
Mov BX,KeyCode results in four bytes of code, whereas Mov AX,KeyCode
creates only three.  I often use the DOS DEBUG program for quick tests,
just to see which sequence of instructions results in less code.  Since
DEBUG does not let you specify a variable name, use [100] or any other
address instead:

   -a 100
   -####:0100 Mov AX,[100]
   -####:0103 Mov BX,[100]
   -####:0107 <press Enter to stop assembling>
   -u 100,106
    ####:0100 A10001      MOV   AX,[0100]
    ####:0103 8B1E0001    MOV   BX,[0100]
   -q

This sample session tells DEBUG to begin assembling at address 100 (the
default for .COM files), and then assemble the two instructions shown.
When you are done press Enter at the dash prompt, and then unassemble the
results and quit.  As you can see, using AX creates one less byte of code.

Multiplying and Dividing By a Power of 2

Because of the way binary numbers are organized, shifting the bits left
or right can provide a very fast way to multiply or divide by a power of
two.  And because the bit shifting commands can be used with all but the
segment registers, this can also save you from having to copy the data to
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AX or DX:AX first.  To divide a register by two simply shift the bits right
one position:

   Shr CX,1

And to multiply by two shift them left:

   Shl SI,1

If you need to multiply or divide by four, eight, sixteen, and so forth,
the shift count must first be placed into the CL register:

   Mov CL,5       ;prepare to divide BP by 32
   Shr BP,CL

On 80186 and later processors you can specify a shift count directly.
Unfortunately, this doesn't work with an 8088, so CL must be used.  Still,
multiplying and dividing are extremely slow instructions on an 8088, so the
added setup will be more than offset if speed is the primary factor.

Low Memory is at Segment Zero

Another useful byte saver is to treat the BIOS data area in low memory as
being at segment zero, instead of the more commonly used segment 40h.  By
convention, the BIOS data area is said to reside at segment 40h, even
though a number of segment/address pairs can be used to access that data.
I mentioned this briefly in Chapter 11, in the discussions about using
BASIC's CALL Interrupt.  Since Xor or Sub can be used to clear a register
to zero with one byte less code than assigning it a value of 40, I use this
technique frequently:

   This example generates 9 bytes:
        Xor  AX,AX
        Mov  DS,AX
        Test Byte Ptr [417h],8  ;see if the Alt key is depressed

   And this example creates 10 bytes:
        Mov  AX,40h
        Mov  DS,AX
        Test Byte Ptr [17h],8

Scanning An ASCIIZ String

Because ASCIIZ strings are used in programs that access DOS services,
searching those strings to find the end is a common operation.  For
example, the GetNames function does this to determine the length of each
file name before assigning it to elements in the incoming string array.
In that routine CX is assigned to 13, which is the maximum length a file
name can be.  Since CX is decremented for each character that is examined,
the length is calculated by subtracting CX from 13, which requires an extra
register.
   As long as you are certain that a zero byte is present, you can use a
clever trick to determine directly the number of bytes that were searched.
Instead of loading CX with the maximum number of bytes to scan, assign it
to -1.  As each character is searched CX is decremented, which results in
a negative version of the number of bytes.  Then the NOT instruction can
be used to revert that to a positive number:

   Mov  ES,Segment     ;point ES:DI to the start of the data
   Mov  DI,Address
   Cld                 ;ensure that scanning is forward
   Mov  CX,-1          ;set CX to -1
   Mov  AL,0           ;search for a zero byte
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   Repne Scasb         ;scan the string
   Not  CX             ;convert to a positive number
   Dec  CX             ;don't include the zero byte itself
   Mov  AX,CX          ;now AX holds the length of the string

As you learned in Chapter 2, BASIC's NOT instruction flips all of the bits,
converting ones to zeros and vice versa.  The assembly language version
works the same way, and can be used with registers or memory locations.

CYCLE SAVERS

Besides savings bytes when possible, most assembly language programmers
also like to save clock cycles.  Every assembler instruction requires a
certain amount of CPU timing cycles to execute, although there are other
factors that also affect the actual throughput of a given piece of code.
But instructions with the fewest number of clock cycles as published by
Intel are always faster than those that require more cycles.

