PC Magazine sBASIC Techniquesand
Utilities

by Ethan Winer

B Riicamesl i by

SHhiT WEes e

fapks Ladmvier Hhet T !
=

i -1
VPR The Linw-pERST L
1

o BABIC. Sk moms
predrainy, = fichar
o Ak
Ags abed Lickes hecsm
ond 00 L e 4
BESSIS [Hignarmeg

iy
Ithan
Winer

In memory of my father, Dr. Frank Winer

Freeware Book, downloaded from
http://www.ethanwiner.com

TABLE OF CONTENTS
| NTRODUCTI ON
Part |1: UNDER THE HOOD
Chapter 1. An Introduction to Conpiled BASIC

Chapter 2. Variables and Constant Data
Chapter 3. Progranm ng Met hods

Part 11: HANDS- ON PROGRAMM NG
Chapter 4. Debuggi ng Strategies
Chapter 5. Conpiling and Linking
Chapter 6. File and Device Handling
Chapter 7. Database and Networ k Progranm ng
Chapter 8. Sorting and Searching
Part 11: BEYOND BASI C

Chapter 9. Program Qptim zation

Chapter 10. Key Menory Areas in the PC
Chapter 11. Accessing DCS and BI GS Servi ces
Chapter 12. Assenbly Language Progranm ng

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -2 -

ACKNONLEDGEMENTS

Many peopl e hel ped nme during the preparation of this book. First and
forenpst | want to thank ny publisher, G ndy Hudson, for her outstanding
support and encouragenent, and for nmaking it all happen. | also want to
thank "bl ack belt" editor Deborah Craig for a truly outstanding job. Never
had | seen soneone reduce a sentence from24 words to | ess than hal f that,
and i nprove the nmeaning in the process. [Unfortunately, readers of this

di sk version are unable to benefit from Deborah's excellent work.]

Several other people deserve praise as well:

Don Malin for his programming advice, and for elimnating
all ny GOTO statenents.

Jonat han Zuck for his contribution on database and network
progranm ng, including all of the dBASE file access routines.

Paul Passarelli for unraveling the nysteries of floating
poi nt enul ation, and for sharing that expertise with ne.

Philip Martin Valley for his research and exanpl es show ng
how to read Lotus 1-2-3 binary files.

Jim Mack for his skillful proof-reading of ny manuscript,
and countl ess good i deas.

M wife Elli for her support and encouragemnment during the
eight long nonths it took to wite this book.

ABQUT THE AUTHOR

Et han Wner is the founder of Crescent Software, Inc. |ocated R dgefield
Connecticut. He has programred in BASI C and assenbly | anguage si nce 1980,
and is the author of Crescent's QuickPak Professional and P.D. Q products.

Et han has al so served as a contributing editor for both PC Magazi ne and
BASI CPro (now Vi sual Basic Programmer's Journal), and has witten numerous
feature articles for other popul ar conputer publications. 1In 1992 Ethan
retired fromwiting software professionally, and now spends his free tine
witing and perform ng nusic.

PREFACE

BASI C has al ways been the nost popul ar | anguage for personal conputers.
It is easy to learn and use, extrenely powerful, and sone formof BASICis
included for free with nearly every PC. Al though BASIC is often associ ated
wi th beginners and students, it is in fact ideally suited for a wi de range
of progranmi ng projects. Because it offers the best features of a high-
| evel |anguage coupled with direct access to DOS and BI OS system servi ces,
BASI C is fast beconing the | anguage of choice for beginners and
pr of essi onal devel opers ali ke.

Thi s book is about power progranm ng using M crosoft conpiled BASIC.
It is intended for people who al ready possess a fundanmental understanding
of BASI C programm ng concepts, but want to achi eve the best perfornance
possi bl e fromtheir BASIC conpiler.

Power programming is knowi ng when and how to use BASI C conmands such as
CALL | NTERRUPT, VARSEG and VARPTR, and even PEEK and POKE effectively. It

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -3 -

i nvol ves understanding the PC s nenory organi zation sufficiently to

det ermi ne how nuch stack space is needed for a recursive subprogram or
function. A power progranmmer knows how to translate a tinme-critica
portion of a BASIC programinto assenbly | anguage when needed. Finally,
and perhaps nost inportantly, power progranm ng neans knowi ng enough about
BASIC s internal operation to determ ne which sequence of instructions is
smal l er or faster than another.

This book will show you how to go beyond creating prograns that nerely
wor k. Because it explains how the conpiler operates and how it interacts
with the BASIC runtine | anguage library, this book will teach you how to
wite prograns that are as snall and fast as possible. Al though the
enphasis here is on Mcrosoft QuickBASI C and the BASI C Prof essi ona
Devel oprment System (PDS), nmuch of the information will apply to other BASIC
conpi l ers such as Power Basic from Spectra Publi shing.

Despite what you may have read, BASIC is the nost capable and easy to
I earn of the high-1evel |anguages. Mdern BASIC conpilers are highly
optimzing, and can thus create extrenely efficient executable prograns.
In addition, you can often achieve with just a few BASI C statenents what
woul d take many pages of code in another high-Ievel |anguage. Moreover
begi nners can be inmedi ately productive in BASIC, while serious progranmers
have a wealth of powerful capabilities at their disposal

M crosoft BASIC has many capabilities that are not available in any
ot her high-1level |anguage. Anong these are dynamic (variabl e-1ength)
strings, autonatic nenory allocation and heap managenent, built-in support
for sophisticated graphics, and interrupt-driven communications. Add to
that huge arrays, network file handling, music and sound, and protection
agai nst inadvertently overwiting menory, and you can see why BASIC is so

popul ar .
This book ainms to provide internediate to advanced programers with
information that is not avail abl e el sewhere. It does not, however, cover

el ementary topics such as navigating the Qui ckBASIC editor, |oading and
saving files, or using the Search and Repl ace feature. That information
is readily available elsewhere. Rather, it delves into previously
uncharted territory, and exami nes conpiled BASIC at its innernost |ayer

Besi des the di scussions and prograns in the text, this book includes a
conpani on di sk [separate ZIP file] that contains all of the subroutines and
other code listed in this book, including several useful utilities.
Installing these prograns is described in the Appendi x.

CONVENTI ONS USED IN TH S BOCK

Thi s book uses the terns Qui ckBASIC and B to nean the M crosoft Qui ckBASIC
4.x and 7.x editing environnents. BC and Conpiler indicate the BC EXE
conmand- | i ne conpiler that cones with Qui ckBASIC, M crosoft BASIC PDS, and
the nowdi scontinued BASIC 6.0. Wen a distinction is necessary, BX w ||
refer to the Qui ckBASI C Extended editor that cones with the BASIC
Pr of essi onal Devel opnent System (PDS). |In npst cases, the discussions wll
be the sane for all of these versions of BASIC. Wen a difference does
occur, the PDS and BX exceptions will be indicated.

[Because there is no way to indicate italics in a disk file, where they
woul d have been used for enphasis or clarity the words are instead
surrounded by asterisks (*).]

HOW THI S BOOK IS ORGANI ZED

This book is divided into parts, and each part contains several chapters
that discuss a specific aspect of BASIC programming. You needn't fully
understand an entire chapter before noving on to the next one. Each topic
will be covered in great depth, and in many cases you will want to return
to a given chapter as your know edge and understandi ng of the subject
matter increases.

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -4 -

Part 1 is "Under the Hood," and its three chapters describe in detai
how your BASI C source code is nanipul ated t hroughout the conpiling and
['i nki ng process.

Chapter 1 presents an overview of conpilers in general, and BASIC
conpilers in particular, It discusses what BASIC conpilers are all about
and how t hey work, and how the conpiled code that is generated interacts
with routines in the runtinme libraries.

Chapter 2 discusses variables, constants, and other program data, and
how they fit within the context of the PC s nmenory organization. This
chapter also covers bit manipul ati on using AND, OR, and XOR

Chapter 3 examines the various control flow nethods avail able in BASIC,
showi ng which statenents and procedure constructs are appropriate in
different situations. |In particular, you will learn the relative
advant ages and di sadvant ages of each method, based on their capabilities,
code size, and speed.

Part 2, "Progranm ng Hands On," exam nes progranm ng techni ques, and
shows specific exanples of witing effective code and al so naking it work.

Chapter 4 expl ores program debugging using the facilities built into the
Qui ckBASI C editing environnent, as well as the CodeView utility that cones
with Mcrosoft BASIC PDS. This chapter al so discusses conmobn progranm ng
probl ens, along with the appropriate sol utions.

Chapter 5 explains conpiling and linking, both fromw thin the QB
environment, and directly fromDOS. A nunber of conpiler options are
i nadequat el y docunented by M crosoft, and each is discussed here in great
detail. A thorough discussion of the LIB.EXE utility programincluded with
BASI C expl ains how |libraries are nanipul ated and organi zed.

Chapter 6 covers all aspects of file and device handling, and di scusses
the nany different ways in which data nay be read and witten. The
enphasis here is on speeding file handling as nmuch as possible, and storing
data on disk efficiently. Because input/output (1/0O devices are accessed
simlarly, they too are described here in detail

Chapter 7 explains the basics of witing database and network
applications, and discusses file | ocking strategies using practica
progranm ng exanples. A series of subroutines show howto read and wite
files using the popul ar dBASE format, and these may be incorporated into
programthat you wite.

Chapter 9 shows how to sort and search array data as quickly as
possi bl e. Several nethods are exam ned including conventional and indexed
sorting, and nany useful subroutines are presented.

The final part, "Beyond BASIC, " includes information that is rarely
covered in books about BASIC. |Its three chapters go far beyond the
informati on provided in any of the Mcrosoft manuals.

Chapter 10 identifies many of the key nenory areas in the PC, and shows
when and how they can be manipulated in a BASIC program

Chapter 11 presents an in-depth discussion of accessing DOS and BI CS
services using CALL I NTERRUPT. These services offer a wealth of
functionality that BASIC cannot otherw se provide directly.

Chapter 12 is an introduction to assenbly |anguage, froma BASIC
progranmer's perspective. This chapter presents many useful subroutines,
and includes a thorough di scussi on of how t hey work.

Finally, the Appendi x describes the additional source files that
acconpany this book.

A BRI EF H STORY OF M CROSOFT COWPI LED BASI C

In March of 1982, IBMrel eased the first BASIC conpiler for the | BM PC.

This conpiler, BASCOM 1.0, was witten by Mcrosoft for |1BM using code and

nmet hods devel oped by Bill Gates, G eg Witten, and others. Al though

M crosoft had already witten BASIC conpilers for the Apple Il and CP/ M

conputers, BASCOM 1.0 was the nost powerful they had produced so far
Conpared to the Mcrosoft BASIC interpreters available at that tine,

BASCOM 1.0 of fered nmany additional capabilities, and al so an enornous

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -5 -

i ncrease in program execution speed. Line nunbers were no | onger

mandat ory, program statenents coul d exceed 255 characters, and a single
string could be as |long as 32,767 characters. Further, assenbly |anguage
subroutines could be linked directly to a conpiled BASI C application

Over the next few years, Mcrosoft continued to enhance the conpiler
and in 1985 it was rel eased by | BMas BASCOM 2. 0. This version offered
many inprovenents over the ol der BASCOM 1.0. Anong the nost inportant were
multi-line DEF FN functions, dynam c arrays, descriptive line |labels (as
opposed to nunbers), network record | ocking, and an | SAMfile handl er.
Wth named subroutines programmers were finally able to exceed the 64K code
size limtation, by witing separate nodul es that could then be |inked
together. The inclusion of subroutine paraneters--1ong overdue for BASIC
-was an equally inportant step toward fostering structured programmi ng
techni ques in the | anguage.

At the sane tinme that IBMrel eased BASCOM 2.0, Mcrosoft offered
essentially the same product as Qui ckBASIC 1.0, but without the ISAMfile
handl er. However, there was one other big difference between these
conpilers: QuickBASIC 1.0 carried a list price of only $99. This low price
was perhaps the nost inportant feature of all, because high-performance
BASIC was finally avail able to everyone, and not just professiona
devel opers.

Encour aged by the trenendous acceptance of QuickBASIC 1.0, M crosoft
quickly followed that with Qui ckBASIC version 2.0 in early 1986. This
i mportant new rel ease added an integrated editing environnent, as well as
EGA graphics capabilities. The editor was especially wel cone, because it
al l owed prograns to be devel oped and tested very rapidly. The environnent
was further enhanced with the advent of Quick Libraries, which all owed
assenbly | anguage subroutines to be easily added to a BASIC program Quick
Li braries al so hel ped launch the start of a new class of BASIC product:
third-party add-on libraries.

In early 1987 Mcrosoft released the next major enhancenent to
Qui ckBASI C, version 3.0. QickBASIC 3.0 included a limted formof step
and trace debugging, as well as the ability to nonitor a variable's val ue
conti nuously during program execution. Al so added was support for the
EGA's 43-1ine text node, and several new | anguage features. Perhaps nost
i mpressive of the new features was the control flow statenments DO and LOOP
and SELECT CASE. Beyond merely providing a useful alternative to the IF
statenment, these constructs also let the conpiler generate nore efficient
code.

Al so added with version 3.0 was optional support for an 8087 nuneric
coprocessor. In order to support a coprocessor, however, Mcrosoft had to
abandon their own proprietary nuneric format.

Both the M crosoft and | EEE net hods for storing single- and doubl e

preci sion nunbers use four bytes and eight bytes respectively, but the bits
are organi zed differently. Al though the | EEE format which the 8087
requires is substantially slower than Mcrosoft's own, it is the current
standard. Therefore, a second version of the conpiler was included solely
to support | EEE math.

By the time Qui ckBASIC 4.0 was announced in |late 1987, hundreds of
t housands of copies of Qi ckBASIC were already in use world-wide. Wth
QUi ckBASIC 4.0, Mcrosoft had created the npbst sophisticated programm ng
envi ronment ever seen in a main-stream | anguage: the threaded p-code
interpreter. This remarkable technol ogy all owed programrers to enjoy the
best features of an interpreted | anguage, but with the execution speed of
a conpiler.

In addition to an I nredi ate node whereby program statenents could be
execut ed one by one, Qi ckBASIC 4.0 al so supported program break-points,
nmonitoring the value of nultiple variables and expressions, and even
st eppi ng *backwards* through a program This greatly enhanced the
debuggi ng capabilities of the | anguage, and increased progranmer
productivity enornously.

Al 'so new in Qui ckBASIC 4.0 was support for inter-Ianguage calling.

Al though this nmeant that a programwitten in Mcrosoft BASIC could now
call subroutines witten in any of the other Mcrosoft |anguages, it also
nmeant that | EEE math was no | onger an option--it became mandatory. Wen

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -6 -

a Qui ckBASIC 4.0 programwas run on a PC equi pped with a coprocessor
floating point math was performed very quickly indeed. However, it was
very much sl ower on every other conputer! This remained a sore point for
many BASI C progranmers, until Mcrosoft introduced BASIC 6.0 later that
year. That version included an alternate math library that was sinmilar to
their original proprietary format.

Al so added in QuickBASIC 4.0 were huge arrays, long (4-byte) integer
vari abl es, user-defined TYPE variables, fixed-length strings, true
functions, and support for CodeVi ew debugging. Wth the introduction of
huge arrays, BASIC programmers could create arrays that exceeded 64K in
size, with only a fewrestrictions. TYPE variables |et the progranmmer
define a conposite data type conprised of any mix of BASIC s intrinsic
data forns, thus adding structure to a programis data as well as to its
code. The newly added FUNCTI ON procedures greatly inproved on BASIC s
earlier DEF FN-style functions by allowi ng recursion, the passing of TYPE
variables and entire arrays as argunments, and the ability to nodify an
i ncom ng paraneter

Al t hough BASIC 6.0 provided essentially the sane environnment and
conpiler as QUickBASIC 4.0, it also included the ability to create prograns
that could be run under OS/2. Oher features of this release were a
utility programto create customrun-tine libraries, and a copy of the
M crosoft Programmer's Editor. The customrun-tinme utility was
particularly valuable, since it allowed progranmrers to conbi ne frequently-
used subroutines with the BRUN. EXE | anguage library, and then share those
routi nes anong any nunber of chai ned nodul es.

QUi ckBASI C 4.5 was introduced in 1988, although the only najor
enhancenment over the earlier 4.0 version was a new help systemand slightly
i mproved pul | -down nenus. Unfortunately, the new nenus required nuch nore
nmenory than Qui ckBASIC 4.0, and the "inproved" environnent reduced the
nmenory avail able for prograns and data by approxi mately 40K. To this day,
nmany programmers continue to use Qui ckBASIC 4.0 precisely because of its
i ncreased program capacity.

In answer to programer's demands for nore string menory and smaller
nore efficient programs, Mcrosoft released the BASIC Professiona
Devel opnent Systemversion 7.0 in late 1989. This was an enornous project
even for a conpany the size of Mcrosoft, and at one point nore than fifty
progranmers were working on the new conpiler and @BX environnent. PDS
version 7.0 finally let BASIC programers exceed the usual 64K string
menory linmt, albeit with sonme Iimtations.

O her features introduced with that version were an ISAMfile handl er
i mproved library granularity, exanple tool box packages for creating sinple
graphi cs and pull-down nenus, |ocal error handling, arrays within TYPE
vari abl es, and greatly inproved docunentation. Because the BX editor uses
expanded nmenory to store subprograms and functions, rmuch | arger prograns
coul d be devel oped without resorting to editing and conpiling outside of
t he environnent.

Sixth nmonths later PDS version 7.1 was rel eased, with the | ong-overdue
ability to redinmension an array but w thout destroying its contents. Al so
added in that version were support for passing fixed-length string arrays
to subprograms and functions, and an option to pass paraneters by value to
BASI C procedures. Although the BYVAL option had been avail abl e since
QUi ckBASIC 4.0, it was useable only with subroutines witten in non-BASIC
| anguages. Wth this nmechanism BASIC can now create nore efficient object
code than ever before

[Just as this book was being conpleted, Mcrosoft rel eased Visual Basic
for DOS. Al though this book does not address VB/ DOS specifically, nost of
the informati on about BASIC PDS applies to VB/DOS. One notabl e exception
is that VB/ DOS supports far strings only, where BASIC PDS | ets you specify
either near strings or far. Because far strings are stored in a separate
"far" area of DOS nmenory, it takes slightly longer to access those strings.
Therefore, a VB/DCS programthat is string-intensive will not be as fast
as an equi val ent conpiled with Qui ckBASIC or with PDS near strings. This
book al so does not cover the pseudo event-driven fornms used by VB/ DCS.]

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -7 -

README- Fi | e
Notes on this disk version of "BASIC Techniques and Wilities"
ENTI RE CONTENTS OF THI S TEXT AND SOFTWARE COPYRI GHT (C) 1994 ETHAN W NER

This is a disk version of "PC Magazi ne BASI C Techni ques and Uilities"
whi ch was originally published by Ziff-Davis Press in Eneryville, CA
When Ziff-Davis Press decided it was no longer profitable for themto
continue printing it, they returned the rights to ne. This disk version
of nmy book is provided free as a service to the programr ng conmunity.
You are wel cone to use any of the code fragnents or conplete prograns in
any way you see fit for no charge, including for conmmercial applications.
However, the author retains all copyrights for the text and the prograns.
You nay share this book and the acconpanying progranms wth others, but
only if you distribute the entire WNER ZIP file as it was originally

upl oaded by nme to ConpuServe.

Wil e |I should not have to bel abor the obvious: Al of this software and
t he acconpanying text are provided "as is", with no warranty expressed or
inmplied. The author is not liable for any danages what soever, incl uding

i ncidental or consequential. Use this information at your own risk. |If
you wi pe out your hard disk or CMOS nenory, | am not responsi bl e!

Al though this book is provided at no charge, | hope | will be allowed one
smal |l comrercial plug: |If you find this information useful and woul d

like to |l earn nore about BASI C and assenbly | anguage programm ng, please
consi deri ng purchasi ng Qui ckPak Professional and/or P.D.Q from Crescent
Software. A brief advertisenment for Crescent describing their products

for DOS BASIC is in the CRESCENT. AD file.

The text is divided into individual chapter files rather than one huge
file, to make it easier to locate information in each chapter. The text
you see here is what | sent to the publisher, and does not include any
editing for style they applied. You may print this book by copying the
chapter files to a printer froma DOS pronpt using the COPY conmand:

COPY CHAP*. TXT LPTL1.

O you may view it using any ASCI1 file browsing programsuch as Vern
Buerg's LIST utility. Where appropriate, the CHR$(12) hard page feeds were
retai ned before and after long programlistings, to aid print formatting.
these will appear as the universal Fenal e synbol when viewed with LI ST.

There was no easy way to create a page index for a book supplied as text
files, but the included TEXTFIND utility will help you | ocate information
inthe text. TEXTFIND accepts a file specification and search string, and
then searches all files that match that specification for the string. So
to determ ne which CHAP*. TXT files nmention, say, DEF SEG you would start
TEXTFIND li ke this:

TEXTFI ND CHAP*. TXT

and then enter "DEF SEG' (wi thout the quotes) at the pronpt. Note that
TEXTFI ND searches without regard to capitalization in either the search
string or the file's text, so entering "def seg" would also work. | have
al so included a version of this programcalled FT.EXE (find text), which
is essentially the sane program but conpiled with Crescent's P.D.Q add-on
library. |If you look at the size of this program (4956 bytes) and conpare
that with what you get after conpiling and Iinking TEXTFIND wi th VB/ DOS
(46698 bytes), you can see the enornous inprovenent that P.D.Q offers.

In some cases, figures fromthe printed book could not be included. In
the printed book Chapter 6 contains a picture of a floppy di sk showi ng how
the sectors and clusters are organi zed. And in Chapter 4 there are sone

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -8 -

figures of CodeVi ew di splay screens that were originally created as .G F
file graphi cs-node screen shots. | have tried to recreate as nany of the
other figures as possible with standard and extended ASCI| characters. |If
your printer does not support extended characters (those with ASC | val ues
greater than 127), figures that contain lines and boxes may print as rows
of italicized letters and nunbers.

You will notice a few comments here and there that were added to this disk
version of nmy book only, and they are enclosed in square brackets: [] Sone
of these comments relate to VB/ DOS, which was not covered in the origina
printed version. Ohers were added as | read the book one |ast tinme before
uploading it, to clarify or enhance the information herein. But since | do
not use VB/DOS on a regular basis, | can't guarantee that all of the VB/ DOS
di fferences and features are docunented conpletely. In nbst cases, however,
the information about BASIC PDS applies equally to VB/ DCS.

Al so notice how the individual sections within each chapter are delineated.
Most printed books identify the different |evels of section headings with
different fonts and type styles. For exanple, najor section headings are
often printed in bold capitalized text; smaller, less-bold fonts are used
for the I ower section levels. This disk version of ny book uses uppercase
"underlined" text for major section headings, plain uppercase for the next
| ower level, and m xed case for the | owest heading | evels.

I will happily provide support for this book and answer questions as tine
pernmits in sections 13 and 14 of the MSBASIC forum on ConmpuServe. My CS
account numnber is 72241,63. | prefer to answer questions there rather than
t hrough ENMAI L, because public nmessages let others benefit fromthe answers.

-- End of README. TXT Et han W ner

CHAPTER 1
AN | NTRODUCTI ON TO COWVPI LED BASI C

This chapter explores the internal workings of the BASIC conpiler. Many
peopl e view a conpiler sinply as a "black box" which magically transforns
BASI C source files into executable code. O course, magi c does not play
a part in any conputer program and the BC conpiler that cones with

M crosoft BASIC is no exception. It is merely a programthat processes
data in the sane way any other programwould. In this case, the data is
your BASI C source code.

You will learn here what the BASIC conpiler does, and how it does it.
You will also get an inside glinpse at sonme of the decisions a conpiler
nmust nmake, as it transforns your code into the assenbly | anguage comrands
the CPU will execute. By truly understanding the conpiler's role, you wll
be able to exploit its strengths and al so avoid its weaknesses.

COWPI LER FUNDAMENTALS

No matter what |anguage a programis witten in, at sone point it nust be
translated into the binary codes that the PC s processor can understand.
Unl i ke BASI C conmands, the CPU within every PC is capable of acting on only
very rudi nentary instructions. Sone typical exanples of these instructions
are "Add 3 to the value stored in nenory |ocation 100", and "Conpare the
val ue stored at address 4012 to the nunmber -12 and junp to the code at
address 2015 if it is less". Therefore, one very inportant value of a

hi gh-1 evel |anguage such as BASIC is that a progranmer can use meani ngfu
nanes instead of nenory addresses when referring to variabl es and
subroutines. Another is the ability to performconpl ex actions that

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -9 -

require many separate small steps using only one or two statenents.

As an exanpl e, when you use the command PRINT X% in a program the value
of X% rnust first be converted fromits native two-byte binary format into
an ASCI| string suitable for display. Next, the current cursor |ocation
nmust be determ ned, at which point the characters in the string are pl aced
into the screen's nenory area. Further, the cursor position has to be
updated, to place it just past the digits that were printed. Finally, if
the last digit happened to end up at the bottomright corner of the screen
the display nust also be scrolled up a line. As you can see, that's an
awful lot of activity for such a seem ngly sinple statenent!

A conpiler, then, is a programthat translates these English-like BASIC
source statenments into the many separate and tiny steps the mcroprocessor
requires. The BASIC conpiler has four major responsibilities, as shown in
Fi gure 1-1 bel ow

1. Translate BASIC statenents into an equival ent series of assenbly
| anguage conmands.

2. Assign addresses in nenory to hold each of the variabl es being used
by the program

3. Renenber the addresses in the generated code where each |ine nunber
or | abel occurs, for GOTO and GOSUB st at enent s.

4, Cenerate additional code to test for events and detect errors when
the /v, /w, or /d conpile options are used.

Figure 1-1: The primary actions performed by a BASIC conpiler.

As the conpiler processes a progranis source code, it translates only the
nost basic statements directly into assenbly | anguage. For other, nore
conpl ex statenents, it instead generates calls to routines in the BASIC
run-time library that is supplied with your conpiler. Wen designing a
BASI C program you woul d nost likely identify operations that need to be
perfornmed nore than once, and then create subprograns or functions rather
than add the same code in-line repeatedly. Likew se, the conpiler takes
advant age of the inherent efficiency of using called subroutines.

For exanpl e, when you use a BASIC statenment such as PRI NT Wrk$, the
conpi l er processes it as if you had used CALL PRINT(Wrk$). That is, PRINT
really is a called subroutine. Simlarly, when you wite OPEN Fi | eNane$
FOR RANDOM AS #1 LEN = 1024, the conpiler treats that as a call to its Open
routine, and it creates code identical to CALL OPEN(Fil eNane$, 1, 1024, 4).
Here, the first argunent is the file nane, the second is the file nunber
you specified, the third is the record length, and the value 4 is BASIC s
internal code for RANDOM Because these are BASIC key words, the CALL
statenment is of course not required. But the end result is identical

Wiile the BC conpiler could certainly create code to print the string
or open the file directly, that would be nuch |l ess efficient than using
subroutines. |Indeed, all of the subroutines in the Mcrosoft-supplied
libraries are witten in assenbly | anguage for the smallest size and
hi ghest possi bl e performance.

DATA STORAGE

The second inportant job the conpiler must performis to identify all of
the variables and other data your programis using, and allocate space for
themin the object file. There are two kinds of data that are nani pul ated
in a BASIC program-static data and dynamic data. The termstatic data
refers to any variabl e whose address and size does not change during the
execution of a program That is, all sinple nuneric and TYPE vari abl es,
and static nunmeric and TYPE arrays. String constants such as "Press a key
to continue" and DATA itens are also considered to be static data, since

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 10 -

their contents never change.

Dynamic data is that which changes in size or |ocation when the program
runs. One exanple of dynamic data is a dynamic array, because space to
hold its contents is allocated when the programruns. Another is string
data, which is constantly noved around in nmenory as new strings are
assigned and old ones are erased. Variable and array storage is discussed
in depth in Chapter 2, so | won't belabor that now The goal here is
sinmply to introduce the concept of variable storage. The inportant point
is that BC deals only with static data, because that nmust be placed into
the object file.

As the conpiler processes your source code, it mnust renmenber each
variable that is encountered, and allocate space in the object file to hold
it. Further, all of this data nmust be able to fit into a single 64K
segrment, which is called DGROUP (for Data Group). Al though the conpiled
code in each object file may be as |arge as 64K, static data is conbi ned
fromall of the files in a multi-nodule program and nay not exceed 64K in
total size. Note that this linmtation is inherent in the design of the
Intel mcroprocessors, and has nothing to do with BC, LINK or DCS.

As each new variable is encountered, roomto hold it is placed into the
next available data address in the object file. (In truth, the conpiler
retains all variable information in nenory, and wites it to the end of the
file all at once followi ng the generated code.) For each integer variable,
two bytes are set aside. Long integer and single precision variabl es
require four bytes each, while double precision variables occupy eight
bytes. Fixed-length string and TYPE vari abl es use a varyi ng nunber of
byt es, dependi ng on the conponents you have defi ned.

Static numeric and TYPE arrays are also witten to the object file by
the conmpiler. The nunber of bytes that are witten of course depends on
how many el ements have been specified in the DIMstatenment. Al so, notice
that no matter what type of variable or array is encountered, only zeroes
are witten to the file. The only exceptions are quoted string constants
and DATA itens, in which case the actual text nust be stored.

Unli ke nuneric, TYPE, and fixed-length variables, strings nust be
handl ed sonmewhat differently. For each string variable a program uses, a
four-byte table called a *string descriptor* is placed into the object
file. However, since the actual string data is not assigned until the
programis run, space for that data need not be handled by the conpiler
Wth string arrays--whether static or dynamic--a table of four-byte
descriptors is allocated.

Finally, each array in the programal so requires an array descriptor
This is sinply a table that shows where the array's data is located in
menory, how nmany elenents it currently holds, the length in bytes of each
el enent, and so forth.

ASSEMBLY LANGUACE CONSI DERATI ONS

In order to fully appreciate how the translation process operates, you wll
first need to understand what assenbly language is all about. Please
understand that there is nothing inherently difficult about assenbly

| anguage. Like BASIC, assenbly |anguage is conprised of individua
instructions that are executed in sequence. However, each of these

i nstructions does nuch |l ess than a typical BASIC statenent. Therefore,
nmany nore steps are required to achieve a given result than in a high-Ieve
| anguage. Sone of these steps will be shown in the foll owi ng exanpl es.

If you are not confortable with the idea of tackling assenbly |anguage
concepts just yet, please feel free to cone back to this section at a later
time.

Let's begin by exam ning sone very sinple BASIC statenents, and see how
they are translated by the conpiler. For sinmplicity, I will show only
integer math operations. The 80x86 family of nicroprocessors can
mani pul ate i nteger values directly, as opposed to single and double
preci sion nunbers which are nmuch nore conplex. The short code fragnment in
Listing 1-1 shows sone very sinple BASIC instructions, along with the
resulting conpiled assenbly code. |n case you are interested,

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 11 -

di sassenblies such as those you are about to see are easy to create for
yoursel f using the Mcrosoft CodeView utility. CodeViewis included with
the Macro Assenbler as well as with BASIC PDS.

A% = 12
MOV WORD PTR [A%, 12 ;move a 12 into the word variable A%

X%= X%+ 1
INC WORD PTR [X% ;add 1 to the word variable X%

Y% = Y% + 100
ADD WORD PTR [Y%, 100 ;add 100 to the word variable Y%

Z% = A%+ B%

MOV AX, WORD PTR [B ;move the contents of B%into AX
ADD AX, WORD PTR [A% ;add to that the value of A%
MOV WORD PTR [Z9 , AX ;move the result into Z%

Listing 1-1: These short exanples show the conpiled results of sonme sinple
BASI C nmat h operati ons.

The first statement, A% = 12, is directly translated to its assenbler

equi valent. Here, the value 12 is *npoved* into the word-sized address
nanmed A% Although an integer is the snallest data type supported by
BASI C, the microprocessor can in fact deal with variables as small as one
byte. Therefore, the WORD PTR (word pointer) argunment is needed to specify
that A%is a full two-byte integer, rather than a single byte. Notice that
i n assenbly | anguage, brackets are used to specify the contents of a nenory
address. This is not unlike BASIC s PEEK() function, where parentheses are
used for that purpose.

In the second statement, X% = X%+ 1, the conpiler generates assenbly
| anguage code to increnment, or add 1 to, the word-sized variable in the
| ocation named X% Since adding or subtracting a value of 1 is such a
conmon operation in all programm ng | anguages, the designers of the 80x86
i ncl uded the INC (and conpl ementary DEC) instruction to handle that.

Y%= Y%+ 100 is simlarly translated, but in this case to assenbler
code that adds the value 100 to the word-sized variable at address Y% As
you can see, the sinple BASIC statenments shown thus far have a direct
assenbly | anguage equivalent. Therefore, the code that BC creates is
extrenely efficient, and in fact could not be inproved upon even by a hunan
hand- codi ng those statenments in assenbly | anguage.

The last statement, Z%= A%+ B% is only slightly nore conplicated than
the others. This is because separate steps are required to retrieve the
contents of one nenory |ocation, before manipulating it and assigning the
result to another location. Here, the value held in variable B%is noved
into one of the processor's registers (AX). The value of variable A%is
then added to AX, and finally the result is moved into Z% There are about
a dozen registers within the CPU, and you can think of themas specia
vari abl es that can be accessed very quickly.

The next exanple in Listing 1-2 shows how BASI C passes argunments to its
internal routines, in this case PRINT and OPEN. Wenever a variable is
passed to a routine, what is actually sent is the address (menory | ocation)
of the variable. This way, the routine can go to that address, and read
the value that is stored there. As in Listing 1-1, the BASIC source code
is shown along with the resultant conpil er-generated assenbl er
i nstructions.

It may al so be worth nentioning that the order in which the argunents
are sent to these routines is determined by how the routines are designed.
In BASIC, if a SUB is designed to accept, say, three paraneters in a
certain order, then the caller nust pass its argunments in that sane order
Paraneters in assenbler routines are handled in exactly the same nanner
O course, any arbitrary order could be used, and what's inportant is
sinmply that they match.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 12 -

PRI NT Work$

MOV AX, OFFSET Wir k$;move the address of Wirk$ into AX
PUSH AX ; push that onto the CPU stack
CALL BS$PESD ;call the string printing routine

OPEN Fi | eName$ FOR OQUTPUT AS #1
MOV AX, OFFSET Fil eNane$;| oad the address of Fil eNane$

PUSH AX ; push that onto the stack

MOV AX 1 ;load the specified file nunber
PUSH AX ;and push that as well

MOV AX -1 ;-1 means that a LEN= was not given
PUSH AX ;and push that

MOV AX 2 ;2 is the internal code for QUTPUT
PUSH AX ; pass that on too

CALL B$CPEN ;finally, call the OPEN routine

Listing 1-2: Many BASIC statenents create assenbl er code that passes
argunents to internal routines, as shown above.

When you tell BASICto print a string, it first |oads the address of the
string into AX, and then pushes that onto the stack. The stack is a
special area in nenory that all progranms can access, and it is often used
in conpiled | anguages to hold the argunents being sent to subroutines. In
this case, the OFFSET operator tells the CPU to obtain the address where
the variabl e resides, as opposed to the current contents of the variable.
Notice that the words of fset, address, and nmenory |location all nean the
same thing. Also notice that calls in assenbly | anguage work exactly the
sane as calls in BASIC. Wiuen the called routine has finished, execution
in the main programresunes wWith the next statement in sequence.

Once the address for Wrk$ has been pushed, BASIC s B$PESD routine is
called. |Internally, one of the first things that B$PESD does is to
retrieve the incom ng address fromthe stack. This way it can locate the
characters that are to be printed. B$PESD is responsible for printing
strings, and other BASIC |ibrary routines are provided to print each type
of data such as integers and single precision val ues.

In case you are interested, PESD stands for Print End-of-line String
Descriptor. Had a senicolon been used in the print statenent--that is,
PRI NT Work$; - -t hen B$PSSD woul d have been called instead (Print Sem col on
String Descriptor). Likewise, printing a 4-byte long integer with a
trailing comma as in PRINT Value& would result in a call to B$PCl4 (Print
Comma I nteger 4), where the 4 indicates the integer's size in bytes.

In the second exanple of Listing 1-2 the OPEN routine is set up and
called in a simlar fashion, except that four paraneters are required
i nstead of only one. Again, each paraneter is pushed onto the stack in
turn, followed by a call to the routine. Mst of BASIC s internal routines
begin with the characters "B$", to avoid a conflict with subroutines of

your own. Since a dollar signis illegal in a BASIC procedure nane, there
is no chance that you will inadvertently choose one of the same nanes that
BASI C uses.

As you can see, there is nothing nysterious or even difficult about
assenbly | anguage, or the translations performed by the BASI C conpiler.
However, a sequence of many small steps is often needed to perform even
sinple cal culations and assignnments. W will discuss assenbly | anguage in
much greater depth in Chapter 14, and ny purpose here is nerely to present
t he underlying concepts.

Pl ease note that variable nanes are not retained after a program has
been conpiled. Once BC has finished its job, all references to each
vari abl e name have been replaced with an equival ent nenory addresses in the
object file. Further, once LINK has joined the object files and |inked
themto the BASIC | anguage libraries, the procedure nanes are lost as well.
These issues will be explored in rmuch greater detail in Chapter 14.

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 13 -

COWPI LER DI RECTI VES

As you have seen, sone code is translated by the conpiler into the
equi val ent assenbly | anguage statenments, while other code is instead
converted to calls to the | anguage routines in the BASIC libraries. Sone
statenments, however, are not translated at all. Rather, they are known as
conpiler directives that nmerely provide information to the conpiler as
it works. Some exanpl es of these non-executable BASIC statenents include
DEFI NT, OPTION BASE, and REM as well as the various "netaconmands" such
as ' $I NCLUDE and ' $DYNAM C. Sone ot hers are SHARED, BYVAL, DATA, DECLARE
CONST, and TYPE

For our purposes here, it is inportant to understand that DI M when used
on a static array is also a non-executable statenent. Because the size of
the array is known when the programis conpiled, BC can sinply set aside
menory in the object file to hold the array contents. Therefore, code does
not need to be generated to actually create the array. Sinmilarly, TYPE END
TYPE statenents also nmerely define a given nunber of bytes that will
ultimately end up in the programfile when the TYPE variable is later
di nensi oned by your program

EVENT AND ERROR CHECKI NG

The | ast compiler responsibility I will discuss here is the generation of
addi tional code to test for events and debugging errors. This occurs
whenever a programis conpiled using the /d, /w, or /v command |ine

swi tches. Al though event trapping and debugging are entirely separate

i ssues, they are handled in a simlar manner. Let's start with event

t rappi ng.

When the IBM PC was first introduced, the ability to handle interrupt-
driven events distinguished it fromits then-current Apple and Conmodore
counterparts. Interrupts can provide an enornous advantage over polling
net hods, since polling requires a programto check constantly for, say,
keyboard or comunications activity. Wth polling, a program nust
periodi cal |y exam ne the keyboard using INKEY$, to determine if a key was
pressed. But when interrupts are used, the programcan sinply go about its
busi ness, confident that any keystrokes will be processed. Here's how that
wor ks:

Each time a key is pressed on a PC, the keyboard generates a hardware
interrupt that suspends whatever is currently happening and then calls a
routine in the ROMBIGCS. That routine in turn reads the character fromthe
keyboard's output port, places it into the PC s keyboard buffer, and
returns to the interrupted application. The next time a program | ooks for
a keystroke, that key is already waiting to be read. For exanple, a
program coul d begin witing a huge nulti-negabyte disk file, and any
keystrokes will still be handled even if the operator continues to type.

Under stand that hardware interrupts are nade possible by a direct
physi cal connection between the keyboard circuitry and the PC s
m croprocessor. The use of interrupts is a powerful concept, and one which
is inmportant to understand. Unfortunately, BASIC does not use interrupts
in nost cases, and this discussion is presented solely in the interest of
conpl et eness.

Event Trappi ng

BASI C provi des a nunber of event handling statenents that perhaps *coul d*
be handled via interrupts, but aren't. Wen you use ON TI MER, for exanpl e,
code is added to periodically call a central event handler to check if the
nunber of seconds specified has el apsed. Because there are so nany
possi bl e event traps that could be active at one tine, it would be
unreasonabl e to expect BASIC to set up separate interrupts to handl e each
possibility. In sone situations, such as ON KEY, there is a corresponding
interrupt. In this case, the keyboard interrupt. However, sonme events

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 14 -

such as ON PLAY(Count), where a GOSUB i s nade whenever the PLAY buffer has
fewer than Count characters remaining, have no correspondi ng physica
interrupt. Therefore, polling for that condition is the only reasonabl e
nmet hod.

The exanple in Listing 1-3 shows what happens when you conpil e using the
/v switch. Notice that the calls to BSEVCK (Event Check) are not part of
the original source code. Rather, they show the additional code that BC
pl aces just before each program statenent.

DEFI NT A-Z

CALL B$EVCK "this call is generated by BC
ON TI MER(1) GOSUB Handl eTi ne

CALL B$EVCK "this call is generated by BC
TI MER ON

CALL B$EVCK "this call is generated by BC
X =10

CALL B$EVCK "this call is generated by BC
Y = 100

CALL B$EVCK "this call is generated by BC
END
Handl eTi ne:

CALL B$EVCK "this call is generated by BC
BEEP

CALL B$EVCK "this call is generated by BC
RETURN

Listing 1-3: Wen the /v conpiler switch is used, BC generates calls to a
central event handl er at each BASI C statenent.

At five bytes per call, you can see that using /v can quickly bloat a
programto an unacceptable size. One alternative is to instead use /w

In fact, /wcan be particularly attractive in those cases where event
handl i ng cannot be avoi ded, because it lets you specify where a call to
BSEVCK is nade: at each line label or line nunber in your source code. The
only downside to using |line nunbers and | abels is that additional working
nmenory is needed by BC to renenber the addresses in the code where those

| abels are placed. This is not usually a problem though, unless the
programis very large or every line is |abeled.

Al'l of the various BASIC event handling comands are specified using the
ON statenent. It is inportant to understand, however, that ON GOTO and ON
GOsSUB do not involve events. That is, they are really just an alternate
formof GOTO and GOSUB respectively, and thus do not require conpiling with
/wor /v.

Error Trappi ng

The | ast compiler option to consider here is the /d switch, because it too
generates extra code that you mght not otherw se be aware of. Wen a
programis conpiled with /d, two things are added. First, for every BASIC
statenent a call is nade to a routine named B$LINA, which nerely checks to
see if Crl-Break has been pressed. Normally, a conpiled BASIC programis
i mune to pressing the Grl-C and Crl-Break keys, except during an | NPUT
or LINE I NPUT statenent. Since nuch of the purpose of a debuggi ng node is
to let you break out of an errant program gone berserk, the Crl-Break
checki ng nmust be perforned frequently. These checks are handl ed i n nuch
the same way as event trapping, by calling a special routine once for each
[ine in your source code.

Anot her inportant factor resulting fromthe use of /d is that all array
references are handl ed through a special called routine which ensures that
the el enent nunber specified is in fact legal. Many people don't realize
this, but when a programis conpiled without /d and an invalid elenment is

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 15 -

given, BASICwill blindly wite to the wong nenory | ocations. For
exanple, if you use DOM Array%{1 TO 100) and then attenpt to assign, say,
el ement nunber 200, BASICis glad to oblige. O course, there *is* no

el enment 200 in that case, and sonme other data will no doubt be overwitten
in the process.

To prevent these errors from goi ng undetected, BC calls the B$HARY (Huge
Array) routine to calculate the address based on the el ement nunber
specified. |f B$HARY determ nes that the array reference is out of bounds,
it invokes an internal error handler and you receive the famliar
"Subscript out of range" message. Nornally, the conpiler accesses array
el ements using as little code as possible, to achieve the highest possible

performance. |If a static array is dinmensioned to 100 el enents and you
assign element 10, BC knows at the time it conpiles your programthe
address at which that elenment resides. It can therefore access that

element directly, just as if it were a non-array vari abl e.

Even when you use a variable to specify an array el enent such as
Array% X) = 12, the starting address of the array is known, and the val ue
in X can be used to quickly calculate how far into the array that el enent
is located. Therefore, the |lack of bounds checking in prograns that do not
use /d is not a bug in BASIC. Rather, it is nerely a trade-off to obtain
very high performance. Indeed, one of the primary purposes of using /d is
to let BC find mistakes in your prograns during devel opnent, though at the
cost of execution speed.

The bi ggest conplication fromBASIC s point of viewis when huge
(greater than 64K) arrays are being manipulated. In fact, B$HARY is the
very same routine that BC calls when you use the /ah switch to specify huge
arrays (hence the name HARY). Since extra code is needed to set up and
call B$HARY conpared to the nornal array access, using /ah also creates
prograns that are larger and slower than when it is not used. Further
because B$HARY is used by both /d and /ah, invalid el ement accesses w |
al so be trapped when you conpil e using /ah

Overflow Errors

The final result of using /d is that extra code is generated after certain
mat h operations, to check for overflow errors that m ght otherw se go
undetected. Overflow errors are those that result in a value too |arge for
a given data type. For exanple

if you nultiply two integers and the result exceeds 32767, that causes an
overflowerror. Simlarly, an underflow error woul d be created by a
calculation resulting a value that is too small

Wien a floating point nmath operation is performed, errors that result
fromoverflow are detected by the routines that performthe cal cul ation
When that happens there is no recourse other than halting your programwth
an appropriate message. |nteger operations, however, are handled directly
by 80x86 instructions. Further, an out of bounds result is not necessarily
illegal to the CPU. Thus, prograns conpiled without the /d option can
produce erroneous results, and wthout any indication that an error
occurred.

To prove this to yourself, conpile and run the short program shown in

Listing 1-4, but without using /d. Although the correct result should be
90000, the answer that is actually displayed is 24464. And you will notice
that no error nmessage is displayed!
As with illegal array references, BC would rather optimize for speed, and
give you the option of using /d as an aid for tracking down such errors as
they occur. |If you conpile the programin Listing 1-4 with the /d option
then BASIC will report the error as expected.

Since an overflow resulting frominteger operations is not technically
an error as far as the CPU is concerned, how, then, can BASIC trap for
that? Although an error in the usual sense is not created, there is a
special flag variable within the CPU that is set whenever such a condition
occurs. Further, a little-used assenbler instruction, INTO (Interrupt 4
if Overflow), will generate software Interrupt 4 if that flag is set.
Therefore, all BC has to do is create an Interrupt 4 handler, and then

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 16 -

place an INTO instruction after every integer math operation in the
conpi |l ed code. The interrupt handler will receive control and display an
"Overfl ow' nessage whenever an INTOcalls it. Since the INTOinstruction
is only one byte and is also very fast, using it this way results in very
little size or perfornmance degradation

X% = 30000
Y%= X%* 10
PRI NT Y%

Listing 1-4: This brief programillustrates how overflow errors are handl ed
in BASI C.

COWPI LER OPTI M ZATI ON

Designing a conpiler for a |anguage as conpl ex as BASI C i nvol ves sonme very
tricky progranm ng indeed. Although it is one thing to translate a BASIC
source file into a series of assenbly | anguage comands, it is another
matter entirely to do it well! Consider that the conpiler nust be able to
accept a BASIC statenment such as X' = ABS(SQR((Y# + ZI') ~ VAL(Wrk$))), and
reduce that to the individual steps necessary to arrive at the correct
result.

Many, many details nmust be accounted for and handl ed, not the |east of
whi ch are syntax or other errors in the source code. Moreover, there are
an infinite nunber of ways that a programer can acconplish the sane thing
Therefore, the conpiler nmust be able to recognize nmany different
progranm ng patterns, and substitute efficient blocks of assenbler code
whenever it can. This is the role of an *optim zing conpiler*.

One inportant type of optimization is called *constant folding*. This
neans that as nuch nmath as possible is perforned during conpilation, rather
than creating code to do that when the programruns. For exanple, if you
have a statenment such as X =4 * Y * 3 BC can, and does, change that to X
=Y * 12. After all, why nmultiply 3 tines 4 later, when the answer can be
determ ned now? This substitution is perforned entirely by the BC
conpi l er, without your know ng about it.

Anot her inportant type of optimization is BASIC s ability to remenber
calculations it has already performed, and use the results again later if
possible. BCis especially brilliant in this regard, and it can | ook ahead
many lines in your source code for a repeated use of the same cal cul ati ons.
Listing 1-5 shows a short fragnent of BASIC source code, along with the
resul tant assenbl er out put.

X%=3* Yo* 4

MOV AX 12 ;move the value 12 into AX

| MUL WORD PTR [Y% ;Integer-Miltiply that times Y%

MOV WORD PTR [X%, AX ;assign the result in AXto X%
A% = S%* 100

MOV BX, AX ;save the result from above in BX

MOV AX 100 ;then assign AX to 100

| MUL WORD PTR [S ynow multiply AX tinmes S%

MOV WORD PTR [A%, AX ;and assign A% fromthe result
Z% = Y% * 12

MOV WORD PTR [Z%, BX ;assign Z%fromthe earlier result
Listing 1-5: These short code fragments illustrate how adept BC is at

reusing the result of earlier calculations already perforned.

As you can see in the first part of Listing 1-5, the value of 3 times 4 was
resolved to 12 by the conpiler. Code was then generated to nultiply the

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 17 -

12 tinmes Y% and the result is in turn assigned to X% This is simlar to
the conpil ed code examined earlier in Listing 1-1. Notice, however, that
before the second nultiplication of S%is perforned, the result currently
in AXis saved in the BX register. Although AX is destroyed by the
subsequent multiplication of S%tines 100, the result that was saved
earlier in BX can be used to assign Z% |l ater on. Al so notice that even
though 3 * 4 was used first, BC was snart enough to realize that this is
the sane as the 12 used |l ater

Wil e the conpiler can actually | ook ahead in your source code as it
wor ks, such optimnization will be thwarted by the presence of |ine nunbers
and | abels, as well as IF blocks. Since a GOTO or GOSUB could junp to a
| abel ed source line fromanywhere in the program there is no way for BC
to be sure that earlier statenments were executed in sequence. Likew se
the conpiler has no way to know which path in an | F/ ELSE bl ock will be
taken at run time, and thus cannot optim ze across those statenents.

THE BASI C RUN- TI ME LI BRARI ES

M crosoft conpiled BASIC lets you create two fundanentally different types
of programs. Those that are entirely self-contained in one .EXE file are
conpiled with the /o conmand line switch. In this case, the conpiler
creates translations such as those we have al ready di scussed, and al so
generates calls to the BASIC | anguage routines contained in the library
files supplied by Mcrosoft. Wen your conpiled programis subsequently
linked, only those routines that are actually used will be added to your
progr am

Wien /o0 is not used, a conpletely different method is enployed. 1In this
case, a special .EXE file that contains support for every BASI C statenent
is |oaded along with the BASI C program when the programis run fromthe DOS
conmand line. As you are about to see, there are advantages and
di sadvant ages to each nmethod. For the purpose of this discussion | wll
refer to stand-al one prograns as BCOM prograns, after the BCOWX. LIB
library nane used in all versions of QuickBASIC. Progranms that instead
require the BRUNkx.LIB library to be present at run tine will be called
BRUN progr ans.

Begi nning with BASIC 7 PDS, the library nam ng conventi ons used by
M crosoft have becone nore obscure. This is because PDS includes a nunber
of variations for each nethod, depending on the type of "math package" that
is specified when conpiling and whether you are conpiling a programto run
under DCS or OS5/ 2. These variations will be discussed fully in Chapter 6,
when we examine all of the possible options that each conpil er version has
to offer. But for now, we will consider only the two basi c nethods--BCOM
and BRUN. The primary differences between these two types of prograns are
shown in Figure 1-2

1. BCOM prograns require less nenory, run faster, and do not require
the presence of the BRUNxx. EXE fil e when the programis run.

2. BRUN progranms occupy |ess disk space, and al so al | ow subsequent
chaining to other programs that can share the conmon library code which
is already resident. Chained-to prograns also |oad quickly because the
BRUN library is already in menory.

Figure 1-2: A comparison of the fundanental differences between BCOM and
BRUN pr ogr ans.