Move and Store Words Instead of Bytes

One very effective speed enhancement is to copy and store words when
possible, instead of bytes.  On 80286 and later processors, words are moved
and stored as quickly as bytes.  Therefore, moving 50 words is much faster
than moving 100 bytes.  If you know ahead of time how many bytes are going
to be processed and that the number is even, you can simply load CX with
half the value, and use Rep Movsw or Rep Stosw instead of Rep Movsb or Rep
Stosb.  [This trick can be used even if the program runs on an 8088, but
the speedup only occurs with 80286 and later CPUs.]  With only a little
added code you can also use this technique to determine at runtime if an
odd byte needs to be processed.  Here's one way to do that:

   Shr  CX,1     ;divide CX by 2
   Rep  Movsw    ;copy the words
   Jnc  Done     ;the Carry Flag is clear
   Movsb         ;copy the odd byte
   Done:
    .            ;program continues
    .

First, CX is divided by 2, and the odd bit, if there was one, is stored
by the CPU in the Carry Flag.  Then the data words are copied to their
destination.  Finally, the Carry flag is tested and the program either
copies a single additional byte or skips over that command.

A Jump Not Taken is Faster Than One That is

And this brings us to yet another cycle saver.  In some cases the Jnc will
be executed, and in others it will not.  And in most programs, the chances
of either happening are about fifty-fifty.  But if you know ahead of time
that a particular action will happen less often than another, you can take
advantage of another 8088 fact: A jump not taken is always faster than one
that is taken.
   Each time the 8088 jumps to a new location or calls a procedure, it
discards its *pre-fetch queue*.  The pre-fetch queue is a small area of
memory on the CPU itself that holds the next few instructions to be
executed.  In many cases, the 8088 can do several things at once.  So while
it is adding or subtracting numbers, it simultaneously fetches instruction
bytes from your code, in anticipation of what it will do next.  This lets
the CPU act on the subsequent instructions very quickly, because they are
already in its own local on-chip memory.  Just as data in registers can be
accessed faster than data that must be read from memory, so too can
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instructions that are already in the CPU.
   But when execution branches to a new location, any bytes present in the
pre-fetch queue are obsolete.  Therefore, the 8088 must read the new bytes
at the new location, which takes additional time.  If you have a routine
that makes a test repeatedly within a loop you should change the logic as
necessary, to branch on the less likely situation.  That is, instead of Jne
you might use Je, or vice versa.

MISCELLANEOUS TECHNIQUES

One very powerful technique you will surely find useful is self-modifying
code.  As its name implies, self-modifying code actually writes new
instructions into its own code segment, and this is useful in a variety
of situations.  For example, if you are writing a routine that accepts a
variable number of parameters this lets you patch the Ret instruction to
be Ret 2, Ret 4, and so forth.
   One warning, however, is related to the pre-fetch queue.  If a byte or
word has already been read into the CPU, changing it in the code segment
has no effect.  Worse, there is no way to know for certain which bytes will
have already been read, because the size of the pre-fetch queue has grown
with each new CPU from Intel.  For example, only four bytes are allocated
for a pre-fetch queue on an 8088, but the 80386 uses 16 bytes.
   In general, if the code you are patching is located at least a few dozen
bytes farther in the program, you should be safe.  Such self-modifying code
was used in the SORT.ASM routine shown in Chapter 8, to let the same code
sort either forward or backward.  There, the bytes that represent Jae and
Jbe were assigned to AL and AH, and the code was patched based on the
incoming sort direction.  Since the patching takes place a hundred or so
bytes earlier in the program, it is unlikely that this routine will fail
with future processors.

Static-Free CGA Text Display

The final technique you will find useful is writing to CGA text mode video
memory without creating a disturbance.  When IBM designed the original CGA
adapter they skimped on the design, using circuitry that shares a single
address line for both the 8088 CPU and the video hardware that updates the
screen.  Even when a program is not reading from or writing to display
memory, that memory is still read periodically by the display adapter and
sent to the monitor.  Therefore, accessing that memory directly from an
assembly language routine creates a disturbing burst of static that is
visible on the monitor.  This is caused by the conflict of the CPU and the
video adapter accessing the same video memory addresses at the same time.
   Newer CGA adapters employ a dual-port design that arbitrates
simultaneous read and write requests, thereby eliminating this problem.
And, of course, EGA and VGA adapters are much more sophisticated than the
CGA, and fortunately also more common these days.  However, you can avoid
the screen disturbance on older CGA adapters by synchronizing your reading
and writing with the horizontal retrace timing.
   As you undoubtedly know, the image on a CRT is drawn by scanning a
single dot horizontally across each successive row.  This happens so
quickly that the eye perceives the moving dot as an entire image.  After
each row is drawn, the dot is turned off, quickly placed at the start of
the next row below, and then turned on again.  By writing to the screen
only while the dot is turned off you can hide the memory conflicts that
cause static.
   The short code fragment below shows how to synchronize video writing
with the CGA's horizontal retrace.  In a windowing routine that also needs
to read video memory, you would use the same technique just before each
byte or word is read.
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    .
    .
   Mov  SI,Descriptor  ;get the incoming descriptor address
   Mov  CX,[SI]        ;the string's length goes in CX
   Mov  SI,[SI+2]      ;and the address of the data in SI