St and- al one BCOM prograns are always |arger than an equival ent BRUN program
because the library code for PRINT, INSTR and so forth is included in the
final .EXE file. However, less *nmenory* will be required when the program
runs, since only the code that is really needed is |oaded into the PC

Li kewi se, a BRUN programwi || take | ess di sk space, because it contains
only the conpiled code. The actual routines to handl e each BASIC

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 18 -

statenments are stored in the BRUNkx.LIB library, and that library is | oaded
automatically when the nmain programis run from DOS

You might think that since a BRUN programis physically snaller on disk
it will load faster, but this is not necessarily true. Wen you execute
a BRUN program fromthe DOS comrand |ine, one of the first things it does
is load the BRUN . EXE support file. Since this support file is fairly

large, the overall load tine will be nmuch greater than the conpil ed BASIC
programis file size would indicate. However, if the main program
subsequently chains to another BASIC program that programwll | oad

qui ckly because the BRUN file does not need to be | oaded a second tine.

One other inportant difference between these two nmethods is the way that
t he BASI C | anguage routines are accessed. Wen a BCOM programis conpil ed
and |inked, the necessary routines are called in the usual fashion. That
is, the conpiler generates code that calls the routines in the BCOM library
directly. Wen the programis subsequently |inked, the procedure nanes are
translated by LINK into the equival ent menory addresses. That is, a cal
to PRINT is in effect translated from CALL B$PESD t o CALL ####: ####, where
#i#H#, ##4## i s a segnent and address.

BRUN prograns, on the other hand, instead use a systemof interrupts to
access the BASIC | anguage routines. Since there is no way for LINK to know
exactly where in nmenory the BRUNxx. EXE file will be ultinmately | oaded, the
interrupt vector table located in |ow nmenory is used to hold the various
routi ne addresses. Although many of these interrupt entries are used by

the PC s systemresources, many others are available. Again, | wll defer
a thorough treatnment of call nethods and interrupts until Chapter 14. But
for now, suffice it to say that a direct call is slightly faster than an
indirect call, where the address to be called nust first be retrieved from
a table.

As an interesting aside, the routines in the BRUNxx. EXE file in fact
nodify the caller's code to performa direct call, rather than an interrupt

instruction. Therefore, the first time a given block of code is executed,
it calls the run-tine routines through an interrupt instruction
Thereafter, the address where the BRUN fil e has been | oaded is known, and
will be used the next tinme that same bl ock of code is executed. In
practice, however, this inproves only code that lies within a FOR NEXT,
VWH LE, or DO loop. Further, code that is executed only once will actually
be nmuch slower than in a BCOM program because of the added self-
nodi fi cation (the program changes itself) instructions.

Noti ce that when BC conpiles your program it places the name of the
appropriate library into the object file. The nanme BC uses depends on
whi ch conpiler options were given. This way you don't have to specify the
correct name nanually, and LINK can read that nane and act accordingly.
Al t hough Qui ckBASI C provides only two libraries--one for BCOM prograns and
one for BRUN--BASIC PDS of fers a nunber of additional options. Each of
these options requires the programto be linked with a different library.
That is, there are both BRUN and BCOM | ibraries for use with 05/ 2, for near
and far strings, and for using | EEE or Mcrosoft's alternate math
libraries. Yet another library is provided for 8087-only operation

GRANULARI TY

Until now, we have exami ned only the actions and methods used by the BC
conpil er. However, the process of creating an .EXE file that can be run
fromthe DOS command line is not conplete until the compiled object file
has been linked to the BASIC libraries. | stated earlier that when a
stand-al one programis created using the /o switch, only those routines in
the BCOM library that are actually needed will be added to the program
Unfortunately, that is not entirely accurate. Wile it is true that LINK
is very smart and will bring in only those routines that are actually
called, there is one catch

I magi ne that you have witten a BASI C program which is conprised of two
separate nmodules. In one file is the main programthat contains only in-
line code, and in the other are two BASI C subprogranms. Even if the main
programcalls only one of those subprograms, both will be added when the

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 19 -

programis linked. That is, LINK can resolve routines to the source file
| evel only, but cannot extract a single routine froman object nodul e which
contains nmultiple routines. Since an .LIB library file is nerely a
coll ection of separate object nmodules, all of the routines that reside in
a given nodule will be added to a program even if only one has been
accessed. This property is called *granularity*, and it determ nes how
finely LINK can renove routines froma library.

In the case of the libraries supplied with BASIC, the determ ning factor
i s which assenbly | anguage routines were conbined with which other routines
in the sane source file by the programmers at Mcrosoft. In QuickBASIC
4.5, for exanple, when a programuses the CLS statenent, the routines that
handl e COLOR, CSRLIN, POS(0), LOCATE, and the function form of SCREEN are
also added. This is true even if none of those other statenents have been
used. Fortunately, Mcrosoft has done nuch to inprove this situation in
BASI C PDS, but there is still roomfor inprovenent. |In BASIC PDS, CLS is
stored in a separate file, however POS(0), CSRLIN, and SCREEN are stil
toget her, as are COLOR and LOCATE.

ovi ously, Mcrosoft has their reasons for doing what they do, and
won't attenpt to second guess their expertise here. The BASIC | anguage
libraries are extrenely conplex and contain many routines. (The Qui ckBASIC
4.5 BCOWS. LIB file contains 1,485 separate assenbl er procedures.) Wth
such an enornous nunber of assenbly | anguage source files to deal with, it
no doubt nakes a |l ot of sense to organize the related routines together
But it is worth nmentioning that Crescent Software's P.D.Q library can
repl ace nuch of the functionality of the BCOMIibraries, and with conplete
granularity. 1In fact, P.D.Q can create working . EXE prograns from BASI C
source that are | ess than 800 bytes in size.

In this chapter, you | earned about the process of conpiling, and the kinds
of deci sions a sophisticated conpiler such as Mcrosoft BASIC nust mnake.
In some cases, the BASIC conpiler perforns a direct translation of your
BASI C source code into assenbly |anguage, and in others it creates calls
to existing routines in the BCOMIibraries. Besides creating the actua
assenbl er code, BASIC nust also allocate space for all of the data used in

a program
You al so | earned sone basi cs about assenbly | anguage, which will be
covered in nore detail in Chapter 13. However, exanples in upcom ng
chapters will also use brief assenbly | anguage exanples to show t he
relative efficiency of different coding styles. In Chapter 2, you wll

| earn how variabl es and other data are stored in nenory.

CHAPTER 2

VARI ABLES AND DATA

DATA BASI CS

In Chapter 1 you examined the role of a conpiler, and | earned how it
transl ates BASI C source code into the assenbly | anguage comuands a PC
requires. But no natter how inportant the conpiler is when creating a
final executable program it is only half of the story. This chapter
di scusses the equally inportant other half: data. |ndeed, sone form of
data is integral to the operation of every useful programyou wll ever
wite. Even a programthat nerely prints "Hello" to the display screen
requires the data "Hello".

Data conmes in many shapes and sizes, starting with a single bit,
conti nui ng t hrough ei ght-byte doubl e precision variables, and extending al

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -20 -

the way to multi-megabyte disk files. In this chapter you will |earn about
the nany types of data that are available to you, and how they are
mani pul ated in a BASIC program You will also learn how data is stored and
assi gned, and how BASI C s nenory mnmanagenent routines operate.

Conpi | ed BASI C supports two fundanmental types of data (numeric and
string), two primary nmethods of storage (static and dynamic), and two ki nds
of menory allocation (near and far). O course, the nyriad of data types
and nethods is not present to confuse you. Rather, each is appropriate in
certain situations. By fully understanding this conplex subject, you wll
be able to wite prograns that operate as quickly as possible, and use the
| east anount of menory.

I will discuss each of the follow ng types of data: integer and
floating point nuneric data, fixed-length and dynamic (vari abl e-1ength)
string data, and user-defined TYPE variables. Besides variables which are
identified by name, BASIC supports named constant data such as litera
nunbers and quoted strings.

I will also present a conplete conparison of the nenory storage
net hods used by BASIC, to conpare near versus far storage, and dynam c
versus static allocation. It is inportant to understand that near storage
refers to variables and other data that conpete for the sane 64K data space
that is often referred to as Near Menory or Data Space. By contrast, far
storage refers to the remaining nmenory in a PC, up to the 640K linit that
DCS i nposes.

The di stinction between dynam ¢ and static allocation is al so
i mportant to establish now Dynamic data is allocated in whatever nenory
is available when a programruns, and it may be resized or erased as
necessary. Static data, on the other hand, is created by the conpiler and
placed directly into the .EXE file. Therefore, the nmenory that hol ds
static data may not be relinquished for other uses.

Each type of data has its advantages and di sadvant ages, as does each
storage nethod. To use an extreme exanple, you could store all nuneric
data in string variables if you really wanted to. But this would require
using STR$ every tine a value was to be assigned, and VAL whenever a
calculation had to be nade. Because STR$ and VAL are relatively slow,
using strings this way will greatly reduce a progranm s perfornmance.

Further, storing nunbers as ASCI| digits can also be very wasteful of
menory. That is, the double precision value 123456789. 12345 requires
fifteen bytes, as opposed to the usual eight.

Much of BASIC s broad appeal is that it lets you do pretty much
anyt hing you choose, using the style of programm ng you prefer. But as the
exanpl e above illustrates, selecting an appropriate data type can have a
deci ded inpact on a programis efficiency. Wth that in mnd, let's exam ne
each kind of data that can be used with BASIC, begi nning with integers.

| NTEGERS AND LONG | NTEGERS

An integer is the smallest unit of nuneric storage that BASIC supports, and
it occupies two bytes of nmenory, or one "word". Although various tricks
can be used to store single bytes in a one-character string, the integer
remai ns the nost conpact data type that can be directly mani pulated as a
nuneric value. Since the 80x86 m croprocessor can operate on integers
directly, using themin calculations will be faster and require | ess code
than any other type of data. An integer can hold any whol e nunber within
the range of -32768 to 32767 inclusive, and it should be used in al
situations where that range is sufficient. 1ndeed, the enphasis on using
i nt egers whenever possible will be a recurring thene throughout this book
When the range of integer values is not adequate in a given
progranm ng situation, a long integer should be used. Like the regular
i nteger, long integers can accommodat e whol e nunbers only. A long integer
however, occupies four bytes of nenory, and can thus hold nore information.
This yields an all owabl e range of values that spans from-2147483648
t hrough 2147483647 (approximately +/- 2.15 billion). Al though the PC s
processor cannot directly manipulate a long integer in npst situations,

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook -21 -

cal cul ations using themw Il still be nuch faster and require | ess code
when conpared to floating point nunbers.

Regar dl ess of which type of integer is being considered, the way they
are stored in nenory is very simlar. That is, each integer is conprised
of either two or four bytes, and each of those bytes contains eight bits.
Since a bit can hold a value of either 0 or 1 only, you can see why a
| arger nunber of bits is needed to accommopdate a wi der range of val ues.
Two bits are required to count up to three, three bits to count to seven
four bits to count to fifteen, and so forth.

A single byte can hold any value between 0 and 255, however that sane
range can al so be considered as spanning from-128 to 127. Simlarly, an
i nteger value can hold nunbers that range fromeither 0 to 65535 or -32768
t hrough 32767, depending on your perspective. Wen the range is considered
to be 0 to 65535 the values are referred to as *unsi gned*, because only
positive values may be represented. BASIC does not, however, support
unsi gned integer values. Therefore, that same range is used in BASIC
prograns to represent values between -32768 and 32767. \Wen i nteger
nunbers are considered as using this range they are called *signed*.

If you conpile and run the short programin the listing that follows,
the transition frompositive to negative nunbers will show how BASIC treats
val ues that exceed the integer range of 32767. Be sure not to use the /d
debuggi ng option, since that will cause an overflow error to be generated
at the transition point. The BASIC environnent perforns the sane checking
as /d does, and it too will report an error before this programcan run to
conpl eti on.

Nunber % = 32760

FOR X% =1 TO 14
Nunber % = Nunber % + 1
PRI NT Nunber %

NEXT

Di spl ayed result:

32761 32762 32763 32764 32765
32766 32767 - 32768 - 32767 - 32766
- 32765 - 32764 - 32763 - 32762 -32761

As you can see, once an integer reaches 32767, adding 1 again causes the
value to "wap" around to -32768. Wien Nunber%is further increnented its
val ue continues to rise as expected, but in this case by becom ng "l ess
negative". In order to appreciate why this happens you nust understand how
an integer is constructed fromindividual bits. | amnot going to bel abor
bi nary nunber theory or other esoteric material, and the brief discussion
that follows is presented solely in the interest of conpleteness.

BITS "N BYTES

Si xteen bits are required to store an integer value. These bits are
nunbered O through 15, and the least significant bit is bit number 0. To
hel p understand this term nol ogy, consider the decimal nunber 1234. Here,
4 is the least significant digit, because it contributes the |least value to
the entire nunber. Simlarly, 1 is the nost significant portion, because
it tells how many thousands there are, thus contributing the nost to the
total value. The binary nunbers that a PC uses are structured in an
i dentical nmanner. But instead of ones, tens, and hundreds, each binary
digit represents the nunber of ones, twos, fours, eights, and so forth that
conprise a given byte or word

To represent the range of values between 0 and 32767 requires fifteen
bits, as does the range from-32768 to -1. When considered as signed
nunbers, the nost significant bit is used to indicate which range is being

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook -22 -

considered. This bit is therefore called the sign bit. Long integers use
the sane nmethod except that four bytes are used, so the sign bit is kept in
t he hi ghest position of the fourth byte.

Sel ected portions of the successive range fromO through -1 (or 65535)
are shown in Table 2-1, to illustrate how binary counting operates. When
counting with decimal nunbers, once you reach 9 the nunber is wapped
around to O, and then a 1 is placed in the next colum. Since binary bits
can count only to one, they wap around rmuch nore frequently. The
Hexadeci mal equi val ents are al so shown in the table, since they too are
related to binary nunbering. That is, any Hex val ue whose nost significant
digit is 8 or higher is by definition negative.

Si gned Unsi gned

Deci nal Deci nal Bi nary Hex
0 0 0000 0000 0000 0000 0000
1 1 0000 0000 0000 0001 0001
2 2 0000 0000 0000 0010 0002
3 3 0000 0000 0000 0011 0003
4 4 0000 0000 0000 0100 0004

32765 32765 0111 1111 1111 1101 7FFD

32766 32767 0111 1111 1111 1110 7FFE
32767 32767 0111 1111 1111 1111 7TFFF
- 32768 32768 1000 0000 0000 0000 8000
- 32767 32769 1000 0000 0000 0001 8001
- 32766 32770 1000 0000 0000 0010 8002
-4 65531 1111 1111 1111 1100 FFFB
-3 65532 1111 1111 1111 1101 FFFC
-2 65533 1111 1111 1111 1110 FFFD
-1 65534 1111 1111 1111 1111 FFFE
0 65535 0000 0000 0000 0000 FFFF

Table 2-1: Wen a signed integer is increnented past 32767, its val ue waps
around and becomes negati ve.

MEMORY ADDRESSES AND PO NTERS

Bef ore we can discuss such issues as vari able and data storage, a few terns
nmust be clarified. A nmenory address is a nunbered |ocation in which a
given piece of data is said to reside. Addresses refer to places that

exist in a PCs nenory, and they are referenced by those nunbers. Every PC
has thousands of nenory addresses in which both data and code instructions
may be stored.

A *pointer* is sinply a variable that holds an address. Consider a
singl e precision variable named Val ue that has been stored by the conpiler
at menory address 10. |If another variable--let's call it Address%-is then
assi gned the val ue 10, Address% could be considered to be a pointer to
Val ue. Pointer variables are the bread and butter of |anguages such as C
and assenbl er, because data is often read and witten by referring to one
variabl e which in turn holds the address of another variabl e.

Al t hough BASI C shields you as the programrer from such details,
pointers are in fact used internally by the BASIC | anguage library
routines. This method of using pointers is sonetimes called indirection
because an additional, indirect step is needed to first go to one vari abl e,
get an address, and then go to that address to access the actual data. Now
let's see how these nenory issues affect a BASI C program

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook -23 -

| NTEGER STORAGE

When a conventional two-byte integer is stored in the PCs nmenory, the

| ower byte is kept in the |ower nenory address. For exanple, if X%is said
to reside at address 10, then the |l east significant byte is at address 10
and the nost significant byte is at address 11. Likew se, a long integer
stored at address 102 actually occupi es addresses 102 through 105, with the
| east significant portion at the | owest address. This is shown graphically
in Figure 2-1.

+- Address 10 +- Address 11 +- Address 12

Figure 2-1: An integer is stored in two adjacent nenory locations, with the
Least Significant Byte at the | ower address, and the Mdst Significant Byte
at the higher.

Thi s arrangenent certainly seens sensible, and it is. However, sone people
get confused when | ooking at a range of nmenory addresses bei ng di spl ayed,
because the values in | ower addresses are listed at the | eft and the higher
address val ues are shown on the right. For exanple, the DEBUG utility that
cones with DOS will display the Hex nunber ABCD as CD foll owed by AB.
nmention this only because the order in which digits are displayed wll
becone inportant when we di scuss advanced debugging in Chapter 4.

In case you are wondering, the conpiler assigns addresses in the order
in which variables are encountered. The first address used is generally 36
Hex, so in the program below the variables will be stored at addresses 36,
38, 3A, and then 3C. Hex nunbering is used for these exanpl es because
that's the way DEBUG and CodeVi ew report them

A= 1 "this is at address &H36
B% = 2 "this is at address &H38
C%=3 "this is at address &H3A
D% =4 "this is at address &H3C

FLCATI NG PO NT VALUES

Fl oati ng poi nt variabl es and nunbers are constructed in an entirely

di fferent manner than integers. Were integers and long integers sinply
use the entire two or four bytes to hold a single binary nunber, floating
point data is divided into portions. The first portion is called the

manti ssa, and it holds the base value of the nunmber. The second portion is
the exponent, and it indicates to what power the mantissa nust be raised to
express the conplete value. Like integers, a sign bit is used to showif
the nunber is positive or negative.

The structure of single precision values in both | EEE and the ori gi nal
proprietary Mcrosoft Binary Format (MBF) is shown in Figure 2-2. For |EEE
nunbers, the sign bit is in the nost significant position, followed by
ei ght exponent bits, which are in turn followed by 23 bits for the
manti ssa. Doubl e precision | EEE values are structured simlarly, except
el even bits are used for the exponent and 52 for the nantissa.

Doubl e precision MBF nunbers use only eight bits for an exponent
rather than el even, trading a reduced absolute range for increased
resolution. That is, there are fewer exponent bits than the | EEE met hod

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook -24 -

uses, which neans that extrenely |arge and extrenely small nunbers cannot
be represented. However, the additional mantissa bits offer nore absol ute
digits of precision.

The | EEE f or mat :

Figure 2-2: A single precision value is conprised of a Sign bit, eight
Exponent bits, and 23 bits to represent the Mantissa. Each |etter shown
here represents one bit, and the bytes on the left are at hi gher addresses.

Notice that with | EEE nunbers, the exponent spans a byte boundary. This
undoubt edly contributes to the slow speed that results from usi ng nunbers
inthis format when a coprocessor is not present. Contrast that with

M crosoft's MBF format in which the sign bit is placed between the exponent
and mantissa. This allows direct access to the exponent with fewer
assenbl er instructions, since the various bits don't have to be shifted

ar ound.

The | EEE format is used in QUi ckBASIC 4.0 and |ater, and BASI C PDS
unl ess the /fpa option is used. BASIC PDS uses the /fpa switch to specify
an alternate math package whi ch provides increased speed but with a
slightly reduced accuracy. A though the /fpa format is in fact newer than
the original MBF used in interpreted BASIC and QuickBASIC 2 and 3, it is
not quite as fast.

As was al ready nentioned, double precision data requires tw ce as many
bytes as single precision. Further, due to the inherent conplexity of the
way floating point data is stored, an enornous anmount of assenbly | anguage
code is required to nmanipulate it. Conmmon sense therefore indicates that
you woul d use single precision variabl es whenever possible, and reserve
doubl e precision only for those cases where the added accuracy is truly
necessary. Using either floating point variable type, however, is stil
very nuch slower than using integers and long integers. Wrse, rounding
errors are inevitable with any floating point nethod, as the follow ng
short program fragnment illustrates.

FOR X% = 1 TO 10000

Nunber! = Nunber! + 1.1
NEXT
PRI NT Nunber!

Di spl ayed result:

10999. 52

Al t hough the correct answer should be 11000, the result of adding 1.1 ten
thousand times is incorrect by a small anmount. |If you are witing a
programthat conputes, say, tax returns, even this snmall error will be
unacceptabl e. Recognizing this problem Mcrosoft devel oped a new Currency
data type which was introduced with BASI C PDS version 7.0.

The Currency data type is a cross between an integer and a floating
poi nt nunber. Like a double precision value, Currency data al so uses eight
bytes for storage. However, the nunbers are stored in an integer fornmat

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 25 -

with an inplied scaling of 10000. That is, a binary value of 1 is used to
represent the value .0001, and a binary value of 20000 is treated as a 2.
This yields an absol ute accuracy to four decinmal places, which is nore than
sufficient for financial work. The absolute range of Currency data is plus
or mnus 9.22 times 10 N 14 (£ 9. 22E14 or 922, 000, 000, 000, 000. 0000), whi ch
is very wide indeed. This type of storage is called Fixed-Point, because
t he nunber of decimal places is fixed (in this case at four places).

Currency data offers the best conpronise of all, since only whole
nunbers are represented and the fractional portion is inplied. Further
since a separate exponent and manti ssa are not used, cal cul ations involving
Currency data are extrenely fast. |In practice, a |loop that adds a series
of Currency variables will run about half as fast as the sane | oop using
long integers. Since twice as many bytes nust be mani pul ated, the net
effect is an overall efficiency that is conparable to |ong integers.
Conpare that to double precision cal cul ations, where nani pul ati ng the sane
ei ght bytes takes nore than six times |onger

As you have seen, there is a great deal nore to "sinple" numeric data
than woul d appear initially. But this hardly begins to scratch the surface
of data storage and nanipulation in BASIC. W will continue our tour of
BASIC s data types with conventional dynamic (variable-Iength) strings,
bef ore proceeding to fixed-length strings and TYPE vari abl es.

DYNAM C STRI NGS

One of the nobst inportant advantages that BASIC hol ds over all of the other

popul ar hi gh-1evel |anguages is its support for dynamic string data. 1In
Pascal , for exanple, you nust declare every string that your programwil|
use, as well as its length, before the program can be conpiled. I|f you

determ ne during execution of the programthat additional characters nust
be stored in a string, you re out of |uck.

Li kewi se, strings in Care treated internally as an array of single
character bytes, and there is no graceful way to extend or shorten them
Speci fying nore characters than necessary will of course waste nenory, and
specifying too few wi |l cause subsequent data to be overwitten. Since C
perfornms virtually no error checking during program execution, assigning to
a string that is not long enough will corrupt nmenory. And indeed, problens
such as this cause untold grief for C progranmers.

Dynanic string nenory handling is built into BASIC, and those routines
are witten in assenbly | anguage. BASICis therefore extrenely efficient
and very fast in this regard. Since Cis a high-level |anguage, witing an
equi val ent nenory manager in C would be quite slow and bul ky by conpari son
| feel it is inmportant to point out BASIC s superiority over Cin this
regard, because C has an undeserved reputation for being a very fast and
power ful | anguage.

Conpi | ed BASIC i npl ements dynamic strings with varying | engths by
mai ntaining a *string descriptor* for each string. A string descriptor is
simply a four-byte table that holds the current length of the string as
well as its current address. The format for a BASIC string descriptor is
shown in Figure 2-3. In QuickBASIC prograns and BASI C PDS when far strings
are not specified, all strings are stored in an area of nenory called the
near heap. The string data in this nmenory area is frequently shuffled
around, as new strings are assigned and old ones are abandoned.

Hommm - + Higher addresses

64 "

T I Address

B2 ! |

[[!

I 1 !

' 00 | |

Fomemm - i Length

0V VARPTR(Wor k$)
R +

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 26 -

Figure 2-3: Each string in a Qui ckBASI C program has a correspondi ng string
descriptor, which holds its current I ength and address. The string in this
exanple has a length of ten characters (OA Hex) and its data is presently
at address 25778 (64B2 Hex).

The |ower two bytes in a string descriptor together hold the current |ength
of the string, and the second two bytes hold its address. The nenory

| ocation at the bottomof Figure 2-3 is at the | owest address. The short
pr ogram bel ow shows how you coul d access a string by peeking at its

descri ptor.

DEFINT A-Z

Test$ = "BASI C Techniques and Wilities"

Descr VARPTR(Test $)

Length = PEEK(Descr) + 256 * PEEK(Descr + 1)
Addr = PEEK(Descr + 2) + 256 * PEEK(Descr + 3)

PRINT "The length is"; Length

PRI NT "The address is"; Addr

PRI NT "The string contains ";

FOR X = Addr TO Addr + Length - 1
PRI NT CHR$(PEEK(X)) ;

NEXT
Di spl ayed result:

The length is 17
The address is 15646 (this will vary)
The string contains BASIC Techniques and Uilities

Each time a string is assigned or reassigned, nmenory in the heap is clained
and the string's descriptor is updated to reflect its new length and
address. The old data is then marked as bei ng abandoned, so the space it
occupied may be reclaimed later on if it is needed. Since each assignnent
clainms new nenory, at some point the heap will become full. Wen this
happens, BASIC shuffles all of the string data that is currently in use
downward on top of the ol der, abandoned data. This heap conpaction process
is often referred to colorfully as *garbage col |l ection*.

In practice, there are two ways to avoi d having BASI C cl ai m new space
for each string assignnent--which takes tine--and you shoul d consi der these
when speed is paranount. One nethod is to use LSET or RSET, to insert new
characters into an existing string. Although this cannot be used to nmake a
string longer or shorter, it is very nuch faster than a strai ght assi gnnent
whi ch invokes the nmenory managenent routines. The second nmethod is to use
the statement formof MD$, which is not quite as fast as LSET, but is nore
flexible.

M crosoft BASIC perforns sone additional trickery as it manages the
string data in a program For exanple, whenever a string is assigned, an
even nunber of bytes is always requested. Thus, if a five-character string
is reassigned to one with six characters, the sanme space can be reused.
Since claimng new nenory requires a finite amount of time and al so causes
garbage collection periodically, this technique helps to speed up the
string assignhnent process.

For exanple, in a programthat builds a string by addi ng new
characters to the end in a | oop, BASIC can reduce the nunber of tines it
nmust clai mnew nenory to only every other assignnent. Another advantage to
always al l ocating an even nunber of bytes is that the 80286 and | ater
nm croprocessors can copy two-byte words much faster than they can copy the
equi val ent nunber of bytes. This has an obvi ous advant age when | ong
strings are being assigned.

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 27 -

In nost cases, BASIC s use of string descriptors is nuch nore
efficient than the nethod used by C and other |anguages. In C, each string
has an extra trailing CHR$(0) byte just to mark where it ends. Wile using
a single byte is less wasteful than requiring a four-byte table, BASIC s
nmethod is many tines faster. In Cthe entire string nust be searched just
to see howlong it is, which takes tine. Likew se, conparing and
concatenating strings in Crequires scanning both strings for the
termnating zero character. The same operations in BASIC require but a
single step to obtain the current |ength.

Pascal uses a nethod that is similar to BASIC s, in that it remenbers
the current length of the string. The length is stored with the actua
string data, in a byte just before the first character. Unfortunately,
using a single byte limts the maxi mum |l ength of a Pascal string to only
255 characters. And again, when a string is shortened in Pascal, the extra
characters are not rel eased for use by other data. But it is only fair to
poi nt out that Pascal's nethod is both fast and conpact. And since strings
in C and Pascal never nove around in nmenory, garbage collection is not
required

Al 't hough a BASIC string descriptor uses four bytes of additional
nmenory beyond that needed for the actual data, this is only part of the
story. An additional two bytes are needed to hold a special "variable"
called a *back pointer*. A back pointer is an integer word that is stored
in menory imediately before the actual string data, and it holds the
address of the data's string descriptor. Thus, it is called a back pointer
because it points back to the descriptor, as opposed to the descriptor
whi ch points to the data.

Because of this back pointer, six additional bytes are actually needed
to store each string, beyond the nunber of characters that it contains.

For exanple, the statenent Work$ = "BASIC' requires twelve bytes of data
nmenory--five for the string itself, one nore because an even nunber of
bytes is always clainmed, four for the descriptor, and two nore for a back
pointer. Every string that is defined in a program has a correspondi ng
descriptor which is always present, however a back pointer is naintained
only while the string has characters assigned to it. Therefore, when a
string is erased the two bytes for its back pointer are also relinquished.

I won't bel abor this discussion of back pointers further, because
understanding themis of little practical use. Suffice it to say that a
back pointer hel ps speed up the heap conpaction process. Since the address
portion of the descriptor nust be updated whenever the string data is
noved, this pointer provides a fast |ink between the data being noved and
its descriptor. By the way, the term"pointer"” refers to any variabl e that
hol ds a nenory address, regardl ess of what |anguage is being considered.

FAR STRI NGS | N BASI C PDS

BASI C PDS offers an option to specify "far strings", whereby the string
data is not stored in the same 64K nenory area that holds nost of a
programi s data. The nethod of storage used for far strings is of necessity
much nore conpl ex than near strings, because both an address and a segnent
nmust be kept track of. Although Mcrosoft has made it clear that the

structure of far string descriptors may change in the future, | would be
remss if this undocunented infornation were not reveal ed here. The
followi ng description is valid as of BASIC 7.1 [it is still valid for
VB/ DCS t o0] .

For each far string in a program a four-byte descriptor is naintained
in near nenory. The lower two bytes of the descriptor together hold the
address of an integer variable that hol ds yet another address: that of the
string length and data. The second pair of bytes also holds the address of
a pointer, in this case a pointer to a variable that indicates the segnent
in which the string data resides. Thus, by retrieving the address and
segrment fromthe descriptor, you can |locate the string's |length and data,
albeit with an extra level of indirection

It is interesting to note that when far strings are being used, the
string's length is kept just before its data, much like the way Pasca

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -28 -

operates. Therefore, the address pointer holds the address of the length
word which i mmedi ately precedes the actual string data

The short programthat foll ows shows howto |ocate all of the
conponents of a far string based on examining its descriptor and rel ated
pointers. Notice that long integers are used to avoid the possibility of
an overflow error if the segnent or addresses happen to be higher than
32767. This way you can run the programin the @BX [or VB/ DOS] editing
environment. Figure 2-4 in turn illustrates the relationship between the
address and pointer information graphically.

DEF FNPeekWor d& (A&)
FNPeekWor d& = PEEK(A&) + 256& * PEEK(A& + 1)
END DEF

Wrk$ = "This is a test"

DescAddr & = VARPTR(Wor k$)

Addr essPtr& = FNPeekWor d&(DescAddr &)
Segment Pt r & = FNPeekWbr d&(DescAddr & + 2)
Segnent & = FNPeekWbr d&(Segnent Pt r &)

DEF SEG = Segment &

Dat aAddr & = FNPeekWbr d&(Addr essPt r &)
Lengt h% = FNPeekWor d&(Dat aAddr &)
StrAddr & = DataAddr& + 2

PRI NT "The descriptor address is:"; DescAddré&

PRI NT " The data segnent is:"; Segnment&
PRI NT " The length is:"; Length%
PRINT "The string data starts at:"; StrAddr&
PRI NT " And the string data is: ";

FOR X& = StrAddr& TO StrAddr& + Length%- 1
PRI NT CHR$(PEEK(X&)) ;
NEXT

Di spl ayed result (the addresses may vary):

The descriptor address is: 17220
The data segnent is: 40787
The length is: 14
The string data starts at: 106
And the string data is: This is a test

Because two bytes are used to hold the segnent, address, and | ength val ues,
we nust PEEK both of them and conbine the results. This is the purpose of
the PeekWord function that is defined at the start of the program Note
the placenment of an anpersand after the nunber 256, which ensures that the
multiplication will not cause an overflow error. | wll discuss such use
of nuneric constants and type identifiers later in this chapter

. The string length
: ! Fomm e The string data
Fmm e e e ek +
+-->0A] 00} This is a test]<-- Segment &HBFOO
! Fmm e e e aee s +
i A
! e - 8F00: 0070
I
. ;
+---170100) | <-- Segment &HBFO0
Fmm e e e ek +

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -29 -

SR 8F00: 002E

This is the "near” segnent ------ +
. + |
. +
100} 8F)......... 1 2B/ 00 D41 03} d
. +
N A +-- -+
+- Address 034 | '

! oo - +- - VARPTR(Vr k$)
B > +

Figure 2-4: A far string descriptor holds the addresses of other addresses,
in this case addresses that hold a far string's segnent and its |l ength and
actual dat a.

Even in a far-string program sone of the string data will be near. For
exanpl e, DATA itens and quoted string constants are stored in the sane 64K
DGROUP data segnent that holds sinple nuneric and TYPE variables. The sane
"indirect" nethod is used, whereby you nmust | ook in one place to get the

address of another address. In this case, however, the "far" segnent that
is reported is sinply the normal near data segnment. [DATA itens in VB/ DOS
prograns are still kept in near nenory, but quoted strings are now kept in

a separate segnent.]

One final conplication worth nentioning is that strings within a FIELD
buf fer (and possibly in other special situations) are handled slightly
differently. Since all of the strings in a FIELD buffer nust be
conti guous, BASIC cannot store the length word adjacent to the string data.
Therefore, a different nmethod nust be used. This case is indicated by
setting the sign bit (the highest bit) in the length word as a flag. Since
no string can have a negative length, that bit can safely be used for this
purpose. Wen a string is stored using this alternate nethod, the bytes
that follow the length word are used as additional pointers to the string's
actual data segnment and address.

FI XED- LENGTH STRI NGS

One of the nost inportant new features M crosoft added begi nning with

Qui ckBASI C 4.0 was fixed-1ength string and TYPE variables. Al though fixed-
length strings are less flexible than conventional BASIC strings, they

of fer many advantages in certain programming situations. One advantage is
that they are static, which neans their data does not nmove around in nmenory
as with conventional strings. You can therefore obtain the address of a
fixed-length string just once using VARPTR, confident that this address
wi Il never change. Wth dynamic strings, SADD nust be used each tine the
address is needed, which takes tinme and adds code. Another inportant
feature is that arrays of fixed-length strings can be stored in far nenory,
outside of the nornmal 64K data area. W wll discuss near and far array
nmenory al | ocati on nmonentarily.

Wth every advantage, however, cones a disadvantage. The nobst severe
limtation is that when a fixed-length string is used where a conventiona
string is expected, BASIC nust generate code to create a tenporary dynamc
string, and then copy the data to it. That is, all of BASIC s interna
routi nes that operate on strings expect a string descriptor. Therefore,
when you print a fixed-length string, or use MD$ or INSTR or indeed nearly
any statenment or function that accepts a string, it nust be copied to a
formthat BASIC s internal routines can accept. In many cases, additional
code is created to delete the tenporary string afterward. In others, the
data remains until the next time the sane BASIC statenent is executed, and
a new tenporary string is assigned freeing the ol der one.

To illustrate, twenty bytes of assenbly | anguage code are required to

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 30 -

print a fixed-length string, conpared to only nine for a conventional
dynamic string. Wrse, when a fixed-length string i s passed as an argunent
to a subprogramor function, BASIC not only makes a copy before passing the
string, but it also copies the data back again in case the subroutine
changed it! The extra steps the conpiler perforns are shown as BASI C
equivalents in the listing that foll ows.

----- This is the code you wite:

DIM Wrk AS STRING * 20
CALL Test Sub(Wor k$)

B This is what BASIC actual ly does:

Tenp$ = SPACE$(20) 'create a tenporary string
LSET Tenp$ = Work$ 'copy Wrk$ to it

CALL Test Sub(Temp$) "call the subprogram

LSET Work$ = Tenp$ 'copy the data back again

Temp$ = "" erase the tenporary data

As you can inmagine, all of this copying creates an enornous anount of
addi tional code in your prograns. Were only nine bytes are required to
pass a conventional string to a subprogram 64 are needed when a fi xed-
length string is being sent. But you cannot assume unequivocal ly that
conventional strings are always better or that fixed-length strings are

al ways better. Rather, | can only present the facts, and |l et you decide
based on the know edge of what is really happening. In the discussion of
debugging later in Chapter 4, you will learn howto use CodeView to see the

code that BASIC generates. You can thus explore these issues further, and
draw your own concl usi ons.

Arrays Wthin Types

As | nentioned earlier, the TYPE variable is an inportant and powerfu
addition to nodern conpiled BASIC. Its primary purpose is to |et
progranmers create conposite data structures using any conbi nation of
nati ve data types. C and Pascal have had such user-defined data types
since their inception, and they are called Structures and Records
respectively in each | anguage.

One i nmedi ately obvious use for being able to create a new, conposite
data type is to define the structure of a random access data file. Another
is to sinulate an array conprised of varied types of data. Cbviously, no
| anguage can support a mix of different data types within a single array.
That is, an array cannot be created where sonme of the el enments are, say,

i nteger while others are double precision. But a TYPE variable lets you do
sonmet hing very close to that, and you can even create arrays of TYPE
vari abl es.

In the listing that follows a TYPE is defined using a mx of integer,
singl e precision, double precision, and fixed-length string conponents.

Al so shown below is how a TYPE variabl e is dinensioned, and how each of its
conponents are assi gned and referenced.

TYPE MyType

I AS | NTEGER

S AS SI NGLE

D AS DOUBLE

F AS STRING * 20
END TYPE

DI M MyData as MyType

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 31 -

M/Data.l = 12 "assign the integer portion
M/Data. S = 100.09 'and then the single part
M/Data. D = 43. 2E56 'and then the double
M/Data. F = "Test" "and finally the string

PRI NT MyDat a. F "now print the string

Once the TYPE structure has been established, the D M statenent nust be
used to create an actual variable using that arrangenent. Although DIMis
usual |y associated with the definition of arrays, it is also used to
identify a variable name with a particular type of data. 1In this case, DM
tells BASIC to set aside an area of nmenory to hold that many bytes. You
may al so use DIMwith conventional variable types. For exanple, DM

Last Name AS STRING or DI M PayPeriod AS DOUBLE lets you onit the dollar sign
and pound sign when you reference themlater in the program In ny
opi ni on, however, that style leads to prograns that are difficult to

mai ntai n, since many pages later in the source listing you nay not renenber
what type of data is actually being referred to.

As you can see, a period is needed to indicate which portion of the
TYPE variable is being referenced. The base nanme is that given when you
di nensi oned the variable, but the portion being referenced is identified
using the name within the original TYPE definition. You cannot print a
TYPE variabl e directly, but nust instead print each conponent separately.

Li kewi se, assignments to a TYPE variable nust al so be made through its

i ndi vi dual conponents, with two exceptions. You nay assign an entire TYPE
variabl e from another identical TYPE directly, or froma dissinmlar TYPE
vari abl e using LSET

For exanple, if we had used DIM MyData AS MyType and then DI M Hi sDat a
AS MyType, the entire contents of Hi sData could be assigned to MyData using
the statement MyData = Hi sData. Had Hi sData been di nensi oned using a
different TYPE definition, then LSET would be required. That is, LSET
M/Data = HisData will copy as many characters fromH sData as will fit into
MyDat a, and then pad the renmainder, if any, wth bl anks.

It is inmportant to understand that this behavior can cause strange
results indeed. Since CHR$(32) blanks are used to pad what remains in the
TYPE vari abl e bei ng assi gned, nuneric conponents may receive sone unusua
val ues. Therefore, you should assign differing TYPE variables only when
t hose overl appi ng portions being assigned are structured identically.

Arrays Wthin Types

Wth the introduction of BASIC PDS, programers may al so establish static
arrays within a single TYPE definition. An array is dimensioned within a
TYPE as shown in the listing that follows. As with a conventional D M
statenment for an array, the nunber of elenents are indicated and a non-zero
| ower bound nmay optionally be specified. Please understand, though, that
you cannot use a variable for the nunber of elenents in the array. That

is, using PayH story(l TO NunDates) would be illegal

TYPE ArrayType
Amount Due AS Sl NGLE
PayH story(1l TO 52) AS SINGLE
Last Name AS STRING * 15

END TYPE

DM TypeArray AS ArrayType

There are several advantages to using an array within a TYPE variable. ne
is that you can reference a portion of the TYPE by using a variable to
specify the el ement nunber. For exanple, TypeArray. PayHi story(PayPeriod) =
344.95 will assign the value 344.95 to el enent nunber PayPeriod. W thout

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 32 -

the ability to use an array, each of the 52 conponents would need to be
identified by name. Further, arrays allows you to define a | arge nunber of
TYPE el ements with a single programstatenent. This can help to inprove a
program s readability.

STATI C VS. DYNAM C DATA

Precedi ng sections have touched only briefly on the concept of static and
dynami c nenory storage. Let's now explore this subject in depth, and | earn
whi ch nethods are nost appropriate in which situations.

By definition, static data is that which never changes in size, and
never moves around in nmenory. In conpiled BASIC this definition is further
extended to nean all data that is stored in the 64K near nenory area known
as DGROUP. This includes all nureric variables, fixed-length strings, and
TYPE vari abl es. Technically speaking, the string descriptors that
acconpany each conventional (not fixed-length) string are al so considered
to be static, even though the string data itself is not. The string
descriptors that conprise a dynamic string array, however, are dynamc
data, because they nove around in nmenory (as a group) and may be resized
and erased.

Nureric arrays that are dimensioned with constant (not variable)
subscripts are also static, unless the ' $DYNAM C net aconmand has been used
in a preceding programstatenent. That is, DIMArray#(0 TO 100) will
create a static array, while DIM Array#(0 TO MaxEl ements) creates a dynamnic
array. Likew se, arrays of fixed-length strings and TYPE variables will be
static, as long as nunbers are used to specify the size.

There are advantages and di sadvantages to each storage nmethod. Access
to static data is always faster than access to dynami c data, because the
conpi |l er knows the address where the data resides at the tine it creates
your program It can therefore create assenbly |anguage instructions that
go directly to that address. 1In contrast, dynam c data always requires a
pointer to hold the current address of the data. An extra step is
therefore needed to first get the data address fromthat pointer, before
access to the actual data is possible. Static data is also in the near
data segnent, thus avoiding the need for additional code that sw tches
segment s.

The overwhel m ng di sadvantage of static data, though, is that it may
never be erased. Once a static variable or array has been used in a
program the nmenory it occupi es can never be rel eased for other uses.

Again, it is inpossible to state that static arrays are always better than
dynam c arrays or vice versa. Wich you use nmust be dictated by your
program s menory requirenents, when conpared to its execution speed

DYNAM C ARRAYS

You have al ready seen how dynami c strings operate, by using a four-byte
pointer table called a string descriptor. Simlarly, a dynamc array al so
needs a table to show where the array data is |ocated, how nmany el ements
there are, the length of each elenent, and so forth. This table is called
an array descriptor, and it is structured as shown in Table 2-2.

There is little reason to use the information in an array descriptor
in a BASIC program and indeed, BASIC provides no direct way to access it
anyway. But when witing routines in assenbly |anguage for use with BASIC
this know edge can be quite helpful. As with BASIC PDS far string
descriptors, none of this information is documented, and relying on it is
nost certainly not endorsed by Mcrosoft. Perhaps that's what nakes it so
much fun to discuss!

Techni cal |y speaking, only dynam c arrays require an array descriptor
since static arrays do not nove or change size. But BASIC creates an array
descriptor for every array, so only one nmethod of code generation is
necessary. For exanple, when you pass an entire array to a subprogram
using enpty parentheses, it is the address of the array descriptor that is

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 33 -

actually sent. The subprogram can then access the data through that
descriptor, regardl ess of whether the array is static or dynamic.

Ofset Size Description
00 02 Address where array data begins
00 02 Segnment where that address resides
04 02 Far heap descriptor, pointer
06 02 Far heap descriptor, block size
08 01 Nunber of di mensions in the array
09 01 Array type and storage nethod:
Bit O set = far array
Bit 1 set = huge (/ah) array
Bit 6 set = static array
Bit 7 set = string array
0A 02 Adjusted Ofset
oC 02 Length in bytes of each el enent
OE 02 Nurber of elenments in the | ast

di mensi on (UBOUND - LBOUND + 1)

10 02 First elenment nunber in that
di mensi on (LBOUND)

12 02 Nurber of el enents in the second
from | ast di nension

14 02 First el enment number in that
di mensi on

02 Repeat nunber of el enents and
first el ement nunber as necessary,
02 t hrough the first dinmension

Table 2-2: Every array in a BASIC program has an associ ated array
descriptor such as the one shown here. This descriptor contains inportant
i nfformati on about the array.

The first four bytes together hold the segmented address where the array
data proper begins in nmenory. Follow ng the standard convention, the
address is stored in the lower word, with the segnent immediately
fol I owi ng.

The next two words conprise the Far Heap Descriptor, which holds a
pointer to the next dynanmic array descriptor and the current size of the
array. For static arrays both of these entries are zero. Wen multiple
dynamic arrays are used in a program the array descriptors are created in
static DGROUP nmenory in the order BC encounters them The Far Heap Pointer
in the first array therefore points to the next array descriptor in menory.
The | ast descriptor in the chain can be identified because it points to a
word that holds a value of zero

The bl ock size portion of the Far Heap Descriptor holds the size of
the array, using a byte count for string arrays and a "paragraph” count for
nuneric, fixed-length, and TYPE arrays. For string arrays--whether near or
far--the byte count is based on the four bytes that each descriptor
occupies. Wth nuneric arrays the size is instead the nunber of 16-byte
par agraphs that are needed to store the array.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook -34 -

The next entry is a single byte that holds the nunber of dinensions in
the array. That is, DDMArray(1l TO 10) has one dinension and DIM Array(1
TO 10, 2 TO 20) has two.

The next itemis also a byte, and it is called the Feature byte
because the various bits it holds tell what type of array it is. As shown
inthe table, separate bits are used to indicate if the array is stored in
far nenory, whether or not /ah was used to specify huge arrays, if the
array is static, and if it is a string array. Miltiple bits are used for
each of these array properties, since they may be active in conbination
However, BASIC never sets the far and huge bits for string arrays, even
when the PDS /fs option is used and the strings are in fact in far nenory.

O particular interest is the Adjusted Ofset entry. Even though the
segnment ed address where the array data begins is the first entry in the
descriptor, it is useful only when the first elenment nunber in the array is
zero. This would be the case with DOMArray(0 TON), or sinply DM
Array(N). To achieve the fastest perfornance possible when retrieving or
assigning a given elenment, the Adjusted Ofset is cal cul ated when the array
i s dinensioned to conpensate for an LBOUND ot her than O

For exanple, if an integer array is dinmensioned starting at el enent 1,
the Adjusted Ofset is set to point two bytes before the actual starting
address of the data. This way, the conpiler can take the specified el enent
nunber, nmultiply that tines two (each el enment conprises two bytes), and
then add that to the Adjusted Offset to imediately point at the correct
element in nmenory. O herwi se, additional code would be needed to subtract
the LBOUND val ue each tinme the array is accessed. Since the array's LBOUND
is sinply constant information, it would be wasteful to cal cul ate that
repeatedly at run tinme. O course, the Adjusted Ofset calculation is
correspondi ngly nore conpl ex when dealing with nulti-dinmensional arrays.

The remaining entries identify the length of each elenent in bytes,
and the upper and | ower bounds. String arrays always have a 4 in the
I ength | ocation, because that's the Iength of each string descriptor. A
separate pair of words is needed for each array subscript, to identify the
LBOUND val ue and the nunber of elements. The UBOUND is not actually stored
in the array descriptor, since it can be cal cul ated very easily when
needed. Notice that for nulti-dinmensional arrays, the last (right-nost)
subscript is identified first, followed by the second fromthe last, and
continuing to the first one.

One final note worth mentioning about dynanmic array storage is the
location in nmenory of the first array elenent. For nuneric arrays, the
starting address is always zero, within the specified segnent. (A new
segnment can start at any 16-byte address boundary, so at nost 15 bytes nay
be wasted.) However, BASIC sonetines positions fixed-length string and
TYPE arrays farther into the segnent. BASIC will not allow an array
el ement to span a segnment boundary under any circunstances. This could
never happen with nuneric data, because each elenment has a length that is a
power of 2. That is, 16,384 long integer elenents will exactly fit in a
singl e 64K segnment. But when a fixed-length string or TYPE array is
created, nearly any el enent length nay be specified.

For exanple, if you use REDIM Array(1l TO 10) AS STRI NG * 13000
130, 000 bytes are needed and el enment 6 would straddle a segnent. To
prevent that from happening, BASIC s dynamic DI Mroutine fudges the first
elenent to instead be placed at address 536. Thus, the last byte in
element 5 will be at the end of the 64K segnent, and the first byte in
element 6 will fall exactly at the start of the second 64K code segnent.
The only limitation is that arrays with odd I engths like this can never
exceed 128K in total size, because the inevitable split would occur at the
start of the third segnent. Arrays whose elenent |engths are a power of 2,
such as 32 or 4096 bytes, do not have this problem (Bear in mnd that 1K
is actually 1,024 bytes, so 128K really equals 131,072 bytes). This is
shown graphically below in Figure 2-5.

Element 10 is the last that evenly fits -+
Segrent boundary ----+ .

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 35 -

e ek S e e ok ST S S

e mm e ——— - - -
mrr FEREEE Address 0

o o El emrent 2
T P El enent 1

R R PR Address 536
I LR PR Address 0

Figure 2-5

FAR DATA VERSUS NEAR DATA

You have already used the ternms "near" and "far" to describe BASIC s data,
and now let's see exactly what they nmean. The 8086 family of

m croprocessors that are used in | BM PC and conpati bl e conputers use what
is called a *segnmented architecture*. This means that while an 8086 can
access a nmegabyte of menory, it can do so only in 64K bl ocks at a tine.
Before you think this is a terrible way to design a CPU, consider the
alternative.

For exanple, the 68000 fam |y used in the Apple Maci ntosh and Atari
conputers use |inear addressing, whereby any data anywhere may be accessed
without restriction. But the problemis that with mllions of possible
addresses, nmany bytes are needed to specify those addresses. Because the
data segnent is inplied when dealing with an 80x86, a single integer can
refer to any address quickly and with very little code. Therefore,
assenbl er instructions for the 68000 that reference nmenory tend to be |ong,
maki ng those prograns | arger

Since being able to nmanipulate only one 64K segnent is restrictive,
the 8086's designers provided four different segnent registers. One of
these, the DS (Data Segnent) register, is set to specify a single segnent,
which is then used by the programas nuch as possible. This data segnent
is al so naned DGROUP, and it holds all of the static data in a BASIC
program Again, data in DGROUP can be accessed nuch faster and with | ess
code than can data in any other segnent. 1In order to assign an elenment in
a far array, for exanple, BASIC requires two additional steps which
generates additional code. The first step is to retrieve the array's
segment fromthe array descriptor, and the second is to assign the ES
(Extra Segment) register to access the data.

Far data in a BASIC programtherefore refers to any data that is
out si de of the 64K DGROUP segnent. Technically, this could enconpass the
entire 1 Megabyte that DOS recogni zes, however the nmenory beyond 640K is
reserved for video adapters, the Bl OS, expanded nenory cards, and the |ike.
BASI C uses far nenory (outside the 64K data segnment but within the first
640K) for nurmeric, fixed-length string, and TYPE arrays, although BASI C PDS
can optionally store conventional strings there when the /fs (Far String)
option is used. Conmunications buffers are also kept in far nmenory, and
this is where incomng characters are placed before your program actually
reads them

Near nenory is therefore very crowded, with many varied types of data
conpeting for space. Earlier | stated that all variables, static arrays,
and quoted strings are stored in near nenory (DGROUP). But other BASIC
data is also stored there as well. This includes DATA itens, string
descriptors, array descriptors, the stack, file buffers, and the interna
wor ki ng variables used by BASIC s run-tine library routines.

When you open a disk file for input, an area in near nmenory is used as
a buffer to inprove the speed of subsequent reads. And |ike subprograns
and function that you wite, BASIC s internal routines also need their own
variables to operate. For exanple, a translation table is maintained in
DGROUP to relate the file nunbers you use when opening a file to the file
handl es that DOS issues.