   Mov  AX,&HB800      ;load ES with the CGA video segment
   Mov  ES,AX          ;through AX
   Xor  DI,DI          ;point DI to the upper left corner

   Mov  AH,Color       ;load color parameter (passed BYVAL)
   Jcxz Done           ;don't try to print a null string!

No_Retrace:
   In   AL,DX          ;get the video status byte
   Test AL,1           ;test the horizontal retrace bit
   Jnz  No_Retrace     ;if doing retrace, wait until done
   Cli                 ;disable interrupts until we're done

Retrace:
   In   AL,DX          ;get the status byte again
   Test AL,1           ;are we currently doing a retrace?
   Jz   Retrace        ;no, wait until we are
   Lodsb               ;load the current character
   Stosw               ;store the character and attribute

   Sti                 ;re-enable interrupts
   Loop No_Retrace     ;loop until the string is printed

   Done:
    .                  ;program continues or exits here
    .

The current horizontal retrace status can be read using the In instruction,
and then masking off all but the lowest bit.  To protect against the case
where the print loop is entered just as the retrace is about to end, this
routine waits until a new period has just begun.  This is not unlike the
empty loop used in the benchmark examples in Chapter 9, that waited for a
new system clock cycle to begin.

SUMMARY
=======

In this final chapter you have learned what assembly language programming
is all about, and how it can help you as a BASIC programmer.  There is no
doubt that using assembly language is more tedious than BASIC, but the
overall methods and code structures are similar.
   You learned about the 8088's registers, and why operations that use them
are faster than similar operations on memory variables.  The string
instructions are particularly useful, because they are very small and do
several things at once.  Coupled with the Rep prefix these commands can
replace many separate Mov and Inc and Cmp statements.  You also learned how
to perform simple calculations in assembly language, and an example showed
how to translate simple BASIC integer and floating point expressions.
   This chapter explained how the stack operates, and how procedures are
designed to accept passed parameters.  The new simplified directives
introduced with MASM 5.1 eliminate the need to define segments and figure
parameter stack displacements in your routines.  This chapter also
explained how to call DOS and BIOS interrupts from assembly language.
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   You learned how to access every kind of data a BASIC program can pass
to a routine, including near and far strings, integers, and even floating
point values.  The section that described arrays showed how to access both
near and far data, and even huge arrays that span multiple segments.
   Besides conventional called procedures, you also learned how to create
functions that can return any type of data.  Several innovative techniques
were presented, including a method for creating a single procedure that can
work with both near and far strings, and even with different versions of
the BASIC compiler.  Equally innovative are the methods that show how to
write floating point instructions and tie them into BASIC's software
emulator.  And if you are not certain how to code a particular floating
point instruction, you can create a short BASIC program and then examine
its code using CodeView.
   This chapter explained many of MASM's features, such as initialized
data, conditional assembly, and defining structures and macros.  In
particular, macros can greatly simplify coding redundant instructions and
data definitions.  Furthermore, MASM can calculate data addresses and
lengths automatically, reducing your work when the data must be changed
later on.
   Because so many different data items all compete for the same 64K near
memory segment, it is often desireable to store working variables on the
system stack.  Likewise, when large amounts of data are involved, variables
and tables can be stored in the code segment.  Both of these techniques
were described in depth, and accompanying examples showed how to do this
in context.
   Several of BASIC's most useful internal variables and procedures were
described, showing their public names and parameter requirements.  The
GetNames function brought all of this information together, showing how to
read an array descriptor, redimension a string array, and assign individual
elements--all using code that works identically with both near and far
strings.
   You also learned how to write an interrupt handler that can be installed
and deinstalled from within a BASIC program.  The example showed how to
take over the keyboard interrupt; however, the same technique can be
applied to nearly any other hardware or software interrupt as well.
   Finally, this chapter described many useful tricks and techniques that
help to reduce the size of your assembly language routines, and also make
them faster.  Many operations that use the AX register result in less code
than the same operations using other registers.  And when moving or storing
contiguous data, accessing the data as words instead of bytes can sometimes
yield a nearly two-fold speed improvement.  When in doubt about which of
several sequences of code is smaller, you can use the DOS DEBUG utility to
quickly determine that.
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                     APPENDIX: The Accompanying Files

OVERVIEW OF THE ACCOMPANYING FILES
==================================

Besides the individual chapter text files, ETHAN.ZIP contains all of the
example code, BASIC programs, and assembly language source files used in
this book.  The example BASIC files have names like CHAPn-n.BAS, where the
first part of the name indicates which chapter the example was used in, and
the second part is the listing number within that chapter.  The remaining
BASIC files use more descriptive names, and those are the ones you're most
likely to actually use and add to your own programs.  Likewise, the shorter
assembly language examples from Chapter 12 are in files named CHAP12-n.ASM,
but source code for the complete routines are in files having names based
on the actual routine names.
     The library files named BASIC.* are meant for use with QuickBASIC
version 4.0 or later, and the files named BASIC7.* are for use with BASIC
PDS and VB/DOS.  Files with a .QLB extension are Quick Libraries that you
load along with QB.EXE or QBX.EXE or VBDOS.EXE, depending on your version
of BASIC.  The .LIB files are intended for use with LINK, when you create
executable programs.  There are also a few .BI (BASIC Include) and .MAK
(Make) files used to support some of the programs.  I did not bother to
include separate .OBJ files for the assembly language routines, since you
can easily extract them from BASIC.LIB or BASIC7.LIB if you need them.

STARTING BASIC

To start QuickBASIC and load the BASIC.QLB library, enter this from the DOS
command line:

     qb [program] /l basic.qlb /ah

If you specify the optional BASIC source program name, that is loaded into
the QuickBASIC editor along with the BASIC.QLB library.  The /ah switch
tells QuickBASIC to allow huge (greater than 64K) arrays, which is needed
for some of the demonstration programs.
     If you are using BASIC PDS, start QBX as follows:

     qbx [program] /l basic7.qlb /ah /es

The /es switch is needed for the EMS.BAS demonstration, and it tells QBX to
cooperate with your use of Expanded memory.  When /es is omitted, QBX
assumes no other programs are using EMS, which lets it access that memory
slightly faster.  Since EMS.BAS stores its sample data in Expanded memory,
this option is needed to avoid corrupting EMS memory.  Even if you do not
plan to run EMS.BAS, using /es is harmless.
     If you have VB/DOS you should start it like this:

     vbdos [program] /l basicvbd.qlb /ah /es

Once the appropriate Quick Library has been loaded, you may use the File
Open menu sequence to load the BASIC programs.  Note that with VB/DOS, the
Open menu defaults to a .MAK extension, so you'll have to enter *.BAS or
type the complete name of a BASIC program source file.
     Some of the example programs use BASIC's CALL Interrupt command, and
to run those you will have to quit the BASIC editor, and restart it loading
the default Quick Library that comes with your version of BASIC.  You do
not need to specify a Quick Library name when loading the default library;
using only the /l switch is sufficient.
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LINKING

When you compile and link programs manually from the DOS prompt and you
want to use the .LIB libraries supplied with this book, you must specify
the library name manually on the LINK command line:

     link program [/options] , , nul, basic[7] ;

The BASIC7 library works with both BASIC PDS and also VB/DOS, so it was not
necessary to provide a separate BASICVBD.LIB file.  You can also compile
and link from within the QuickBASIC or QBX editors using the menu options.
When a Quick Library is loaded, the BASIC editor uses the same first name
for the LINK library when it shells to run BC and LINK.  For example, if
you started QBX like this:

     qbx /l basic7.qlb

QBX tells LINK to use a parallel .LIB library named BASIC7.LIB.  But since
there is no BASICVBD.LIB file you must compile and link manually when using
VB/DOS.  If you don't use BASIC PDS you can optionally rename BASIC7.LIB to
be BASICVBD.LIB.  Then when you start VB/DOS as shown above it can specify
the correct library name when it shells to LINK.
     The BASIC editor limits you to using either the Quick Library from
this book *or* BASIC's version that contains CALL Interrupt--you cannot
load two Quick Libraries at one time.  However, you can link with more than
one library when creating an executable program manually.  This example is
for QuickBASIC, and you would substitute QBX.LIB and BASIC7.LIB with PDS,
or VBDOS.LIB and BASIC7.LIB when using VB/DOS:

     bc program [/o] ;
     link [/options] program [other modules], , nul, qb.lib basic.lib ;