One final note on the items that conpete for DGROUP is that in many

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 36 -

cases data is stored *twice*. Wen you use READ to assign a string froma
DATA item the data itself renmains at the data statement, and is al so
duplicated in the string being assigned. There is sinply no way to renove
the original data. Simlarly, when you assign a string froma constant as
in Message$ = "Press any key", the original quoted string is always
present, and Message$ receives a second copy. Wien string space is very
tight, the only purely BASIC solution is to instead store the data in a
disk file.

Speaki ng of DATA, bear in mind that reading nunmeric variables is
relatively slow and often even nmore wasteful. Since all DATA itens are
stored as strings, each time you use READ the VAL routine is called
internally by BASIC. VAL is not a particularly fast operation, because of
the conmplexity of what it must do. W rse, by storing nunbers as strings,
even nore nmenory can be wasted than you mght think. For exanple, storing
an integer value such as -20556 requires six bytes as a string, even though
it will be placed ultinmately into a two-byte integer

ASSESSI NG MEMORY W TH FRE()

Since menory is very inportant to the operation of nobst prograns, it is
often useful to know how much of it is available at any given nonent.
BASI C provides the FRE function to do this, however there are a nunber of
variations in its use. Let's take an inside |ook at the various formns of
FRE, and see how they can be put to good use.

There are no less than six different argunments that can be used with
FRE. The first to consider is FRE(O), which reports the amount of free
string space but without first conpacting the string pool. Therefore, the
val ue returned by FRE(O) may be rmuch | ower than what actually could be
avai |l able. FRE when used with a string argunent, for exanple FRE("") or
FRE(Temp$), also returns the anobunt of DGROUP nmenory that is available
however it first calls the heap conpaction routines. This guarantees that
the size reported accurately reflects what is really avail able.

Al t hough FRE(0) may seemto be of little value, it is in fact nuch
faster than FRE when a string argument is given. Therefore, you could
periodically exam ne FRE(O), and if it becomes unacceptably | ow use FRE("")
to determ ne the actual anount of nenory that is available. Wth BASI C PDS
far strings, FRE(O) is illegal, FRE("") reports the nunber of bytes
avail able for tenporary strings, and FRE(Any$) reports the free size of the
segnent in which Any$ resides. Tenporary strings were discussed earlier
when we saw how t hey are used when passing fixed-length string argunents to
pr ocedur es.

FRE(-1) was introduced begi nning with QuickBASIC 1, and it reports the
total anount of nenory that is currently available for use with far arrays.
Thus, you could use it in a program before dinmensioning a | arge nuneric
array, to avoid receiving an "Qut of menmory" error which would halt your
program Al though there is a distinction between near and far nenory in
any PC program BASIC does an admirable job of making avail abl e as much
menory as you need for various uses. For exanple, it is possible to have
pl enty of near nenory avail able, but not enough for all of the dynanmic
arrays that are needed. 1In this case, BASIC will reduce the anount of
menory available in DEGROUP, and instead relinquish it for far arrays.

FRE(-1) is also useful if you use SHELL within your prograns, because
at least 20K or so of menory is needed to | oad the necessary additiona
copy of COVMMAND.COM It is interesting to observe that not having enough
nmenory to execute a SHELL results in an "lllegal function call" error,
rather than the expected "Qut of nenory".

FRE(-2) was added to Qui ckBASIC beginning with version 4.0, and it
reports the anmount of available stack space. The stack is a special area
within DEROUP that is used primarily for passing the addresses of variables
and other data to subroutines. The stack is also used to store vari ables
when the STATIC option is omtted froma subprogramor function definition
I will discuss static and non-static subroutines later in Chapter 3, but
for now suffice it to say that enough stack nmenory is necessary when many
vari ables are present and STATIC is onitted.

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 37 -

FRE(-3) was added with BASIC PDS, nainly for use within the @BX
editing environment. This newest variant reports the anmount of expanded
(EMS) menory that is available, although EMS cannot be accessed by your
prograns directly using BASIC statenents. However, BX uses that nenory to
store subroutines and optionally nuneric, fixed-length, and TYPE arrays.
The ISAMfile handler that comes with BASIC PDS can also utilize expanded
nmenory, as can the PDS overlay manager

SETMEM AND STACK

Besi des the various fornms of the FRE function, SETMEM can be used to assess
the size of the far heap, as well as nodify that size if necessary. The
STACK function is available only with BASIC PDS, and it reports the | argest
possi bl e size the stack can be set to. Let's see how these functions can
be useful to you.

Al though SETMEM is technically a function (because it returns
information), it is also used to re-size the far heap. Wen given an
argunent of zero, SETMEM returns the current size of the far heap
However, this value is not the amount of nmenory that is free. Rather, it
is the maxi mum heap size regardl ess of what currently resides there. The
followi ng short programshows this in context.

PRI NT SETMEM 0) "display the heap size
REDI M Array! (10000) "al | ocate 40,000 bytes
PRI NT SETMEM 0) "the total size renains

Di spl ayed result (the nunbers will vary):

276256
276256

When a programstarts, the far heap is set as |arge as possible by BASIC
and DOS, which is sensible in nmost cases. But there are sone situations in
whi ch you might need to reduce that size, nost notably when calling C
routines that need to allocate their own nenory. Also, BASIC noves arrays
around in the far heap as arrays are dinmensioned and then erased. This is
much |i ke the near heap string conpaction that is perfornmed periodically.

If the far heap were not rearranged periodically, it is likely that many
smal | portions would be available, but not a single block sufficient for a
| arge array.

In some cases a programmay need to claimnmenory that is guaranteed
not to nove. Therefore, you could ask SETMEMto relinquish a portion of
the far heap, and then call a DOS interrupt to claimthat nenory for your
own use. (DCS provides services to allocate and rel ease nenory, which C
and assenbly | anguage prograns use to dinmension arrays manually.) Unlike
BASI C, DOS does not use sophisticated heap nmanagenent techni ques, therefore
the menory it manages does not nove. | wll discuss using SETMEM t his way
later on in Chapter 12

Finally, the STACK function will report the |argest amount of nenory
that can be allocated for use as a stack. Like SETMEM it doesn't reflect
how rmuch of that nenory is actually in use. Rather, it sinply reports how
large the stack could be if you wanted or needed to increase it. Because
the stack resides in DGROUP, its maxi num possible size is dependent on how
nmany variabl es and other data itens are present.

When run in the @BX environnent, the follow ng program fragment shows
how creating a dynamc string array reduces the amount of menory that coul d
be used for the stack. Since the string descriptors are kept in DGROUP
they inmpinge on the potentially avail able stack space.

PRI NT STACK
REDI M Ar r ay$(1000)

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 38 -

PRI NT STACK
ERASE Array$
PRI NT STACK

Di spl ayed result:

47904
43808
47904

Si nce BASI C PDS does not support FRE(0), the STACK function can be used to
determi ne how nuch near nenory is available. The only real difference

bet ween FRE(0) and STACK is that STACK includes the current stack size,
where FRE(O) does not. The STACK function is nentioned here because it

rel ates to assessing how nmuch nenory is available for data. Sizing the
stack will be covered in depth in Chapter 3, when we di scuss subprograns,
functions, and recursion.

VARPTR, VARSEG AND SADD

One of the | east understood aspects of BASIC progranm ng i s undoubtedly the
use of VARPTR and its related functions, VARSEG and SADD. Though you
probably al ready know that VARPTR returns the address of a variable, you

m ght be wondering how that information could be useful. After all, the
whol e point of a high-level |anguage such as BASICis to shield the
progranmer from vari abl e addresses, pointers, and other nessy | owleve
details. And by and large, that is correct. Al though VARPTR is not a
particularly conmon function, it can be invaluable in sonme progranm ng

si tuati ons.

VARPTR is a built-in BASIC function which returns the address of any
variable. VARSEG is simlar, however it reports the menory segnment in
whi ch that address is located. SADD is neant for use with conventiona
(not fixed-length) strings only, and it tells the address where the first
character in a string begins. |In BASIC PDS, SSEG is used instead of VARSEG
for conventional strings, to identify the segment in which the string data
is kept. Together, these functions identify the |ocation of any variable
in menory.

The primary use for VARPTR in purely BASIC programring is in
conjunction with BSAVE and BLOAD, as well as PEEK and PCKE. For exanpl e,
to save an entire array quickly to a disk file with BSAVE, you nust specify
the address where the array is located. 1In npbst cases VARSEG is al so
needed, to identify the array's segnment as well. Wen used on all sinple
vari abl es, static arrays, and all string arrays, VARSEG returns the norna
DGROUP segnment. When used on a dynanmic nuneric array, it instead returns
the segnent at the which the specified el ement resides.

The short exanpl e below creates and fills an integer array, and then
uses VARSEG and VARPTR to save it very quickly to disk.

REDI M Array%¢ 1 TO 1000)

FOR X% =1 TO 1000
Array% X% = X%
NEXT

DEF SEG = VARSEG(Array% 1))
BSAVE "ARRAY. DAT", VARPTR(Array% 1)), 2000

Here, DEF SEG indicates in which segnent the data that BSAVE wi |l be saving
is located. VARPTR is then used to specify the address within that

segrment. The 2000 tells BSAVE how nany bytes are to be witten to disk
which is determned by nultiplying the nunber of array elenents tinmes the
size of each elenent. W will conme back to using VARPTR repeatedly in

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -39 -

Chapter 12 when we discuss accessing DOS and Bl GS services with CALL
Interrupt. However, it is inmportant to point out here exactly how VARPTR
and VARSEG work with each type of variable.

When VARPTR is used with a nuneric variable, as in Address =
VARPTR(Val ue!'), the address of the first byte in menory that the variable
occupies is reported. Value! is a single-precision variable which spans
four bytes of menory, and it is the lowest of the four addresses that is
returned. Likew se, VARPTR when used with static fixed-length string and
TYPE vari abl es reports the | owest address where the data begins. But when
you ask for the VARPTR of a string variable, what is returned is the
address of the string' s descriptor.

To obtain the address of the actual data in a string requires the SADD
(String Address) function. Internally, BASIC sinply | ooks at the address
portion of the string descriptor to retrieve the address. Likew se, the
LEN function also gets its information directly fromthe descriptor. Wen
used with any string, VARSEG al ways reports the nornal DGROUP data segnent,
because that is where all strings and their descriptors are kept.

Begi nning with BASIC PDS and its support for far strings, the SSEG
function was added to return the segnment where the string's data is stored.
But even when far strings are being used, VARSEG al ways returns the segnent
for the descriptor, which is in DGROUP

SADD is not legal with a fixed-length string, and you nust instead use
VARPTR. Perhaps in a future version BASIC will allow either to be used
i nterchangeably. SADD is likewise illegal for use with the fixed-1ength
string portion of a TYPE variable or array. Again, VARPTR will return the
address of any conponent in a TYPE, within the segment reported by VARSEG

Anot her inportant use for VARPTR is to assist passing arrays to
assenbly | anguage routines. Wen a single array elenment is specified using
early versions of Mcrosoft compiled BASIC, the starting address of the
el ement is sent as expected. Beginning with QuickBASIC 4.0 and its support
for far data residing in nultiple segnents, a nore conplicated arrangenent
was devised. Here's how that works.

When an elenment in a dynanic array is passed as a paraneter, BASIC
nmakes a copy of the elenent into a tenporary variable in near nmenory, and
then sends the address of the copy. Wen the routine returns, the data in
the tenmporary variable is copied back to the original array elenment, in
case the called routine changed the data. In rmany cases this behavior is
quite sensible, since the called routine can assune that the variable is in
near nenory and thus operate that much faster.

Furt her, BASIC subroutines *require* a non-array paraneter (not passed
with enpty parentheses) to be in DGROJP. That is, any time a single
element in an integer array is passed to a routine, that routi ne would be
designed to expect a single integer variable. This is shown in the brief
exanpl e bel ow, where a single elenment in an array is passed, as opposed to
the entire array.

REDI M Array%{ 1 TO 100)
Array%25) = -14
CALL MyProc(Array%25)) ' pass one el enment

SUB M/Proc(lntVar% STATIC 'this sub expects a
PRI NT | nt Var % ' single variable
END SUB

Di spl ayed result:
-14
Unfortunately, this copying not only generates a |ot of extra code to

implenent, it also takes nmenory from DGROUP to hold the copy, and that
nmenory is taken permanently. W rse still, *each* occurrence of an array

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 40 -

el ement passed in a CALL statement reserves however many bytes are needed
to store the elenent. For a large TYPE structure this can be a | ot of
nmenory i ndeed!

So you won't think that 1'mbeing an alarm st about this issue, here
are some facts based on prograns conpiled using BASIC 7.1 PDS. These
exanpl es docunent the anount of additional code that is generated to pass a
near string array elenent as an argunent to a subprogram or function

Passing a string array elenment requires 56 bytes when a copy is nade,
conpared to only 17 when it is not. The same operations in QuickBASIC 4.5
create 47 and 18 bytes respectively, so @B 4.5 is actually better when
maki ng the copy, but a tad worse when not. The code used in these exanples
is shown below, and Array$ is a dynamic near string array. (I wll explain
t he purpose of BYVAL in just a nonment.) Again, the difference in byte
counts reflects the additional code that BC creates to assign and then
del ete the tenporary copies.

CALL Routine(Array$(2))
CALL Routine(BYVAL VARPTR(Array$(2)))

Wrse still, with either conpiler 73 bytes of code are created to pass an
elenment in a TYPE array the usual way, conpared to 18 when the copying is
avoi ded. And this byte count does not include the DGROUP nenory required
to hold the copy. |Is that reduction in code size worth working for? You
bet it is! And best of all, hardly any extra effort is needed to avoid
havi ng BASI C nake t hese copi es--just the appropriate know edge.

The key, as you can see, is VARPTR If you are calling an assenbly
| anguage routine that expects a string and you want to pass an el enent from
a string array, you nust use BYVAL along with VARPTR CALL Routi ne(BYVAL
VARPTR(Array$(El ement))) is functionally identical to CALL
Routi ne(Array$(El ement)), although they sure do look different! In either
case, the integer address of a string is passed to the routine.

Unli ke the usual way that BASIC passes a variable by sending its
address, BYVAL instead sends the actual data. |In this case, the value of
an address is what we wanted to begin with anyway. (Wthout the BYVAL,
BASI C woul d nake a tenporary copy of the integer value that VARPTR returns,
and send the address of that copy.) Best of all, asking for the address
directly defeats the built-in copying nechanism Al though creating a copy
of a far nuneric array elenent is sensible as we saw earlier, it is not
clear to me why BC does this with string array data that is in DGROUP
al r eady.

Al t hough you can't nornmally send an integer--which is what VARPTR
actually returns--to a BASI C subprogramthat expects a string, you can if
that subprogramis in a different file and the files are conpiled
separately. This will also work if the BASIC code has been pre-conpil ed
and placed in a Quick Library.

But there is another, equally inportant reason to use VARPTR with
array elements. |If you are calling an assenbler routine that will sort an
array, it must have access to the array elenent's address, and not the
address of a copy. Al of the elements in any array are contiguous, and a
sort routine would need to know where in nmenory the first elenment is
located. Fromthat it can then access all of the successive el enents.
Wth VARPTR we are telling BASIC that what is needed is the actual address
of the specified el enent.

Bear in mnd that this relates primarily to passing arrays to assenbly

| anguage (and possibly C routines only. After all, if you are designing a
sort routine using purely BASIC commands, you woul d pass and receive the
array using enpty parentheses. Indeed, this is yet another inportant

advant age that BASIC hol ds over C and Pascal, since neither of those
| anguages have array descriptors. Witing a sort routine in Crequires
that *you* do all of the work to | ocate and conpare each el enment in turn,
based on sone base starting address.

There is one final issue that we nust discuss, and that is passing far
array data to external assenbly |anguage routines. | already expl ai ned

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 41 -

that by making a copy of a far array elenent, the called routine does not
have to be witten to deal with far (two-word segnmented) addresses. But in
some cases, witing a routine that way will be nore efficient. Further
like C, assenbly |anguage routines thrive on nmanipulating pointers to data.
Al 't hough an assenbler routine could be witten to read the segnent and
address fromthe array descriptor, this is not a conmon nethod. One reason
is that if Mcrosoft changes the fornmat of the descriptor, the routine wll
no | onger work. Another is that it is frankly easier to have the caller
sinmply pass the full segnmented address of the first el enent.

This brings us to the SEG directive, which is a conbination of BYVAL
and VARPTR and al so BYVAL and VARSEG. As with BYVAL VARPTR, using SEG
before a variable or array elenent in a call tells BASIC that the val ue of
the array's full address is needed. A typical exanple would be CALL
Rout i ne(SEG Array#(1)), and in this case, BASIC sends not one address word
but two to the routine.

You coul d al so pass the full address of an array el enent by val ue
usi ng VARSEG and VARPTR, and this next exanple produces the identical
result: CALL Routine(BYVAL VARSEG Array#(1)), BYVAL VARPTR(Array#(1))).
Using SEG results in sonewhat |ess code, though, because BASIC will obtain
the segnent and address in a single operation. |In fact, this is one area
where the conpiler does a poor job of optimzing, because using VARSEG and
VARPTR in a single program statenent generates a similar sequence of code
twi ce.

There is one unfortunate conplication here, which arises when SEGis
used with a fixed-length string array. Wat SEG *shoul d* do in that case
is pass the segnented address of the specified element. But it doesn't.
Instead, BASIC creates a tenporary copy of the specified element in a
conventional dynamic string, and then passes the segnented address of the
copy's descriptor. O course, this is useless in nmost progranm ng
situati ons.

There are two possible solutions to this problem The first is to use
the slightly less efficient BYVAL VARSEG and BYVAL VARPTR conbi nati on as
shown above. The second solution is to create an equival ent fixed-Ilength
string array by using a dummy TYPE that is conprised solely of a single
string conponent. Since TYPE variables are passed correctly when SEGis
used, using a TYPE elimnates the problem Both of these nmethods are shown
in the listing that foll ows.

----- this creates nmore code and | ooks cl unsy

REDIM Array(1 TO 1000) AS STRING * 50
CALL Routine(BYVAL VARSEG Array(1)), BYVAL VARPTR(Array(1)))

----- this creates | ess code and reads clearly

TYPE FLen
S AS STRING * 100

END TYPE

REDI M Array(1 TO 1000) AS FlLen

CALL Routi ne(SEG Array(1))

Al t hough SEG | ooks like a single paraneter is being passed, in fact two
integers are sent to the called routine--a segnent and an address. This is
why a single SEG can replace both a VARSEG and a VARPTR i n one call

Chapter 13 will return to BYVAL, VARPTR and SEG though the purpose there
will be to learn howto wite routines that accept such paraneters.

The final data type to examine is constants. By definition, a constant is

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 42 -

sinply any val ue that does not change, as opposed to a variable that can
For exanple, in the statenment 1% = 10, the value 10 is a constant.
Simlarly, the quoted string "Hello" is a constant when you wite PRI NT
"Hel | 0".

There are two types of constants that can appear in a BASIC program
One is sinple nunbers and quoted strings as descri bed above, and the other
is the naned constant which is defined using a CONST statenent. For
exanpl e, you can wite CONST MaxRows = 25 as well as CONST Message$ =
"Insert disk in drive", and so forth. It is even possible to define one
CONST val ue based on a previous one, as in CONST NumRows = 25, ScrnSize =
NunRows * 80. Then, you coul d use these neani ngful nanes later in the
program instead of the values they represent.

It is inportant to understand that using naned constants is identical
to using the nunbers thenselves. The value of this will becone apparent
when you see the relative advantages and di sadvant ages of using nunbers as
opposed to variables. Let's begin this discussion of nunbers with how t hey
are stored by the conpiler. O rather, how they are sonetines stored.

When a CONST statenent is used in a BASIC program BASIC does
absol utely nothing with the value, other than to renenber that you defined
it. Therefore, you could have a hundred CONST statenments which are never
used, and the final .EXE programw Il be no larger than if none had been
defined. |[If a CONST value is used as an argument to, say, LOCATE or
perhaps as a paraneter to a subroutine, BASIC sinply substitutes the val ue
you originally gave it. Wen a variable is assigned as in Val ue% = 100,
BASI C sets aside nenory to hold the variable. Wth a constant definition
such as CONST Val ue% = 100, no nenory is set aside and BASIC nerely
renmenbers that any use of Value%is to be replaced by the nunber 100. But
how are these nunbers represented internally.

When you create an integer assignment such as Count% = 5, the BASIC
conpi |l er generates code to nove the value 5 into the integer variable, as
you saw in Chapter 1. Therefore, the actual value 5 is never stored as
data anywhere. Rather, it is placed into the code as part of an assenbly
| anguage instruction.

Now, if you instead assign a single or double precision variable from
a nunber--and again it doesn't matter whether that nunber is aliteral or a
CONST--the appropriate floating point representation of that nunber is
pl aced in DGROUP at conpile tine, and then used as the source for a norma
floating point assignment. That is, it is assigned as if it were a
vari abl e.

There is no reasonable way to inbed a floating point value into an
assenbly | anguage instruction, because the CPU cannot deal with such val ues
directly. Therefore, assigning X% = 3 treats the nunber 3 as an integer
val ue, while assigning Y# = 3 treats it as a doubl e precision val ue.

Again, it doesn't matter whether the 3 is a literal nunber as shown here,
or a CONST that has been defined. In fact, if you use CONST Three! = 3, a
subsequent assi gnment such as Val ue% = Three! treats Three!l as an integer
resulting in less resultant code. As you can see, the conpiler is
extremely smart in how it handl es these constants, and it understands the
context in which they are being used.

In general, BASIC uses the m ni num precision possible when
representing a nunber. However, you can coerce a nunber to a different
precision with an explicit type identifier. For exanple, if you are
calling a routine in a separate nodul e that expects a doubl e precision
val ue, you could add a pound sign (#) to the nunber like this: CALL
Sonet hi ng(45#). Wthout the double precision identifier, BASIC would treat
the 45 as an integer, which is of course incorrect.

Li kewi se, BASIC can be forced to evaluate a nuneric expression that
m ght otherwi se overflow by placing a type identifier after it. One
typical situation is when constructing a value fromtwo byte portions. The
usual way to do this would be Value& = LoByte% + 256 * Hi Byte% Although
the result of this expression can clearly fit into the long integer no
matter what the val ues of LoByte% and Hi Byt e% mi ght be, an overflow error
can still occur. (But as we saw earlier, this will happen only in the B
environment, or if you have compiled to disk with the /d debuggi ng option.)

The probl em ari ses when Hi Byte%is greater than 127, because the

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 43 -

result of rmultiplying H Byte%tinmes 256 exceeds the capacity of a regul ar
integer. Normally, BASICis to be commended for the way it m nimzes
overhead by reducing calculations to the snmallest possible data type. But
inthis case it creates a problem because the result cannot be expressed
as an integer.

The solution, then, is to add an anpersand after the 256, as in Val ue&
= LoByte% + 256& * Hi Byte% By establishing the value 256 as a | ong
integer, you are telling BASIC to performthe calculation to the ful
precision of a long integer. And since the result of the multiplication is
treated as a long integer, so is the addition of that result to LoByte% A
singl e precision exclanmation point could al so be used, but that would
require a floating point nultiplication. Since a long integer multiply is
much faster and needs |less code, this is the preferred solution

One final itemworth noting is the way the QB and BX editing
environnments sonetimes nodify constants. For exanple, if you attenpt to
enter a statenent such as Value! = 1.0, you will see the constant changed
to read 1! instead. This happens when you press Enter to terminate the
line. Simlarly, if you wite D# = 1234567.8901234, BASIC will add a
trailing pound sign to the nunber. This behavior is your clue that these
nunbers are being stored internally as single and doubl e precision val ues
respectively.

PASSI NG NUMERI C CONSTANTS TO A PROCEDURE

Normal |y, any constant that could be an integer is passed to a subprogram
or function as an integer. That is, calling an external procedure as in
CALL External (100) passes the 100 as an integer value. |If the called
routi ne has been designed to expect a variable of a different type, you
nmust add the appropriate type identifier. |If a long integer is expected,
for exanple, you nust use CALL External (100& . If, on the other hand, the
called routine is in the same nmodule (that is, the sane physical source
file), B wll create a suitable DECLARE statenent automatically. This
lets B and BC know what is expected so they can pass the value in the
correct format. Thus, BASIC is doing you a favor by interpreting the
constant's type in a manner that is relevant to your program

This "favor" has a nasty quirk, though. |If you are developing a
mul ti-modul e programin the Qui ckBASIC editor, the automatic type
conversion is done for you automatically, even when the call is to a

di fferent nmodule. Your program uses, say, CALL Routine(25), and B or BX
send the value in the correct format automatically. But when the nodul es
are conpiled and |inked, the same programthat had worked correctly in the
environnment will now fail.

Since each nodule in a nulti-nodule programis conpiled separately, BC
has no way to know what the called routine actually expects. |In fact, this
is one of the primary purposes of the DECLARE statenent--to advise BASIC as
to how argunents are to be passed. For exanple, DECLARE SUB
Marine(Trident!) tells BASIC that any constant passed to Marine is to be
sent as a single precision value. You could optionally use the AS SINGLE
directive, thus: DECLARE SUB Marine(Trident AS SINGLE). |In general, |
prefer the nore conpact formsince it conveys the necessary information
with less clutter.

Anot her inportant use for adding a type identifier to a nuneric
constant is to inprove a progranmis accuracy. Running the short program

below will illustrate this in context. Although neither answer is entirely
accurate, the calculation that uses the doubl e precision constant is nuch
closer. In this case, a decinal nunber that does not have an explicit type

identifier is assuned to have only single precision accuracy. That is, the
value is stored in only four bytes instead of eight.

FOR X% = 1 TO 10000

Y# = Y# + 1.1
Z# = Z# + 1. 1#
NEXT

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 44 -

PRI NT Y#, Z#

Di spl ayed result:
11000. 00023841858 11000. 00000000204

You have already | earned that BASIC often nakes a tenporary copy of a

vari abl e when calling a subprogramor function. But you should know that
thi s al so happens whenever a constant is passed as an argunent. For
exanple, in a function call such as Result = Cal cul ate! (Value!, 100), where
Cal cul ate! has been declared as a function, the integer value 100 is copied
to a tenporary location. Since BASIC procedures require the address of a
paraneter, a tenporary variable nmust be created and the address of that

vari abl e passed. The inportant point to renenber is that for each
occurrence of a constant in a CALL or function invocation, a new area of
DGROUP i s taken.