  Directory of the Included Files
(This has been included by Thomas Antoni)

BASIC    LIB         6.795 04.09.94    9:33
BASIC    QLB         7.447 04.09.94    9:33
BASIC7   LIB         7.315 04.09.94    9:33
BASIC7   QLB         9.665 04.09.94    9:33
BASICVBD QLB        10.118 04.09.94    9:33
BENCH    BAS           794 13.05.92    9:35
BUFIN    BAS         3.126 13.05.92    9:35
CHAP10-1 BAS         5.201 13.05.92   10:14
CHAP10-2 BAS         1.438 13.05.92    9:35
CHAP10-3 BAS         1.843 13.05.92    9:35
CHAP11-1 BAS           410 13.05.92    9:37
CHAP11-2 BAS           679 13.05.92    9:37
CHAP11-3 BAS           383 13.05.92    9:37
CHAP11-4 BAS           452 13.05.92    9:37
CHAP11-5 BAS         1.140 13.05.92    9:37
CHAP11-6 BAS         1.462 13.05.92    9:41
CHAP11-7 BAS         1.313 13.05.92    9:41
CHAP11-8 BAS         5.231 13.05.92    9:41
CHAP11-9 BAS         3.071 13.05.92    9:41
CHAP12_1 ASM           765 13.05.92   10:23
CHAP12_2 ASM         1.130 13.05.92   10:22
CHAP2-1  BAS           433 13.05.92   10:12
CHAP2-2  BAS           791 13.05.92   10:12
CHAP6-1  BAS           518 13.05.92    9:43
CHAP6-10 BAS           585 13.05.92    9:43
CHAP6-11 BAS           388 13.05.92    9:43
CHAP6-12 BAS           713 13.05.92   10:13
CHAP6-13 BAS           484 13.05.92    9:46
CHAP6-14 BAS         1.739 13.05.92   10:14
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CHAP6-2  BAS           391 13.05.92   10:12
CHAP6-3  BAS         2.180 13.05.92    9:48
CHAP6-4  BAS         1.415 13.05.92    9:48
CHAP6-5  BAS           670 13.05.92    9:48
CHAP6-6  BAS           650 13.05.92    9:48
CHAP6-7  BAS         2.205 13.05.92    9:51
CHAP6-8  BAS           779 13.05.92    9:51
CHAP6-9  BAS         1.908 01.06.93   11:42
CHAP8-1  BAS           889 13.05.92    9:51
CHAP8-2  BAS         1.129 13.05.92    9:53
CHAP8-3  BAS         3.069 13.05.92    9:53
CHAP8-4  BAS         1.149 13.05.92    9:53
CHAP8-5  BAS         1.240 13.05.92    9:53
CHAP8-6  BAS           324 13.05.92    9:57
CHAP8-7  BAS           329 13.05.92    9:57
CHAP8-8  BAS           649 13.05.92    9:57
COMPARE  ASM         1.166 13.05.92   10:23
COMPARE2 ASM         2.231 13.05.92   10:23
COMPARE3 ASM         2.345 13.05.92   10:23
COMPAREF ASM         1.305 13.05.92   10:24
CONTENT  TXT             0 01.08.99   17:51
COPYFILE BAS           630 13.05.92    9:57
DBACCESS BAS         4.324 13.05.92   10:00
DBACCESS BI            790 13.05.92   10:00
DBCREATE BAS         1.882 13.05.92   10:00
DBCREATE MAK            28 06.06.91   20:00
DBEDIT   BAS         2.339 13.05.92   10:00
DBEDIT   MAK            26 06.06.91   20:00
DBF      BI            475 13.05.92   10:02
DBPACK   BAS         1.447 13.05.92   10:16
DBPACK   MAK            26 06.06.91   20:00
DBSTRUCT BAS         1.073 13.05.92   10:02
DBSTRUCT MAK            28 21.08.91   12:23
DOS      BAS        12.951 13.05.92   10:02
DOSINT   ASM         1.767 13.05.92   10:24
DOSVER   ASM           861 13.05.92   10:24
EDITOR   BAS         4.316 13.05.92   10:03
EMS      BAS         6.670 04.09.94    9:57
EMSINT   ASM           707 13.05.92   10:24
EVALUATE BAS         1.244 13.05.92   10:03
FAR$     ASM         2.693 13.05.92   10:24
FILESORT BAS        11.708 13.05.92   10:05
FIXUPS   ASM           509 13.05.92   10:25
FT       EXE         4.956 03.07.94    9:06
GETCOLOR ASM           677 13.05.92   10:25
GETNAMES ASM         7.337 13.05.92   10:25
GETNAMES BAS           917 13.05.92   10:05
GETSEG   ASM           370 13.05.92   10:25
LOTUS123 BAS         8.121 13.05.92   10:05
MEMCOPY  ASM           966 13.05.92   10:25
MESSAGE$ ASM         3.184 13.05.92   10:26
MONITOR  BAS         2.042 23.05.93    9:20
MOUSE    BAS        10.472 13.05.92   10:05
MOUSEINT ASM         1.173 13.05.92   10:26
NETCHECK BAS         1.200 13.05.92   10:06
NOREBOOT ASM         3.209 13.05.92   10:26
PEEKPOKE ASM           610 13.05.92   10:26
QSORT    BAS         2.192 13.05.92   10:06
REGTYPE  BI            321 13.05.92   10:06
SEEQSORT BAS         3.726 13.05.92   10:09
SHRTHERE BAS           706 13.05.92   10:09
SORT     ASM         6.705 13.05.92   10:26
SOUNDEX  BAS         1.867 13.05.92   10:09
SQUARE   ASM           867 05.08.93   10:43
STUFFBUF BAS           616 13.05.92   10:09
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SUMARRAY ASM         1.401 13.05.92   10:26
SWAPMEM  ASM           881 13.05.92   10:26
T                        0 28.07.99    1:17
TEXTFIND BAS         6.747 04.09.94   11:34
TYPESORT BAS         4.348 13.05.92   10:10
TYPISORT BAS         4.565 13.05.92   10:10
WORDWRAP BAS         1.044 13.05.92   10:17
_                        0 17.02.91   11:40
__                       0 17.02.91   12:14
___                      0 17.02.91   12:15
____                     0 07.07.91    9:00