You m ght think that BASIC should sinply store a 100 sonmewhere in
DGROUP once, and then pass the address of that value. Indeed, this would
save an awful | ot of menory when many constants are being used. The reason
this isn't done, however, is that subroutines can change inconing
paraneters. Therefore, if a single integer 100 was stored and its address
passed to a routine that changed it, subsequent calls using 100 woul d
recei ve an incorrect val ue.

The ideal solution to this problemis to create a variable with the
required value. For exanple, if you are now passing the value 2 as a
literal many tines in a program instead assign a variable, perhaps naned
Two% early in your program That is, Tw% = 2. Then, each tinme you need
that value, instead pass the variable. For the record, six bytes are
needed to assign an integer such as Two% and four bytes are generated each
time that variable is passed in a call

Contrast that to the 10 bytes generated to create and store a
tenmporary copy and pass its address, not including the two bytes the copy
permanently takes fromnear nmenory. Even if you use the value only tw ce,
the savings will be worthwhile (24 vs. 30 bytes). Because a value of zero
is very common, it is also an ideal candidate for being replaced with a
variable. Even better, you don't even have to assign it! That is, CALL
SoneProc(Zero% will send a zero, without requiring a previous Zero% = 0
assi gnment .

STRI NG CONSTANTS

Li ke nurneric constants, string constants that are defined in a CONST
statenment but never referenced will not be added to the final .EXE file.
Constants that are used--whether as literals or as CONST statenents--are
al ways stored in DGROUP. |If your programhas the statenment PRINT "I |ike
BASI C', then the twelve characters in the string are placed into DGROUP
But since the PRINT statement requires a string descriptor in order to
locate the string and deternine its length, an additional four bytes are
al l ocated by BASIC just for that purpose. Variables are always stored at
an even- nunbered address, so odd-length strings also waste one extra byte.
Because string constants have a ferocious appetite for near nenory, BC
has been designed to be particularly intelligent in the way they are
handl ed. Al though there is no way to avoid the storage of a descriptor for
each constant, there is another, even better trick that can be enpl oyed.
For each string constant you reference in a programthat is |onger than
four characters, BC stores it only once. Even if you have the statenent
PRI NT "Press any key to continue" twenty-five tines in your program BC
will store the characters just once, and each PRINT statenent will refer to
the same string
In order to do this, the conpiler nust renmenber each string constant
it encounters as it processes your program and save it in an interna
wor ki ng array. Wen nany string constants are being used, this can cause
the conpiler to run out of nenmory. Renenber, BC has an enornous anount of

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 45 -

information it nust deal with as it processes your BASIC source file, and
keeping track of string constants is but one part of the job.

To solve this problem M crosoft has provided the /s (String) option
which tells BC not to conbine |ike data. Al though this rmay have the net
effect of making the final .EXE file larger and al so taking nmore string
space, it nay be the only solution with sonme |arge prograns. Contrary to
t he BASI C docunentation, however, using /s in reality often makes a program
smaller. This issue will be described in detail in Chapter 5, where all
of the various BC conmand |ine options are discussed.

PASSI NG STRI NG CONSTANTS TO A PROCEDURE

As you have repeatedly seen, BASIC often generates additional code to
create copies of variables and constants. |t should come as no surprise,
therefore, to learn that this happens with string constants as well. When
you print the same string nore than once in a program BASIC knows that its
own PRINT routine will never change the data. But as with nuneric
constants, if you send a string constant to a subprogramor function, there
is no such guarantee.

For exanple, if you have a statement such as CALL Printlt(Wrk$) in
your program it is very possible--even likely--that the Printlt routine
may change or reassign its incomng paranmeter. Even if *you* know that
Printlt will not change the string, BASIC has no way to know this. To
avoi d any possibility of that happeni ng, BASIC generates code to create a
tenmporary copy of every string constant that is used as an argunment. And
this is done for every call. |If the statement CALL Print Message("Press a
key") appears in your programten tines, then code to copy that message is
generated ten tinmes!

Begi nning with BASIC 7.1 PDS, you can now specify that variables are
to be sent by value to BASIC procedures. This lets you avoid the creation
of tenporary copies, and this subject will also be explored in nore detail
in Chapter 3.

Wth either QuickBASIC 4.5 or BASIC PDS, calling a routine with a
single quoted string as an argunent generates 31 bytes of code. Passing a
string variable instead requires only nine bytes. Both of these byte
counts includes the five bytes to process the call itself. The rea
difference is therefore 4 bytes vs. 26--for a net ratio of 6.5 to 1. (Part
of those 31 bytes is code that erases the tenporary string.) So as with
nuneric constants that are used nore than once, your programs wll be
snmaller if a variable is assigned once, and that variable is passed as an
argument .

While we are on the topic of tenporary variables, there is yet another
situation that causes BASICto create them Wen the result of an
expression is passed as an argunment, BASIC nust eval uate that expression
and store the result sonewhere. Again, since nearly all procedures require
the address of a paraneter rather than its value, an address of that result
is needed. And without storing the result, there can of course be no
addr ess.

When you use a statenent such as CALL Home(Elli + Lou), BASIC
cal cul ates the sumof Elli plus Lou, and stores that in a reserved place in
DGROUP which is not used for any other purpose. That address is then sent
to the Home routine as if it were a single variable, and Hone is none the
wi ser. Likewi se, a string concatenation creates a tenporary string, for
the same reason. Although the requisite descriptor permanently steals four
bytes of DGROUP nmenory, the tenporary string itself is erased by BASIC
automatically after the call. Thus, the first exanple in the listing bel ow
is simlar in efficiency to the second. The four-byte difference is due to
BASIC calling a special routine that deletes the tenporary copy it created,
as opposed to the slightly nmore involved code that assigns Tenp$ fromthe
null string ("") to erase it.

CALL Dolt(First$ + Last$) 'this makes 41 bytes

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 46 -

Temp$ = First$ + Last$ "this makes 45 bytes
CALL Dol t (Tenp$)
Terrp$ = nn

UNUSUAL STRI NG CONSTANTS

One final topic worth mentioning is that Qui ckBASIC al so | ets you inbed
control and extended characters into a string constant. Consider the
program shown bel ow. Here, several of the | BM extended characters are used
to define a box, but without requiring CHR$ to be used repeatedly.
Characters with ASCII val ues greater than 127 can be entered easily by
sinply pressing and holding the Al't key, typing the desired ASCI| value on
the PC s nuneric key-pad, and then releasing the Alt key. This will not
wor k usi ng the nunber keys along the top row of the keyboard.

DI M Box$(1 TO 4) "define a box

Box$(1) = "H-------mmmma oo 4"

Box$(2) = "! b

Box$(3) ="} b

Box$(4) = "H-------mmmmi i 4"

FOR X =1 TO 4 "now di spl ay the box
PRI NT Box$(X)

NEXT

To enter control characters (those with ASCI| values less than 32) requires
a different trick. Al though the Alt-keypad nethod is in fact built into
the BIOS of all PCs, this next one is specific to Qi ckBASIC, BX, and sone
word processor prograns. To do this, first press Crl-P, observing the "P
synbol that B displays at the bottomright of the screen. This lets you
know t hat the next control character you press will be accepted literally.
For exanple, Crl-P followed by Grl-L will display the fermal e synbol, and
CGrl-P followed by Crl-[will enter the Escape character.

Bear in mind that sone control codes wll cause unusual behavior if
your programis listed on a printer. For exanple, an enbedded CHR$(7) will
sound the buzzer if your printer has one, a CHR$(8) will back up the print
head one colum, and a CHR$(12) will issue a formfeed and skip to the next
page. |ndeed, you can use this to advantage to intentionally force a form
feed, perhaps with a statenment such as REMfollowed by the Crl-L fenale
synbol .

| should nention that different versions of the B editor respond
differently to the CGrl-P command. QuickBASIC 4.0 requires Ctrl-[to enter
the Escape code, while BX takes either Crl-[or the Escape key itself. |
shoul d al so mention that you nmust never inbed a CHR$(26) into a BASIC
source file. That character is recognized by DOS to indicate the end of a
file, and BCwill stop dead at that point when conpiling your program @B,
however, will load the file correctly.

WOULDN T | T BE NI CE | F DEPT.

No di scussi on of constants would be conplete wi thout a nmention of
initialized data. Unfortunately, as of this witing BASIC does not support
that feature! The concept is sinple, and it would be trivial for BASIC s
designers to inplement. Here's howinitialized data works.

Whenever a variable requires a certain value, the only way to give it
that value is to assign it. Sone |anguages |et you declare a variable's
initial value in the source code, saving the few bytes it takes to assign
it later. Since space for every variable is in the .EXE file anyway, there

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 47 -

woul d be no additional penalty inposed by adding this capability.

envi sion a syntax such as DDM X = 3.9 AS SINGE, or perhaps sinply DIM Y% =
3, or even DI M PassWrd$ = "QuessThis". Wiere Y%= 3 creates a six-byte
code sequence to put the value 3 into Y% what | am proposi ng woul d have
the conpiler place that value there at the tinme it creates the program

Equal | y desireable would be allowi ng string constants to be defined
using CHR$ argunents. For exanple, CONST EOF$ = CHR$(26) woul d be a
terrific enhancenent to the | anguage, and all owi ng code such as CONST CRLF$
= CHR$(13) + CHR$(10) woul d be even nore powerful. Again, we can only hope
that this feature will be added in a future version.

Yet another constant optimzation that BASIC coul d do but doesn't is
constant string function evaluation. In many progranmm ng situations the
programrer is faced with deciding between program efficiency and
readability. A perfect exanple of this is testing an integer value to see
whether it represents a |legal character. For instance, IF Char < 65 is not
nearly as neaningful as IF Char < ASC("A").

Clearly, BC could and shoul d resol ve the expression ASC("A") while it
is conpiling your program and generate sinple code that conpares two
integers. Instead, it stores the "A" as a one-byte string (which with its
descriptor takes five bytes), and generates code to call the internal ASC
function before perform ng the conparison. The point here is that no
matter how intelligent BCis, folks like us will always find sonme reason to
conpl ai n!

Bl T OPERATI ONS

The | ast inportant subject this chapter will cover is bit manipul ation
using AND, OR, XOR, and NOT. These |logical operators have two simlar, but
very different, uses in a BASIC program The first use--the one | wll

di scuss here--is to manipulate the individual bits in an integer or |ong

i nteger variable. The second use is for directing a programis flow, and
that will be covered in Chapter 3.

Each of the bit mani pul ati on operators perforns a very sinple Binary
function. Most of these functions operate on the contents of two integers,
using those bits that are in an equivalent position. The exanples shown in
Figure 2-6 use a single byte only, solely for clarity. |In practice, the
sane operations woul d be extended to either the sixteen bits in an integer
or the 32 bits in a long integer

13 = 0000 1101
25 = 0001 1001
0000 1001 result when AND i s used
NN
R both of the bits are set
in each colum
13 = 0000 1101
25 = 0001 1001
0001 1101 result when OR is used
N AN AN
e L one or both bits are set
in each colum
13 = 0000 1101
25 = 0001 1001

0001 0100 result when XOR is used

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 48 -

e L the bits are different
in each colum

13 = 0000 0000 0000 1101

1111 1111 1111 0010 result after using NOT

Figure 2-6

The exanpl es given here use the same deci mal values 13 and 25, and these
are also shown in their Binary equivalents. Wat is inportant when view ng
Bi nary nunbers is to consider the two bits in each vertical colum. |In the
first exanple, the result in a given colum is 1 (or True) only when that
bit is set in the first nunber AND the sane bit is also set in the second
This condition is true for only two of the bits in these particular

nunbers. The result bits therefore represent the answer in Binary, which
inthis case is 13 AND 25 = 9. Wat is inportant here is not that 13 AND
25 equals 9, but how the bits interact with each other

The second exanpl e shows OR at work, and it sets the result bits for
any position where a given bit is set in one byte ORthat bit is set in the
other. O course, if both are set the ORresult is also true. In this
case, four of the colums have one bit or the other (or both) set to 1. By
the way, these results can be proven easily in BASIC by sinply typing the
expression. That is, PRINT 13 OR 25 will display the answer 29.

The third exanple is for XOR which stands for Exclusive Or. XOR sets
aresult bit only when the two bits being conpared are different. Here,
two of the bits are different, thus 13 XOR 25 = 20. Again, it is not the
decimal result we are after, but how the bits in one variable can be used
to set or clear the bits in another

The NOT operator uses only one value, and it sinply reverses all of
the bits. Any bit that was a 1 is changed to 0, and any bit that had been
Ois nowl1l. A full word is used in this exanple, to illustrate the fact
that NOT on any positive nunber nakes it negative, and vice versa. As you
learned earlier in this chapter, the highest, or left-nost bit is used to
store the sign of a nunber. Therefore, toggling this bit also switches the
nunber between positive and negative. In this case, NOT 13 = -14.

Al of the logical operators can be very useful in some situations,
al t hough adnmittedly those situations are generally when accessing DOS or
interfacing with assenbly | anguage routines. For exanple, many DOS
services indicate a failure such as "File not found" by setting the Carry
flag. You would thus use AND after a CALL Interrupt to test that bit.

Anot her good application for bit manipulation is to store True or Fal se
information in each of the sixteen bits in an integer, thus preserving
menory. That is, instead of sixteen separate Yes/No variables, you could
use just one integer.

Bit operations can al so be used to replace calculations in certain
situations. One conmon practice is to use division and MDD to break an
integer word into its conponent byte portions. The usual way to obtain the
| ower byte is LoByte% = Wrd% MDD 256, where MOD provides the renai nder
after dividing. Wile there is nothing wong with doing it that way, Wrd%
= LoByt e% AND 255 operates slightly faster. Division is sinply a slower
operation than AND, especially on the 8088. Newer chips such as the 80286
and 80386 have inmproved algorithns, and division is not nearly as slow as

with the older CPU. Chapter 3 will |look at sone other purely BASI C uses of
AND and OR
SUMVARY

As you have seen in this chapter, there is much nore to variables and data
than the BASI C nmanual s indicate. You have | earned how data is constructed
and stored, how the conpiler nmanipulates that data, and how to determ ne

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 49 -

for yourself the amount of nmenory that is needed and is available. In
particular, you have seen how data is copied frequently but with no

i ndication that this is happening. Because such copying requires

addi tional nenory, it is a frequent cause of "Qut of nenory" errors that on
the surface appear to be unfounded.

You have al so | earned about BASIC s near and far heaps, and how they
are managed using string and array descriptors. Wth its dynamc
al l ocati on net hods and periodic rearrangenent of the data in your program
BASIC is able to prevent nmenory from becoming fragmented. Al though such
sophi sti cated nmenory managenent techni ques require additional code to
i mpl enent, they provide an inportant service that programers would
ot herwi se have to devise for thensel ves.

Finally, you have | earned how the various bit mani pul ati on operations
in BASIC work. This chapter will prove to be an inportant foundation for
the information presented in upcomng chapters. Indeed, a thorough
under st andi ng of data and nenory issues will be inval uable when you |l earn
about accessing DOS and BI CS services in Chapter 12

CHAPTER 3

PROGRAMM NG METHODS

In Chapters 1 and 2 you | earned how the BASIC conmpil er translates a source
file into the equival ent assenbly | anguage statenments, and how it all ocates
menory to store variables and constants. In particular, you saw that the
BC conpi |l er generates assenbly | anguage code directly for sone statenents,
while for others it creates calls to routines in the BASIC |libraries. Most
of the code exanples presented in that chapter dealt with sinple variable
assi gnments and cal cul ati ons.

O course, the conpiler nmust do nuch nore than nerely assign and
mani pul ate variables and other data. Equally inportant is controlling how
your program operates, and determ ning which paths are to be taken as it
progresses. |In this chapter we will delve into the inner workings of
control flow structures, with an eye toward witing prograns that are as
efficient as possible. As with the earlier chapters, this discussion
i ncl udes nunerous di sassenblies of conpiled BASIC code. Thus, you will see
exactly what the conpiler does, and how each control flow statenment is
handl ed.

This chapter al so discusses the design of both static and non-static
subprogranms and functions, and conpares the relative nerits of each nethod.
Many programers do not fully understand the term Static, and find the
rel ated subject of recursive subroutines especially difficult to grasp

BASI C supports four types of subroutines, and each will be described in
this chapter: GOSUB routines, subprogranms, DEF FN functions, and what |
call "formal functions". YQu will notice that | use the terns subroutine
and procedure interchangeably, to indicate a single block of code that may
be executed nore than once. You will also |earn how paranmeters are passed
to these procedures.

Finally, in this chapter I will discuss progranmng style. Programming
in any |language is arguably as much of an art as it is a science. But
unl i ke, say, rmnusic, where a conposer can wite any sequence of notes and
procl ai mthem acceptabl e, a conputer programnust at |east work correctly.
There are an infinite nunber of ways to acconplish any programm ng task
and | can make recomendations only. Which approach you choose wil|
reflect both your own personal taste and style, as well as your current
| evel of competence and understandi ng of progranmming in general.

Al'l progranms--regardl ess of the language in which they are witten--require

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -50 -

a mechanismfor testing certain conditions and then perforning different
actions based on those conditions. Al though there are many ways to perform
tests and branches in a BASIC program all of themdo essentially the sane
thing. The BASIC control flow statenments are GOTQ, DQ LOOP, WH LE/ VEND,

| F/ THEN ELSE, FOR/ NEXT, SELECT CASE, ON GOTO, and ON GOSUB. Because the
capabilities of WH LE/VEND are al so available with a DO LOOP construct, the
two will be discussed together.

In alnost all cases, the BASIC conpiler directly generates the code that
controls a progranmis flow. One exception is when floating point values are
used as a FOR counter, or as a WHILE or UNTIL condition. |In those
situations, calls are nade to the floating point conparison routines in the
BASIC runtine library. Another place is when you have a statenent such as
CASE ASC(X$), or |F LEFT$(X$, 10) = Y$. ASC and LEFT$ are al so subroutines
in the BASIC | anguage library, and they too are invoked by calls.

It is inportant to reiterate that when dealing with integer test
conditions, BCwll in nany cases create assenbly | anguage code that is as
good as a human programer would wite. |In the short programfragment that
follows, all of the BASIC source code is shown translated to the equival ent
assenbly | anguage statenents. This listing was derived by conpiling and
i nking the BASIC program for M crosoft CodeView, and then using CodeVi ew
to display the resultant code.

This is what you wite:
DO

X% = X%+ 1
LOOP WH LE X% < 100

This is the result after conpilation:

30:
INC WORD PTR [X% X% = X%+ 1
CW WORD PTR [X%, 64 ;compare X% to 100
JL 30 ;junp if less to 30

Here the variable X%is increnented, and then conpared to the val ue 100.
(64 is the Hex equivalent to 100, which is how CodeVi ew di spl ays val ues.)

If X%is indeed | ess than 100, the program junps back to address 30 and
conti nues processing the loop. Notice that while this exanple does not use
a naned | abel in the BASIC source code as the target for a GOIQ, the

equi val ent assenbly | anguage code does. In this case, the label is the
code at address 30. Do not confuse the addresses that assenbly | anguage
nmust use as junp targets with the nunbered | abels that in BASIC are
optional .

THE DREADED GOTO

Moder n progranmi ng phil osophy dictates that GOTO and GOSUB st at enment s
shoul d be avoided at all cost, in favor of DO and WHI LE | oops. However,
all of these nmethods result in nearly identical code. |Indeed, there is
not hi ng i nherently wong with using GOTO when circunstances warrant it.
By examining the programlisting below, you will see that BASIC generates
code that is identical for a GOTO as for a DO | oop.

This is what you wite:
Label :

X% = X%+ 1
IF X% < 100 THEN GOTO Label

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -51 -

This is the result after conpilation:

30:
INC WORD PTR [X% X% = X%+ 1
CW WORD PTR [X%, 64 ;compare X% to 100
JL 30 ;junp if less to 30

Si nce GOTO and DO LOOP produce the same results, which one is better, and
why? In general, a DOLOOP is preferable for two reasons. First, it is

a nui sance to have to create a new and uni que | abel nane for every |ocation
that a programmay need to branch to. Adnmittedly, in a short programthis
will not be a problem But in a large application with many small | oops
that test for keyboard input, you end up creating nmany |abels w th nanes
such as Get Keyl, GetKey2, and so forth. And if you inadvertently use the
wong | abel name, your programwi |l not work correctly.

More inportant, however, is that for each | abel you define in a program
the BC conpiler nust renenber its name and the equival ent address in the
obj ect code that the label identifies. Since |abel nanes can be as |ong
as 40 characters and nmenory addresses require 2 bytes each to identify, a
finite nunmber of |abel nanes can be accommbdated. By avoi di ng unnecessary
| abel s, you are giving BC that much nore nmenory to use for conpiling your

progr am
There are several situations in which GOTOis preferable to a DO or
VWH LE | oop. Indeed, one of ny personal pet peeves is when a progranmer

tries to shoehorn structure into a programno natter what the cost.
Consider the three different code fragnents bel ow; each waits for a key
press and then assigns it to the variable Ky$.

This approach is the worst:

Ky$ = nmn

VH LE Ky$ = "
Ky$ = | NKEY$

VEEND

This nethod is better:

Label
Ky$ = | NKEY$
IF Ky$ = "" @OTO Label

And this is better still:

DO
Ky$ = | NKEY$
LOOP WHI LE Ky$ = "'

In the first exanple, an extra step is needed solely to clear Ky$ to a nul
string, so the initial WHILE will be true and execute at |east once. Every
string assignnent adds 13 bytes to a program and those 13 bytes can add

up quickly in a large application

The second exanpl e avoi ds the unnecessary assignment, but adds a | abel
for GOTOto junp to. Although this |abel does require a snmall anount of
addi tional nenory while the programis being conpiled, it does not increase
the size of the final executable programfile.

The last exanple is better still, because it avoids the need for a line
| abel and al so avoids an extra string assignment. Since a DO |oop allows
the test to be placed at either the top or bottom of the | oop, you can
force the loop to be executed at |east once by putting the test at the

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -52 -

bott om as shown here.

However, even this can be inproved upon by elininating the string
conmparison that checks if Ky$ is equal to a null string. |If we replace
LOOP WH LE Ky$ = "" with LOOP UNTIL LEN(Ky$), only 13 bytes of code are
generated instead of 15. Wen two strings are conpared (Ky$ and ""), each
nmust be passed to the string conparison routine. Since LEN requires only
one argunent, the code to pass the second paraneter is avoi ded.

There are sone situations for which the GOTOis ideally suited. In the
first two exanpl es bel ow, a conpl ex expression is used as the condition for
executing a DO WH LE | oop, and the sanme expression is then used again
wi thin the | oop.

DO WHI LE (X% + Y% * Z% > 13
IF (X% + Y% * Z%= 100 THEN PRI NT

LooP

DO WHI LE ASC(M D$(S$, A% B%) > 13
| F ASC(M D$(S$, A% B%) > 100 THEN PRI NT

LooP

Label :
Tenmp% = ASC(M D$(S$, A% BY)
I F Temp% > 13 THEN
I F Temp% > 100 THEN PRI NT

GOTO Label
END | F

In the first exanple, BASIC renenbers the results of its test that checks
if a (X%+ Y¥H * Z%is greater than 13, and it uses the result it just
calculated in the next test that conpares the sanme expression to 100. This
is one nore exanple of the kinds of optimzations BC perfornms as it
conpi |l es your prograns. String expressions such as those used in the
second exanpl e are of necessity nore conplex, and require calls to library
routines. Wth this added conplexity, BASIC unfortunately cannot retain
the result of the earlier conparison, and it generates identical code a
second ti me.

A nore el egant solution in this case is therefore the GOTO as shown in
the | ast exanple. Because the result of evaluating the expression is saved
manual ly, it nmay be reused within the loop. As proof, the second DO WH LE
exanpl e above requires 73 bytes to inplenment, as opposed to only 53 when
Temp% and GOTO are used.

| should al so point out that the nost conmon and val uabl e use for GOTO
is to get out of a deeply nested series of |IF or other blocks of code. It
is not uncommon to have a FOR/ NEXT | oop that contains a SELECT CASE bl ock,
and within that a series of IF/ELSE tests. The only way to junp out of all
three levels at once is with a GOTO

FOR/ NEXT LOOPS

Unli ke WHILE and DO | oops that can test for nearly any condition and at
either the top or bottomof the |oop, a FOR'NEXT loop is intended to
performa bl ock of statenents a fixed nunber of tines. A FOR/ NEXT | oop
could al so be replaced with code that conpares a value and uses GOTO to
reenter the loop if needed, but that is hardly necessary. M point is to

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -53 -

yet again illustrate that all of BASIC s seenmingly fancy constructs are no
nore than tests and GOTCs deep down at the assenbly | anguage | evel

A FOR/ NEXT | oop determ nes the nunber of iterations that will be
execut ed once ahead of time, before the |oop begins. For exanple, the
listing bel ow shows a | oop that changes the upper linmt inside the | oop
However the loop still executes 10 tines.

Limt%= 10

FOR X% =1 TOLimt%
Limt%=>5
PRINT Limt%

NEXT

The code that BASIC produces for the FOR/ NEXT | oop in the previous exanple
is translated to the follow ng equival ent during the conpilation process.

Limt%= 10
Temp% = Limt%
X%=1
GOTO Next :
For:
Limt%=>5
PRINT Limt%
X%= X%+ 1
Next :
I F X% <= Tenmp% THEN GOTO For

Pl ease understand that changing a | oop condition inside the loop is

consi dered bad practice, because the program becones difficult to
understand. |If you really need to alter the limt inside a |oop, the | oop
shoul d be recoded to use WH LE or DO instead. Another good reason for
avoi di ng such code is because it is possible that future versions of BASIC
wi Il behave differently than the one you are using now. |If Mcrosoft were
to nodify BASIC such that the limt condition were reevaluated at the NEXT
statenment, your code would no longer work. It is also considered bad
practice to nodify the loop counter variable itself (X%in the previous
exanpl es). However, this causes no real harm and you should not be afraid
to do that if the situation warrants it. O course, changing the | oop
counter will affect the nunber of tinmes the loop is executed.

| F/ THEN ELSE AND SELECT CASE

BASI C provides two nethods for testing conditions in a program and
executing different blocks of code based on the result. The npbst comon
nethod is the IF test, which can be used on a single variable, the result
of an expression, the returned value froma function, or any conbination
of these. | won't belabor the nost common uses for |IF here, but | do want
to point out some of its |ess obvious properties. Al so, there are sone
situations where |IF and ELSEIF are appropriate, and others where their
counterpart, SELECT CASE, is better

As you have already learned, a sinple IF test will in nost cases be
transl ated into the equival ent assenbler instructions directly. In sone
cases, however, the condition you specify is tested, while in others the
opposite condition is tested. |If you say IF X > 10 THEN GOTO Label
BASI C may change that to IF X <= 10 GOTO [next statenment]. Wich BASIC
uses depends on what you will do if the condition is true, and how far away
in the generated code the statenments that will be executed are | ocated.
Wen a GOTO is to be perforned if the test passes, then the relative
position of the target label is also a factor.

Ajunp to a location either ahead in the code or nore than 128 bytes

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -54 -

backwards requires BASIC to generate nore code. The 128 byte di spl acenent
is significant, because the 80x86 can performa *conditional junp* to an
address only a limted distance away. That is, after a conparison is nade,
the target address for a conditional junmp such as "Junp if Geater" nust
be no nore than that nmany bytes distant. However, an unconditional junp
can be to any address within the sane 64K code segnent. (Bear with ne for
a nonent, because the significance of this will soon becone apparent.)
This is shown in the next listing follow ng.

IF X% = 100 THEN
CW Word Ptr [X%, 64 ;conpare X% to 100

JE O003A ;junp ahead if equal
JMP Label ; el se, skip ahead
003A: ; BASI C made this | abe
Y%= 2
MOV Word Ptr [YH, 2
END I F
Label
IF X > 8 GOTO Label
CW Word Ptr [X%, 8 ;conpare X%to 8
JG Label ;junp back if greater

In the first exanpl e above, BASIC conpares the value of X% to 100 (64 Hex),
and i f equal junps ahead to a | abel it created at address 003A Hex.

O herwise, a junp is nmade to the next statenment in the program which in
this case is a named | abel. Al though using two junps rmay seem
unnecessarily convoluted, it is necessary because BASIC has no way of
knowi ng how many statenments will follow at the time it conpiles the IF
test. Thus, it also cannot know whether the statement follow ng the END
IF will end up being 128 or nore bytes ahead.

By junping to another, unconditional junp, BCis assured that the
generated code will be legal. (Wen BC finally encounters the END IF, it
goes back to the code it created earlier, and conpletes the portion of the
unconditional junp instruction that tells howfar to go.) Sone conpilers
avoid this situation and create the I onger, two-junp code on a trial basis,
but then go back and change it to the shorter formif possible. These are
call ed two-pass conpil ers, because they process your source code in two
phases. Unfortunately, current versions of Mcrosoft BASIC do not use nore
t han one pass.

In the second exanpl e Label has already been encountered, and BC knows
that the label is within 128 bytes. Therefore, it can translate the IF
statenment directly, w thout having to conditionally junmp to yet another
junp. Had the earlier |abel been farther away, though, an extra junp woul d
have been needed. It is inportant to understand that forward junps are
al ways handled with nore code than is |ikely necessary, because BASIC does
not know how far ahead the junmp must go. In fact, this sanme issue nust be
dealt with when witing in assenbly | anguage, since the conditional junp
distance linmtation is inherent in the 80x86 m croprocessor.

The bottomline, therefore, is that you can in nmany cases reduce the
size of your progranms by controlling in which direction a conditional junp
will be performed. For exanple, alnost all progranms nmust at some point sit
inaloop waiting until a key is pressed. The next listing shows two
conmon ways to do this, with one testing for a key press at the top of the
| oop, and the other doing the test at the bottom

DO UNTI L LEN(| NKEY$) ;this conprises 18 bytes
0030:
CALL B3I NKY ;call | NKEY$
PUSH AX ;pass the result to LEN
CALL B$FLEN ; AX now holds the length
AND AX, AX ;see if it's zero

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -55 -

JZ 0042 ;yes, junp to LOOP

JMP 0044 ;no, junp out of | oop
0042:
LOOP

JMP 0030 ;junp back to DO
0044.
DO ;this is only 15 bytes
LOOP UNTI L LEN(I NKEY$)

CALL B$I NKY ;call | NKEY$

PUSH AX ; as above

CALL B$FLEN

AND AX, AX

JZ 0044 ;junp back if zero

Viewed froma purely BASI C perspective, these two exanpl es operate
identically. But as you can see, the code that BASIC creates is nore
efficient for the second exanple. Wen BASIC encounters the first DO
statenment, it has no idea how many nore statenments there will be until the
termnating LOOP. Therefore, it has no recourse but to create an extra
jump. In the second exanple, the location of the DOis already known to
be within 128 bytes, so the LOOP test can branch back using the shorter and
nore direct nethod.

An ELSEIF statement block is handled in a sinilar fashion, with code
that directly conpares each condition and branches accordingly. Because
the code to be executed if the IFis true is always after the I F test
itself, the less efficient two-junp code nust be generated. A sinple
| F/ ELSEIF foll ows, shown as a m x of BASIC and assenbly | anguage
st at enent s.

IF X% > 9 THEN
CW Word Ptr [X%,9 ;conpare X%to 9

JG 003A ;assign Ywnif greater
JMP 0043 ;else junp to next test
003A:
Y%= 1
MOV Word Ptr [Y%,1 ;assign Y%
JMP 0066 ;junp out of the block
ELSEI F X% > 5 THEN
0043:
CwW Word Ptr [X% ,5 ;as above
JG 004D
JMP 0066
004D:
Y%= 2
MOV Word Ptr [YW, 2
END I F

0066:

Aside fromthe additional junping over junps that are added to all forward
address references, this code is translated quite efficiently. 1In this
situation, the conpiled output is identical to that produced had SELECT
CASE been used. However, there is one inportant situation in which SELECT
CASE is nore efficient than | F and ELSEIF.

For each ELSEIF test condition, code is generated to create a separate
conpari son. When a sinple conparison such as X% > 9 is being nade, only
one assenbly | anguage statenment is needed. But when an expression is
tested--for exanple, ABS((X% + Y¥®W * Z%) > 9--identical code is generated
repeatedly. This is illustrated in the listing that follows.

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -56 -

IF ABS((X% + Y% * Z% = 5 THEN
A% =1

ELSEI F ABS((X% + Y% * Z%
A% = 2

ELSEI F ABS((X% + Y% * Z%
A% = 3

END | F

6 THEN

7 THEN

Each time BC encounters the expression ABS((X% + YW * Z%, it duplicates

t he sanme assenbly | anguage statenments. But when SELECT CASE is used, the
expression is evaluated once, and used for each subsequent test. The first
exanpl e in the next listing shows how SELECT CASE coul d be used to provide
the same functionality as the preceding | F/ ELSEIF bl ock, but with much | ess
code. The second exanpl e then shows what SELECT CASE really does, using

an | F/ ELSEI F equi val ent.

You wite it this way:

SELECT CASE ABS((X% + Y% * Z%
CASE 5. A% = 1
CASE 6: A% = 2
CASE 7: A% = 3
CASE ELSE
END SELECT

BASIC really does this:

Tenp% = ABS((X% + YY) * Z%
| F Tenp% = 5 THEN
A% =1
ELSElI F Temp% = 6 THEN
A% = 2
ELSEI F Temp% = 7
A% = 3
END I F

As you can see, SELECT CASE eval uates the expression once, stores the
result in a tenporary variable, and then uses that variable repeatedly for
all subsequent conparisons. Therefore, when the sanme expression is to be
tested nultiple times, SELECT CASE will be nore efficient than I F and
ELSEIF. This is also true for string expressions and other functions. For
exanpl e, SELECT CASE LEFT$(Work$, 10) will result in less code and faster
performance than using |F and ELSEIF with that same expression nore than
once.

Anot her inportant feature of SELECT CASE is its ability to use either
variable or constant test conditions, and to operate on a range of val ues.
For exanple, the C |language Switch statenment which is the equival ent of
BASI C s SELECT CASE can use only constant nunbers for each test. BASICis
particularly powerful in this regard, and allows any |egal expression for
each CASE condition. For exanple, CASE IS > (Y AND 2) is valid, and so is
CASE 0 TO Max. CASE al so accepts multiple conditions separated by conmas
such as CASE 1, 3, 4 TO 100, -10 TO-1. |In this case, the statenments that
followw Il be executed if the selected expression equals 1, 3, any val ue
bet ween 4 and 100 inclusive, or any val ue between -10 and -1 incl usive.

It is also worth nmentioning here that Qui ckBASI C version 4.0 contains
an interesting and irritating quirk that requires a CASE ELSE in the event
that none of the tests match. Had the CASE ELSE been omitted fromthe
previ ous exanpl e and the value of the expression was not between 5 and 7,
QUi ckBASIC 4.0 woul d i ssue a "CASE ELSE expected" error at run tine.

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 57 -

Fortunately, this has been repaired in QuickBASIC 4.5 and | ater versions.
Notice that this is not a bug in QuickBASIC. Rather, it is the behavior
described in the ANSI (Anerican National Standards Institute) specification
for BASIC. At the tinme QuickBASIC 4.0 was introduced, M crosoft m stakenly
bel i eved t he then-proposed ANSI standard for BASIC woul d be significant.
As that standard approached fruition, it becane clear to Mcrosoft that the
only standard nost programers really cared about was M crosoft's.
One final point | cannot nmake often enough is the inherent efficiency
of integer operations and conparisons. This is especially true in the
conparisons that are nmade in both IF and CASE tests. 1In the first exanple
bel ow, each of the characters in a string is tested in turn. The second
exanpl e shows a much better way to wite such a test, by obtaining the
ASCI | val ue once and using that for subsequent integer conparisons.

Not reconmmended:

FOR X = 1 TO LEN(Vrk$)
SELECT CASE M D$(Work$, X 1)
CASE CHR$(9): PRINT "Tab key"
CASE CHR$(13): PRINT "Enter key"
CASE CHR$(27): PRINT "Escape key"
CASE "A" TO"Z", "a" TO "z": PRINT "Letter"
CASE "0" TO "9": PRINT "Nunber"
END SELECT
NEXT

Much nore efficient:

FOR X = 1 TO LEN(V@r k$)
SELECT CASE ASC(M D$(Work$, X, 1))
CASE 9: PRINT "Tab key"
CASE 13: PRINT "Enter key"
CASE 27: PRINT "Escape key"
CASE 65 TO 90, 97 TO 122: PRINT "Letter"
CASE 48 TO 57: PRI NT "Nunber"
END SELECT
NEXT

In the first programthe SELECT itself generates 27 bytes, which is
conprised of a call to the MD$ function and then a call to the string
assign routine. A string assignment is needed to save the MD$ result in
a tenporary variable for the subsequent tests that follow Each CASE test
that uses CHR$ adds 27 bytes, and this includes the call to CHR$ as well
as an additional call to the string conparison routine. Testing for the
letters adds 75 bytes, and testing for the nunbers adds 39 nore. This
results in a total code size of 222 bytes, not counting the FOR NEXT | oop

Contrast that with only 131 bytes for the second exanple, in which the
SELECT portion requires only 26 bytes. Although an extra call is needed
to obtain the ASCI1 value of the extracted character, the lack of a
subsequent string assignment nore than nmakes up for that. Further, the
tests for 9, 13, and 27 require only 13 bytes each, conpared to 27 when
CHR$ val ues were used. The letters test requires 43 bytes, and the nunbers
test only 23.

Clearly this is a significant inprovenent, especially in light of the
smal | nunber of tests that are being perforned here. 1In a real program
that perforns hundreds of string conparisons, replacing those with integer
conpari sons where appropriate will yield a substantial size reduction

AND, OR EQV, and XOR

When you use AND or ORin an IF test, what is really being conpared is

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -58 -

either 0 or -1. That is, BASIC evaluates the *truth* of each expression
being tested on both sides of the AND or OR, and a truth in BASIC al ways
results in one or the other of these values. Once each expression has been
eval uated, the results are conbined using an assenbly | anguage AND or OR
instruction, and a branch is then nmade accordingly. Renmenber that when
integers are treated as unsigned, setting all of the bits to 1 results in
a value of -1.

In chapter 2 I showed how the various |ogical operators are used to
mani pul ate bits in an integer or long integer variable. The concept is
i dentical when these operators are used for decision-nmaking in a BASIC
program The difference is really nore a natter of senmantics than
definition. That is, the sane bit manipulation is perfornmed, only in this
case on the result of the truth of a BASIC expression. This is shown in
context bel ow, where two test expressions are conbi ned usi ng AND.

IF X>1 AND Y < 2 THEN
CW Word Ptr [X94,1 ;conpare X%to 1

MOV AX O ;assume Fal se
JLE 003B ;we assumed correctly
DEC AX ;wrong, decrenent to -1
003B:
CwW Word Ptr [YA, 2 ; now conpare Y%to 2
MOV CX, 0000 ;assunme Fal se
JGE 0046 ;we assumed correctly
DEC CX ;wrong, decrenent to -1
0046:
AND CX, AX ;conbine the results
AND CX, CX ;(this is redundant)
JNZ 004F ;if not O assign Z%
JMP 0055 ;else jump past END I F
Z=3
004F:
MOV Word Ptr [Z9, 3 ;assign Z%
END I F

0055:

The result of the first conparison is saved in the AX register as either
0 or -1, and the second is saved in CX using simlar code. Once both tests
have been performed and AX and CX are hol ding the appropriate val ues, the
regi sters are then tested agai nst each other using AND. The instruction
AND CX, AX not only conbines the results, but it also sets the CPU s Zero
Flag to indicate if the result was zero or not. Therefore, the second test
that uses AND to conpare CX against itself to check for a zero result is
redundant. At only 2 additional bytes, the inpact on a progranis size is
not terribly significant. However, this shows first-hand the difference
bet ween code witten by a conpiler and code witten by a person

OR conditions are handled simlarly, except the assenbly | anguage OR
instruction is used instead of AND. Wen nultiple conditions are being
tested using conbi nations of AND and OR and perhaps nested parent heses as
well, additional sinilar code is enployed.

There are nmany situations where all that is really necessary is to test
for a zero or non-zero condition. For exanple, it is conmon to use an
i nteger variable as a True/ Fal se "flag" which can be set in one part of a
program and tested in another. By understanding the underlying code that
BASI C creates, you can help BASIC to reduce the size of your prograns
enormously. In particular, avoiding a conparison with an explicit val ue
| ets BASIC generate fewer conparison instructions. The listing bel ow shows
how you can test nultiple flags using AND, but with much less resulting
code than using an explicit comnparison

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -59 -

| F Fl ag1% AND Fl ag2% THEN

MOV AX [Fl ag2% ;move Fl ag2% i nto AX
AND AX [Fl agl% ; AND that with Fl agl%
AND AX, AX ;(this is redundant)
JNZ 0063 ;if not zero assign Z%
JMP 0069 ;el se skip past END I F

Z% = 3

0063:
MOV Word Ptr [Z%, 3

END I F

0069:

The key here is that zero is always used to represent False, and -1 to
represent a True condition. That is, instead of witing IF Flagl% = -1 AND
Fl ag2% = -1, using |IF Flagl% AND Fl ag2% provi des the sane results. At only
20 bytes of generated code, this nmethod is far superior to tests for an
explicit -1 which require 37 bytes. |If you recall, in Chapter 2 | showed
how the various bits in a variable can be turned on or off with AND. Thus,
1111 AND 1111 equal s 1111, while 1111 AND 0000 equal s O.

Notice that using 0 and -1 has nany ot her benefits as well. For
exanpl e, the NOT operator which was al so described in Chapter 2 can toggle
a variable between those values. If all of the bits in a variable are
presently zero, then NOT Variable%results in all ones (-1). This property
can al so be used to enhance a progranms readability, by using NOT nuch |ike
you woul d in an English sentence. For exanple, the code followi ng the line
I F NOT Flag% THEN wi || be executed if Flag®%is 0 (False), but it will not
be executed if Flag%is -1 (True).

In fact, an explicit conparison is optional if you need to test only for
a non-zero value. |F Variable <> 0 THEN can be reduced to |IF Variable
THEN, and the statenents that followw |l be executed as long as Vari abl e
is not 0. Notice that the only saving here is in the BASI C source, since
ei ther conparison creates ten bytes of assenbler code. But when using |ong
i ntegers, the short formsaves five bytes--14 bytes versus 19 for an
explicit conparison to zero

NOT is equally valuable when toggling a flag variable between two
values. |If you have, say, an input routine that keeps track of the Insert
key status, then you could use Insert% = NOT Insert% each tine you detect
that the Insert key was pressed. The first time the operator presses that
Key, the Insert flag will be switched fromthe default start-up val ue of
0 to -1. Then using Insert% = NOT Insert%a second tine will revert the
bits back to all zeros. |In fact, it is a comon technique to define True
and Fal se variables (or constants) in a programusing this:

Fal se% = 0
True% = NOT Fal se%

Most programers understand how to use parentheses to force a particul ar
order of evaluation. By default, BASIC perfornms nultiplication and
division before it does addition and substraction. Wen operators of the
sane precedence are being used, then BASIC sinply works fromleft to right.
However, the order in which |ogical conparisons are nmade is not always
obvi ous. This can becone particularly tricky if you are using sone of the
shorthand nmethods | described earlier

For exanpl e, consider the statenents IF X AND Y > 12, IF NOT X R Y, and
IF XANDY ORZ In the first exanple, the truth of the expression Y > 12
is evaluated first, with a result of either O or -1. Then, that result is
conbined logically with the value of X using AND. The resulting order of
evaluation is performed as if you had used IF X AND (Y > 12). The ot her
expressions are evaluated as IF (NOT X) ORY and IF (X ANDY) OR Z

The last | ogical operators we will consider are EQV and XOR These are
used rarely by nost BASIC programers, probably because they are not well
understood. However, EQV can dramatically reduce the size of a programin

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 60 -

certain circunstances. It is not uncommon to test if two conditions are
the sane, whether True or False. EQV stands for Equivalent, neaning it
tests if the expressions are the sane--either both true or both false. Al
three program fragnents bel ow serve the sane purpose, however the first
generates 57 bytes, while the second and third create only 16 bytes.

IF(X=-1ANDY=-1) OR(X=0 ANDY = 0) THEN
END | F

IF X EQV Y THEN

END | F

IF NOT (X XOR Y) THEN

END | F

Al t hough these exanpl es could be replaced with a sinple conparison that
tests if X equals Y, EQV can reduce other, nore el aborate AND and OR tests.
For exanple, you could replace this:

IF (X =10 AND Y = 100) OR (X <> 10 AND Y <> 100)
with this:
IF X =10 EQV Y = 100

and gain a handsone reduction in code size. Notice that because of the way
EQV works, the third exanple in the listing above results in identica
assenbly | anguage code as the second. XOR is true only when the two
conditions are different, thus NOT XOR is true when they are the sane.

One final point worth mentioning is that you can assign a variable based
on the truth of one or nore expressions. As you saw earlier, every IF test
that is used in a BASIC program adds a mninmumof 3 extra bytes for a
second, unconditional junmp. That additional code can be avoi ded in nmany
cases by assigning a variabl e based on whether a particular condition is
true or not. 1In the code exanples that follow, both programfragnents do
the same thing, except the first requires 25 bytes conpared to only 14 for
t he second.

I F Variable = 20 THEN
Flag = -1

ELSE
Flag = 0

END | F

Flag = (Variable = 20)

In either case, the truth of the expression Variable = 20 nust be

eval uated. However, the |F method adds code to junp around to different
addresses that assign either -1 or 0 to Flag. The second exanple sinply
assigns Flag directly fromthe O or -1 result of the truth test. Qher
variants on this type of progranm ng are statenents such as A= (B = Q)
and Flag = (LEN(Tenp$) <> 0 AND Variable < 50). Note that the surrounding
par ent heses are shown here for clarity only, and BASI C produces the same
results without them

Short Crcuits

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 61 -

There is one inportant point regarding AND testing you should be aware of.
Al t hough the code that BASIC creates to inplenent these logical tests is
very efficient, in sone cases a different approach can yield even better
results. Wen nmany conditions are tested, QuickBASIC creates assenbly

| anguage code to evaluate all of them before naking a decision. This can
be wasteful, because often one of the conditions will be fal se, negating
a need to test the remmining conditions. For exanple, this statenent:

IF Any$ = "Quit" AND IntVar% > 100 AND Fl oat! <> 0 THEN PRI NT "True"

requires that all three conditions be tested before the program can
proceed. But if Any$ is not equal to "Quit", there is no need reason to
spend tinme evaluating the other tests.

The solution is to instead use nested |IF tests, preferably placing the
nost likely (or sinplest) tests first, as shown bel ow

IF Any$ = "Quit" THEN
IF I ntVar% > 100 THEN
IF Float! <> 0 THEN
PRI NT " True"
END | F
END | F
END | F

Here, if the first test fails, no additional tinme is wasted testing the
remai ni ng conditions. Further, using the nested IF tests with Qui ckBASI C
also results in less code: 50 bytes versus 64. Note, however, that BASIC
PDS [and VB/ DOS] incorporate a technique known as *short circuit expression
eval uation*, which generates slightly nore efficient code when AND i s used.
Wth the newer conpilers, each condition is tested in sequence, and the
first one that fails causes the programto skip over the code that prints
"True". But even with this inproved code generation, you should stil

pl ace the nost likely tests first.

ON GOTO AND ON GCSUB STATEMENTS

The | ast non-procedural control flow statenents | wll discuss here--ON
GOTO and ON GOSUB- - are used infrequently by nmany BASIC progranmers. But
when you need to test many different val ues *and* those val ues are
sequential, ON GOTO and ON GOSUB can reduce substantially the amount of
code that BASIC generates. For clarity, | will use ON GOTO for nost of the
exanpl es that follow Both work in a simlar fashion except with ON GOSUB
execution resunes at the next BASIC statenment when the subroutine returns.

You have already seen that |F/ ELSEIF and SELECT CASE bl ocks are not as
efficient as they could be, because the conpiler does not know how far
ahead the END I F or END SELECT statenents are | ocated. Therefore, no
matter how trivial the IF or CASE tests being performed are, a pair of
junps is always created even when a single junp would be sufficient.

Furt her, when many tests are necessary, there is no avoiding at |east sone
amount of code for each conparison. This is where ON GOTO can hel p.

Rat her than performa series of separate tests for each val ue being
conpared, ON GOTO uses a | ookup table which is inbedded in the code
segment. This table is nmerely a list of addresses to branch to, based on
the value of the variable or expression being evaluated. |If the value
being tested is 1, then a branch is taken to the first label in the list.
If it is 2, the code at the second | abel is executed, and so forth.

As many as 60 |labels can be listed in an ON GOTO statenent, although the
nunber being tested can range fromO to 255. |If the value is 0 or higher
than the nunber of itens in the list, the ON GOTO conmand is ignored, and
execution resunes with the statement following the ON GOTO. Negative
val ues or val ues higher than 255 cause an "lllegal function call" error

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 62 -

A sinpl e exanpl e showi ng the basic syntax for ON GOTO i s shown bel ow.

I NPUT "Enter a value between 1 and 3: ", X
ON X GOTO Label 1, Label 2, Label 3
PRINT "Illegal entry!"
END
Label 1:
PRI NT "You pressed 1"
END
Label 2:
PRI NT "You pressed 2"
END
Label 3:
PRI NT "You pressed 3"
END

Notice that the nore | abels there are, the bigger the savings in code size.
ON GOTO adds a fixed overhead of 70 bytes, 61 of which is the size of the
library routine that evaluates the value and actually junps to the code at
the appropriate label. The remaining 9 bytes are needed to | oad the val ue
bei ng tested and pass that on to the ON GOTO routine. However, for each
label in the list, only 2 bytes are required in the | ookup table to hold

t he address.

Conpare that to SELECT CASE which requires 6 bytes of set-up code (when
an integer is being tested), and 13 bytes nore to process each CASE. Thus,
the crossover point at which ON GOTO is nore efficient is when there are
6 or nore conparisons. Notice that if ON GOTOis used in nore than one
place in a program the savings are even greater because the 61-byte
library routine is added only once.

Again, ON GOTO has the inmportant restriction that all of the values nust
be sequential. However, this limtation can also be turned into a feature
by taki ng advantage of the inherent efficiency of |ookup tables.

Using a | ookup table is a very powerful technique, because you can
determine a result using an index rather than actually cal culating the
answer. A lookup table is conmonly used to determine |og and factoria
functions, since those calculations are particularly tedious and tine
consunming. Wth a | ookup table you woul d cal culate all of the val ues once
ahead of tinme, and fill an array with the answers. Then, to determnine the
factorial for, say, the nunber 14, you would sinply read the answer from
the fourteenth elenment in the array.

You can apply this sanme technique in BASIC using a conbination of |INSTR
and ON GOTO or ON GOSUB. Al though INSTR is intended to find the position
of one string within another, it is also ideal for |ooking up characters
in atable. |Inagine you have witten an input routine that nust handle a
nunber of different keys, and branch accordi ng to which one was pressed.
One way woul d be to use an | F/ ELSEIF or SELECT CASE bl ock, with one section
devoted to each possible key. But as you saw earlier, once there are nore
than 5 keys to be recogni zed, either of those constructs are |less efficient
than ON GOTO

The approach | often use is to conbine I NSTR and ON GOSUB to branch
according to which function key was pressed. The beauty of this nethod is
that a value of zero (or one that is out of range) causes control to fal
through to the next statenent. Therefore any keys that are not explicitly
being tested for are sinply ignored. This is shown in context bel ow

DO

DO "wait for a key press
K$ = | NKEYS$

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 63 -

Lengt h% = LEN(K$)
LOOP UNTIL Lengt h%

| F Length% = 2 THEN "it's an extended key
Code$ = RIGHT$(KS$, 1) 'isolate the key code and branch accordingly
ON | NSTR("; <=>?@\BCD', Code$) GOSUB ...

END | F

LOOP UNTIL K$ = CHR$(27) ‘'wuntil they press Esc

Here, extended keys are identified by a length of 2, and the key code is
then isolated with RIGHTS. The punctuation and letters within the quotes
are characters 59 through 68, which correspond to the extended codes for

F1 through F10. (A list of all the extended key codes is in your BASIC
owner's nmanual.) O course, any arbitrary list of key codes coul d be used.
Furt her, the key codes do not need to be contiguous. For exanple, to
branch on the Up arrow, Down arrow, Ins, Del, PgUp, and PgDn keys you woul d
use "HPRSIQ' as the source string. Any other mx of characters could al so
be used, including Al't keys.