                           A Special Offer
               from Ethan Winer and Crescent Software

As thanks for buying this book, Ethan Winer and Crescent Software are
pleased to offer a special fifteen percent (15%) discount off the normal
prices listed below for software purchased using this coupon.  Either mail
your order along with prepayment, or phone using VISA or Master Card.  All
products work with QuickBASIC 4.0 or later, BASIC 7 PDS, and VB/DOS, and
come with fully commented BASIC and assembler source code.  No royalties
are ever required when routines are added to your .EXE program, and free
technical support is included.  Crescent also offers products for Visual
Basic for Windows.  Please call us at 800-35-BASIC for a complete catalog.
(Call 203-438-5300 in Connecticut or outside the US; Fax: 203-431-4626).

QuickPak Professional ($199) is a general purpose toolbox featuring more
than 480 routines, 120 example programs, and an extensive manual.  Included
are routines for windowing, file and array searching and sorting, pull-down
and scrollable menus, input routines, text editors with integrated mouse
support, and mathematical functions.  Also included are string and array
manipulation, EMS/XMS data storage, very fast file I/O, pop-up utilities,
file and directory browsing, a complex expression evaluator, and much more.

Quick Screen ($149) designs any kind of text screen, including data-entry
forms, help messages, and attractive logo screens.  It supports 17 field
types with full range validation, field calculations, and built-in mouse
support.  Save screens individually, or compress and combine them into one
file to save space and memory.  Screens may also be saved as object (.OBJ)
files, and linked with your programs to avoid additional files at runtime.
Many BASIC example programs are included, including an interface to AJS
Publishing's popular db/LIB add-on library.

Graphics QuickScreen ($149) is similar to QuickScreen (above), but it works
in the EGA and VGA graphics mode.  Besides the QuickScreen data types for
field input, GQS also makes it easy to create sliders and pushbuttons that
look just like those used by Windows programs.

P.D.Q. ($149) lets you write programs in BASIC that are smaller and more
efficient than any high-level language including C.  It replaces the default
BASIC link libraries, and also lets you easily create TSR programs and even
real-time interrupt handlers. Real programs that perform useful tasks can be
written in less than 2K!  Examples include a TSR screen capture program,
work-alike copies of Norton Utilities programs, a pop-up calculator, and
dozens more.  P.D.Q. won Byte Magazine's Users Choice Award for Language of
the Year.  P.D.Q. does not provide communications (see PDQComm below), and
there are some restrictions on graphics and floating point math.

PDQComm ($99) adds communications support to P.D.Q., and is also ideal for
use with QuickBASIC and PDS.  It offers many features not available in
regular BASIC, such as XModem, YModem, and ASCII file transfers, windowed
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terminal emulations, 115.2k bps operation, parameter changes while the COM
ports are open, and more.  Numerous examples are included, and a complete
tutorial explains modems and communications concepts.

GraphPak Professional ($149) lets you add presentation quality 3-D graphs
and charts to your programs.  Many graph types are provided, including bar,
pie, line, and hi-low-close financial charts.  GraphPak also offers log and
semi-log graphs, surface plots, scalable text, and accommodates all of the
BASIC-supported video modes automatically.  Graphs may be sized, and
positioned anywhere on the screen.

The Graphics Workshop ($149) is for EGA and VGA displays, and it features
low-level graphics primitives that are much smaller and faster than those
in BASIC.   It also includes pulldown and vertical menus, input routines,
and saving and loading images in the popular .PCX format.  Other features
include many video special effects, plus a unique subroutine for sending
graphics screens to Epson/IBM dot matrix and LaserJet printers.

QuickPak Scientific ($149) adds sophisticated numerical methods to your
programs, and includes routines for solving linear algebra, differential
equations, curve fitting, and complex numbers.  Also included are routines
for statistics, vectors, matrices, integration and differentiation, fast
Fourier transforms, non-linear equations, and more.

LaserPak ($149) lets you create laser printer graphics, design logos and
custom hatching patterns, download and manage fonts, and control fully all
aspects of a LaserJet or compatible printer.  The routines in LaserPak are
modeled after BASIC's graphics commands, it also includes primitives for
drawing circles, boxes, lines with any line width, fill patterns, and more.

Don Malin's XREF ($59) is a sophisticated cross-reference utility that can
document an entire application.  It lists all variables, arrays, constants,
and procedures alphabetically by type and scope, even across separate source
modules.  A unique call-tree report identifies your procedures showing who
calls what, which routines are present but never accessed, and more.

ABOUT CRESCENT SOFTWARE

Crescent Software, Inc. has provided quality add-on libraries and utilities
for BASIC programmers since 1986.  Crescent Software's tools have received
exceptional reviews in all of the major computer publications.  Crescent
founder Ethan Winer is a nationally recognized authority on compiled BASIC,
and he has been a contributing editor for PC Magazine and VB Programmers
Journal (formerly BASICPro).  Ethan has also written feature articles for
The Programmers Journal, Computer Language, Microsoft Systems Journal, PC
Techniques, and Inside Microsoft BASIC.

                               ORDER FORM

Name: __________________________________  Daytime Phone: __________

Company: __________________________________________________________

Address (no PO boxes please): _____________________________________

City: __________________________________ State:____  Zip: _________
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Payment (check one):  ___ Check   ___ Visa   ___ Master Card

Credit Card Number: ______________________________ Expires: _______

Card Holder Name: _________________________________________________

Authorized Signature: ____________________________ Date: __________

Quantity   Product                             Price   Total
========   =================================   =====   ========

_______    QuickPak Professional                $199   ________

_______    Quick Screen                         $149   ________

_______    Graphics Quick Screen                $149   ________

_______    P.D.Q.                               $149   ________

_______    PDQComm                               $99   ________

_______    GraphPak Professional                $149   ________

_______    Graphics Workshop                    $149   ________

_______    QuickPak Scientific                  $149   ________

_______    LaserPak                             $149   ________

_______    Don Malin's XREF                      $59   ________

                                           Subtotal:   ________

                                  Less 15% Discount:   ________

                       CT Residents Must Add 6% Tax:   ________

                                   2nd Day Shipping:   ___$8.00

                                              Total:   ________

Crescent Software, Inc.
11 Bailey Avenue
Ridgefield, CT  06877

Office hours are 9:00 to 5:30 Eastern Time.

Orders only: 800-35-BASIC (800-352-2742)
Technical information: 203-438-5300
FAX: 203-431-4626
CompuServe: 70662,2605
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