Anot her interesting and clever trick that conmbi nes I NSTR and ON GOTO
lets you test nultiple keys regardl ess of capitalization. The short program
bel ow accepts a character, and uses INSTRto look it up in a table of upper
and | ower case character pairs.

PRI NT "Yes/ No/ Load/ Save/ Retry/ Quit? ";

DO
K$ = | NKEYS$
LOOP UNTIL LEN(K$) = 1

ON (I NSTR(" YyNnLI SsRrQq", K$) + 1) \ 2 GOTO ...

After adding 1 and dividing that by 2, the result will indicate in which
character pair the choice was found. This technique could al so be extended
to include 3- or 4-character groups, or any other conbination of

characters. Since any val ue between 0 and 255 is legal for an ASC |
character, INSTR can be used in other, nore general |ookup situations as
wel | .

A COWPARI SON OF SUBROUTI NE METHODS

There are four primary subroutine types that BASI C supports: GOSUB
subroutines, DEF FN functions, called subprograns, and what | refer to as
"formal functions". Each has its own advantages and di sadvantages, which
I will describe nonmentarily. But | would first like to introduce severa
terms that will be used throughout the discussion that follows.

The first is *nmodul e*, which is a series of BASIC program statenents
kept in their own separate source file. Al nodules have a nain portion
and some al so have procedures within a SUB or FUNCTI ON bl ock. The main
portion of a programis that which receives control when the programis
first run. Wen a programis conprised of nultiple nodul es, each
additional nodule has a main portion, although code within that portion is
rarely executed. 1In fact, there are only two ways to access code in the
main portion of an ancillary nodule: One is to create a line |abel and use
that as the target for ON ERROR or another "ON' event. The other is to
define a DEF FN function and invoke the function.

The second termis *variable scope*, which indicates where in a program
a variable may be accessed. Variables that are used in the main portion
of a program are accessi ble anywhere else in the main, but not within a SUB
or FUNCTI ON bl ock. Likewi se, a variable that is defined within a SUB or

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 64 -

FUNCTION is by default private to that procedure. The overwhel m ng
advant age of private variables is that you do not have to worry about
errors caused by inadvertently using the same variable name twi ce.

The third termis *SHARED*, and it overrides the default private scope
of a variable used in a procedure. SHARED nmay be used in either of two
ways. If it is specified with a DIMstatenent in the main body of a
program-that is, DIM SHARED Variable--the variable is established as being
shared throughout the entire source file. Even though DIMis usually
associated with arrays, it can be used this way to extend a variable's
scope.

SHARED rmay al so be used within a subroutine to share one or nore
variables with the main portion. Notice that the statenment SHARED Vari abl e
i nside a procedure defines the variable as being shared with the main
portion of the programonly. SHARED used within a procedure does not share
the nanmed variable with any other procedures. The only exception is when
ot her procedures al so use SHARED with the sane variable nane. In that case
they are shared between procedures, as well as with the main program

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 65 -

DEFI NT A-Z
DI M SHARED Var 1

-->Varl = 100

-->Var2 = 200
CALL Subl(Var?2)
CALL Sub2(Var2)
END

1
[
—————————— g -

SUB Subl (Paran) STATIC
--+---->Varl = Param

Var2 = Varl
END SUB

SUB Sub2 (Paran) STATIC
SHARED Var 2
+--+---->Varl = Param
S +---->Var2 = Varl
| END SUB

TTTTTTTTTT 4T T TTTTTTTT T 4+

Fi gure 3-1: How SHARED and DI M SHARED af fect variable scope. Variables
that share the same identity are shown connect ed.

The fourth termis *COVMON*, which is related to SHARED in that it al so

| ets you share variabl es anong procedures. However, COMVON has the
additional property of allow ng variables to be shared by procedures that
are not in the same physical source file. When BC conpiles your program
it translates your variable nanes to nenory addresses. Thus, those nanes
are not avail abl e when the programis |linked to other object files.
Variables that are listed in a COWMON statenent are placed in a separate
portion of the data segnent which is reserved just for that purpose.
Therefore, other program nodul es using COWON can al so access those
variables in that portion of DGROUP.

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 66 -

MODULEL. BAS

' DEFINT A-Z
! COVMON SHARED Var 1
1

..... Y.->Varl = 100

+--+-->Var2 = 200
! CALL Subl(Var?2)
! CALL Sub2(Var2)
' END
i
1
1

SUB Subl (Paran) STATIC
--+---->Varl = Param
Var2 = Varl
END SUB

SUB Sub2 (Paran) STATIC
SHARED Var 2
--+---->Varl = Param
+--+---->Var2 = Varl
! END SUB

d DEFI NT A-Z
d COMMON Var 1
I

1
----- +-->Varl = 100
+--+-->Var2 = 200
CALL Subl(Var?2)
CALL Sub2(Var2)
END

SUB Subl (Paran) STATIC
Varl = Param
Var2 = Varl

END SUB

I 1
| 1
I 1
| 1
I 1
| 1
I 1
| 1
I 1
| 1
I 1
| 1
I 1
| 1
I 1
| 1
I 1
| 1
o SUB Sub2 (Paran) STATIC
o SHARED Var 2

o Varl = Param
+--+---->Var2 = Varl

1
1

END SUB

Fi gure 3-2: How COMMON and COVMON SHARED affect variable scope. Variables
that share the same identity are shown connect ed.

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 67 -

COVWON can al so be combined with SHARED, to specify that one or nore

vari abl es be shared throughout the main programas well as with other

nodul es. That is, the statenment COVMON SHARED Variable tells BASI C t hat
Variable is to be both DIM SHARED and COVWON. To establish a TYPE variabl e
as COVWON, you must state the type name as well: COWMWON TypeVar AS MyType
In all cases, COWON statenments nust precede the executable statenents in

a program The only statenents that rmay appear before COVWON are other
non- execut abl e statenents such as DECLARE, CONST, and ' $STATIC

Because the variable nanes listed in a COYWON statenent are not stored
in the final program the names used in one nodul e do not need to be the
same as the correspondi ng nanes in another nodule. You could, for exanple,
have COMMON X% Y$, Z# in one file, and COWON A% B$, C# in another
Here, X% refers to the sane nmenory location as A% Y$ is the sane variable
as B$, and so forth. It is inperative, however, that the order and type
of variables match. |If one file has an integer followed by a string
foll owed by a double precision variable, then all other files containing
a COWON st at enent nust have their COWDON variables in that same order.
This is one good reason for storing all COMWON statenents in a single
include file, which is included by each nodul e that needs access to the
COMMON vari abl es.

One or nore arrays may also be listed as COMIN, however, the rules are
different for static and dynami c arrays. Wen a dynamic array is to nade
COWDN, it should be dinensioned in the main programonly, follow ng the
COWON statenment. (But you may use REDIMin another nodule if necessary,
to change the array's size.) Static arrays nust be dinmensioned in each
nodul e, before the associ ated COWON declaration. O course, all array
types must match across nodul es--you nmay not list a static array as the
first COMON itemin one file, and then list a dynamic array in that sane
position in another file.

There are actually two fornms of COVMON statenent: the blank COVWON and
t he named COWON. The exanpl es shown thus far are bl ank COVWON st at enments.
A named COMMON bl ock lets you specify sel ected variabl e groups as COVWON,
to avoid having to |ist many vari abl es when all of themare not needed in
a given nodule. A COWDON bl ock is named by preceding the variable |ist
with a nane surrounded by slash characters. For instance, this |ine:

COWDN /I ntVars/ X% Y% Z%

establ i shes a nanmed COMWON bl ack called IntVars. By creating several such
naned bl ocks you may share only those that are actually needed in a given
nodul e.

In this case, the block nane is stored in the object file, and LINK
ensures that the COWON vari abl es in each nodul e share the sanme addresses.
One inportant limtation of a naned COVWON block is that it cannot be used
to pass infornmation between prograns that use CHAI N

The fifth termis *STATIC*, which | described in a slightly different
context in the section about data in Chapter 2. Wen you add the STATIC
option to a SUB or FUNCTION definition, BASIC treats the variables within
that procedure very differently than when STATICis onitted. Wth STATIC,
menory in DGROUP is allocated by the conpiler for each variable, and that
nmenory is permanently reserved for use by those variabl es.

Wien STATIC is not specified, the variables in the routine are by
default placed onto the systemstack. This neans that sufficient stack
nmenory nust be avail abl e, although that nmenory can then be used again |ater
for variables in other procedures. An inportant side effect of using the
stack for variable storage is that the menory is cleared each tine the
subprogram or function is entered. Therefore, all nuneric variables are
initialized to zero, and strings are initialized to null. Any arrays
within a non-static procedure are by default dynanic, which neans they are
created upon entry to the routine and erased when the routine exits.

STATI C al so has an additional neaning in subprograns and functions; it
can establish variables as being private to a procedure. |f a variable has
been decl ared as shared t hroughout a nodule by using DIM SHARED i n the main

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 68 -

portion of the program using the statenent STATIC Variable inside the
subroutine will override that property. Thus, Variable will be local to
the procedure, and will not conflict with a gl obal shared variable of the
same nane. STATIC within a subprogramor function also lets you use the
same nane for a variable that was already given to a naned constant.

Many progranmers find the use of the term STATIC for two very different
pur poses confusing, and rightly so. It would have nade nore sense to use
a different keyword, perhaps LOCAL, to linmt a variable' s scope. And to
further confuse the issue, the '$STATIC netacommand is used to establish
the nenory storage nethod for arrays. None the |ess, STATIC al ways
i ndicates that nenory for a variable is permanently allocated, and it may
al so specify that a variable is private to a procedure.

The final terml want to introduce now is *recursion*. The classic

definition of a recursive procedure is that it may call itself. Wile this
is certainly true, that doesn't really explain what recursion is all about,
or howit could be useful. | wll cover recursion in depth nmonentarily,

but for now suffice it to say that recursion is often hel pful when
mani pul ati ng tree-structured information.

For example, a programthat lists all of the files on a hard di sk woul d
nost |ikely be based on a recursive subroutine. Such a programwould first
change to the root directory, and then call the routine to read and displ ay
all of the file nanmes it finds there. Then for each directory under the
current one, the routine would change to that directory and call itself
again to read and display the files in that directory. And if nore
directories were found at the next |evel down, the routine would cal
itself yet again to process all of those files too. This continues unti
all of the files in all directories on the hard di sk have been processed.

Anot her application for recursion is a subroutine that sorts an array
on nore than one key. For exanple, consider a TYPE array in which each
el ement has conponents for a first name, a |last nane, and address fields.
You might want to be able to sort that array first by last nane, then by
first name, and then by zip code. That is, all of the Smiths would be
grouped together, and within that group Adam woul d be |isted before John
Al of the John Smiths would in turn be sorted in zip code order.

By enpl oying recursion, the routine would first sort the entire array
based on the last nane only. Next, it would identify each range of
el enents that contain identical |ast nanes. The routine would then cal
itself to sort that subgroup, and call itself again to sort the subgroup
wi thin that group based on zip code.

SUBROUTI NES VERSUS FUNCTI ONS

There is a fundanental difference between subroutines and functions. A
subroutine is accessed with either a CALL or GOSUB statenent, and a
function is invoked by referencing its nanme. |In general, a subroutine is
used to performan action such as opening a group of files, or perhaps
updating a screen-full of information. A function, on the other hand,
returns a value such as the result of a calculation. A string function
al so returns information, although in this case that information is a
string.

Notice that the type of information returned by a function is
i ndependent of the type of paraneters, if any, that are passed to it. For
exanpl e, BASIC s native STR$ function accepts a numeric argunent but
returns a string. Likew se, a nunmeric function such as | NSTR accepts two
strings and returns a single integer. This is also true for functions that
you desi gn using either DEF FN or FUNCTI ON.

Al though a function is prinmarily used for calculations and a subroutine
for performng one or nore actions, there is no hard and fast distinction
between the two. You could easily design a subroutine that nultiplies
three nunbers and returns the answer in one of the paraneters. Sinmilarly,
a function could be witten to clear the screen and then open a file.

Wi ch you use and when will depend on your own progranm ng style. However,
there are definite advantages to using functions where appropriate.

One i nmmedi ately obvious benefit of a function is that a value can be

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 69 -

returned without requiring an additional passed paranmeter. Each variable
that is passed as a paraneter requires 4 bytes of code for setup, plus an
additional 5 bytes within the subroutine each tinme it is accessed.

Anot her inportant advantage of using a function is BASIC s automatic

type conversion. |f you assign a single precision variable fromthe result
of an integer function, BASIC will convert the data fromone format to the
other transparently. |In fact, a sinple assignment froma variable of one

type to that of another type is also handled for you by the conpiler. But
if aroutine is witten to pass the value back as a paraneter, then you
nmust use whatever type of data the subprogram expects.

Al t hough nost high-1evel |anguages require the progranmer to match
explicitly the types of data being assigned, Mcrosoft BASIC has done this
automatically since its inception. Wen you wite Varl! = Var2% BASIC
treats that as Varl! = CSNE Var2% . Cbject oriented programmi ng | anguages
use the term *pol ynorphi snt to describe such automatic type conversion

GOSUB ROUTI NES

The prinmary advantage a GOSUB routine hol ds over all of the other
subroutine types is that it can be accessed very quickly. Translated to
assenbly | anguage a GOSUB statenent is but three bytes in length, and its
speed is surpassed only by a GOTO Wien the only thing that nmatters is how
fast a subroutine can be called, GOSUB has the clear advantage. However,
there are nany limtations inherent in a GOSUB.

The nost inportant restriction is that argunents cannot be passed using
GOsUB. Therefore, any variabl es nmust be assigned before invoking the
routi ne, and possibly reassigned when it returns. For exanple, if a
subroutine requires two paraneters--perhaps a row and colum at which to
print a message--those variabl es nust be assigned before the GOSUB can be
used. And if a value is being returned, your program nmust know the nane
of the variable that was assigned within the GOSUB routi ne.

Anot her inportant limtation is that the target line | abel must be in
the sane bl ock of code as the GOSUB. Although a GOSUB is legal within a
SUB or FUNCTION, both the GOSUB and the routine it calls nust be |ocated
in the sane procedure. Likewi se, a GOSUB in the main body of a program
cannot access a subroutine inside a procedure, or vice versa. [And of
course you cannot invoke a GOSUB routine that is located in a different
sour ce nodul e.]

Both of these problens restrict your ability to reuse a subroutine in
nore than one program One of the goals of nodern structured programing
is the ability to design a routine for one application, and also use it
again later in other prograns. The only way to do that using GOSUB
routines is to establish a variable namng convention, and al ways use
variables and line |abels with those uni que nanes.

SUBPROGRANS

Subprograns were introduced with Qui ckBASI C version 2.0, and they inprove
greatly on GOSUB routines in nany respects. The nost inportant advantages
of a subprogramare that it accepts passed paraneters, and that variabl es
used within the subprogramare | ocal by default. Besides the obvious
benefit of not having to worry about variable nam ng conflicts, these
properties allow you to create your own tool box of useful subroutines, and
use themrepeatedly in different progranmng projects. | wll discuss this
use of subprogranms in detail later in this chapter.

A subprogramis accessed using the CALL statenent, and any nunber of
argunents may optionally be passed to the routine. A subprogramis defined
with a statenent of the form SUB SubNane (Paranl, ParanR, ...) STATIC. The
paraneters and surroundi ng parentheses are optional, as is the STATIC
directive. O course, the nunber of argunents passed to a subprogram nust
mat ch the nunber of paraneters it expects.

As you can see, subprograns have many advantages over GOSUB routi nes.
However, they are not a nagical panacea for every progranmm ng problem

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 70 -

Each subprogramincludes a fixed anount of overhead just to enter and exit
it. Because of the conplexities of accessing incomng paraneters, a *stack
frame* nust be created by the conpiler upon entry. A stack frame is sinply
a fancy name for an area of menory that holds the addresses of the incom ng
paraneter. However, this requirenment adds a fair amount of code to each
subpr ogram

Ei ght bytes of code are needed to set up and call the internal BASIC
routine that creates the stack frame, and the routine itself conprises
another 35 bytes. Eight nore bytes are needed to call the routine that
exits a subprogram and that routine adds contains 26 bytes. Finally, al
but the | ast subprogramin a source file needs a 3-byte junp to skip over
the other subprograns that follow. Therefore, a total of 80 bytes are
added to any programthat uses a subprogramrather than a GOSUB routi ne.

It is inportant to point out, however, that the 61 bytes used by the
library routines to enter and exit a subprogram are added to the final .EXE
file only once.

It is also worth mentioning that BASIC PDS provides the /Q switch
whi ch elimnates the usual overhead incurred fromcalling the routines
needed to enter and exit a subprogram Al though using /Q avoids the code
that is otherwi se added, there is one inportant restriction: You may not
use a GOSUB within the subprogram \Wen a program perforns a GOSUB, the
address to return to is placed onto the stack, for retrieval |ater when the
subroutine returns. Likewi se, when a subprogramis called, both a segnent
and address to return to are put on the stack.

If a GOSUB were used inside the subprogramand an EXIT SUB was t hen
encountered within the GOSUBed subroutine, the return addresses on the
stack would be out of order. Thus, the subprogramwould return to the
wong place, with undoubtedly disastrous consequences. To avoid this,
BASI C by default saves the address to return to when the subprogramis
first entered, and uses that when it is exited. Therefore, when the
conpi l er sees that a GOSUB is being used, it does not use the abbreviated
nethod even if /O has been specifi ed.

Al t hough using /Q nakes a subprogram (and function) much faster by
elimnating the overhead to call the entry and exit routines, there is no
actual savings in code size. A series of assenbler NOP (No Qperation)
instructions are placed where the entry and exit code woul d have been
However, those enpty instructions are never executed. W can only hope
that in future rel eases of BASIC PDS M crosoft will inprove BC s code
generation to elimnate these unnecessary instructions. [Yeah, right.]

Anot her problemwi th subprogranms is that programrers tend to use t hem
to excess. For exanple, | have seen people create subprograns to increnent
and decrenent integer variables even though it is far nore efficient to do
that with in-line code. The statenent X% = X%+ 1 creates only 4 bytes of
code, conpared to 9 for a single call to a subprogramto do the sane thing!
However, increnenting long integer or floating point variables does take
nore code than invoking a subprogramw th a single paraneter, so a
subprogram coul d be useful in that case. Only by counting the nunber of
times a subprogramwi |l be used and conparing that to the overhead incurred
can you determ ne whether there will be any savings.

DEF FN FUNCTI ONS

Al'though a DEF FN function is designed to return a result, it is nore
closely related to a GOSUB subroutine in actual operation. Like a GOSUB
routine it is invoked with a 3-byte assenbly | anguage "near" call, as
opposed to the 5-byte "far" call that subprograns and formal functions
require. And while a DEF FN function can accept incom ng paraneters,
variables within the function definition are by default shared with the
nmai n portion of the program

As | already explained, variables used in a DEF FN function can be nade
private to the function only by explicitly declaring themas STATIC
However, at least it is possible to enploy |ocal variables. Further, a DEF
FN function can return a result, which nakes it an ideal replacenment for
GOSUB when speed i s paranount.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 71 -

Internally, paraneters are passed to a DEF FN function very differently
than to a called subprogramor formal function. Argunents are passed to
a subprogram by placing their addresses on the stack. Wth a DEF FN
function, however, a copy of each paraneter is created, and the function
directly mani pul ates those copies. Therefore, it is inpossible for a DEF
FN function to nodify an i ncomng paranmeter directly. This behavior is
neither good nor bad. Rather, it is sinply different and thus inportant
to understand. It is also inportant to understand that a DEF FN function
can be used only in the nodule in which it is defined. |If the same
function is needed in different nodul es, the sanme code nust be duplicated
agai n and agai n.

In the manual s that conme with Qui ckBASI C and BASI C PDS, M crosoft
advi ses agai nst using DEF FN functions, in favor of the newer, nore
power ful formal functions. Because of this favoritism Mcrosoft wll
probably never correct one disturbing anomaly that is present in all DEF
FN functions. Wen a string is passed as an argunment to a DEF FN function
a copy is made for the function to mani pulate. Unfortunately, the copy is
never deleted! Therefore, if you pass, say, a 10,000 byte string to a DEF
FN function, that anmount of nmenory is permanently taken until the function
is invoked again later. The short listing bel ow proves this behavior.

DEF Fn\Waste (AS$)
FnWast e = ASC(A$)
END DEF

Bi g$ = SPACE$(10000)
PRI NT FRE(Bi g$)

X = FnWast e(Bi g9)
PRI NT FRE(Bi g$)

Notice that running this programin the Qi ckBASIC editing environnent wll
not give the expected (nenory-wasting) result. However, in a separately
conpi | ed programthe 10000 byte loss will be evident.

As with subprograns, there is a fixed anount of overhead required to
enter and exit a DEF FN function. For each function that has been defi ned,
5 bytes are needed to call the Enter and Exit routines. Further, these
routines are 14 and 24 bytes in length respectively. But again, the
routi nes thenselves are added to a programonly once when it is |inked.

There are two final limtations of DEF FN functions worth mentioning
here. The first is that arrays and TYPE variabl es nay not be passed as
paraneters to them Since by design a copy is made of every incom ng
paraneter, there is no reasonable way to do that with an entire array. The
second limtation is that the function definition nust be physically
positioned in the source file before any references are nmade to it.

FORVAL FUNCTI ONS

A formal function is nearly identical to a called subprogram and it

requi res the exact sane anount of overhead to enter and exit. Also like
subprogranms, nearly any type of data nmay be passed to a function, including
TYPE vari ables and arrays. The only limtation is that a fixed-length
string may not be used directly as a paraneter. |If a fixed-length string
is passed to a subprogram or function that expects a string, a copy is nade
and assigned to a conventional string. This copying was described in
detail in Chapter 2.

Because a formal function is invoked by referencing its name in an
assignment or PRINT statenment, it is essential that it be declared. After
all, how el se could BASI C know that the statenment PRINT MyFunc neans to
call a function and display the result, as opposed to printing the variable
named MyFunc? Wen a BASIC function is created in the BASIC editing
environment, a correspondi ng DECLARE statenment is generated automatically.
But when a function is witten in another |anguage or kept in a Quick

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 72 -

Library, an explicit declaration is nandatory.

Li ke subprograns, formal functions are ideally suited to nodul ar
reusabl e progranm ng nethods. Furthernore, a function may be accessed from
any nodule in an entire application, even those in other source files.

I ndeed, the only difference between a subprogramand a function is that a
function returns a result. The assenbly | anguage code that BASI C generates
isin all other respects identical

STATI C VERSUS NON- STATI C PROCEDURES

As | stated earlier, when the STATIC keyword is appended to a SUB or
FUNCTI ON decl aration, all of the variables within the routine are assigned
a pernanent address in DGROUP. And when STATIC is omitted, the variables
are instead stored on the stack and cleared to zeros or null strings each
tine the routine is entered. There are several inportant ranifications of
this behavior. Non-static procedures allocate new stack nmenory each tine
they are invoked, and then rel ease that nenory when they exit. It is
therefore possible to exhaust the avail able stack space when the subroutine
calls are deeply nested.

For example, if you call one subprogramthat then calls another which
in turns calls yet another, sufficient stack nenory nust be avail able for
all of the variables in all of the subprograns. Besides the nmenory needed
for each variable in a subprogramor function, other data is also placed
onto the stack as part of the call. For each paraneter that is passed, 2
bytes are taken to hold its address. Add to that 4 bytes to store the
segnent and address to return to in the calling program Finally,
tenmporary variables that BASIC creates for its own purposes are al so stored
on the stack in a non-static subprogramor function

Anot her inportant consideration when STATICis onmitted is that every
string variable nust be del eted before the subprogramexits. Because of
the way BASIC s string nmanagenent routines operate, nenory that hol ds
string descriptors and string data cannot sinply be abandoned. Every
string nust be released explicitly by a called routine, at a cost of 9
bytes per string. Please understand that you do not have to del ete these
strings. Rather, this is another case where BASIC creates additional code
wi thout telling you.

Again, | would love to be able to tell you that using STATIC is al ways
desirable, or that never using it always nakes sense. But unfortunately,
it just isn't that sinple. Wen a program becones very |large and conpl ex,
only by counting variables can you be absolutely certain how nuch stack
space is really needed. Al though the FRE(-2) function nmay be used to
determ ne how nuch stack menory is currently available, it does not tel
how rmuch nenory is actually needed by each routine.

To summarize the trade-offs between static and non-static variabl es:
Static variables are allocated permanently by the conpiler, and the nenory
t hey occupy can never be used for any other purpose. Non-static variables
are placed onto the stack, and exist only while the subprogram or function
is in use. Renenber that you can also have a mx of static and non-static
variables in the sane procedure. By omitting STATIC after the subroutine
nanme, all variables will by default be non-static. You can then override
that property for selected variables by using the STATIC keyword. In the
section on debugging in Chapter 4, you will learn howto use CodeView to
deternmi ne the stack requirenments for a procedure's vari abl es.

Controlling the Stack Size
There are several ways to control the amount of nenory that is dedicated

for use by the stack. Al versions of BASIC support the CLEAR conmand,
whi ch takes an optional argument that sets the stack size. The statenent

CLEAR , , StackSize sets aside StackSize bytes for the stack
Unfortunately, CLEAR also clears all of the data in a program closes any
open files, and erases all arrays. |If you know ahead of time how nuch

stack menmory will be needed, then using CLEAR as the first statenent in a

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 73 -

programwi |l not cause a problem

Even when CLEAR is used as the first statenent in a program there is
still one situation where that will not be acceptable. Wen you use CHAIN
to execute a subsequent program a CLEAR statenent in that programwill
clear all of the variables that have been declared COWWON. Fortunately,
there are two solutions to this problem BASIC PDS of fers the STACK
statenment, which lets you establish the size of the stack but w thout the
side effects of CLEAR For exanple, the statenent STACK 5000 sets aside
5000 bytes for the stack. The other solution is to use the /STACK |ink
swi tch, which reserves a specified nunber of bytes. Al of the options
that LINK supports are described in Chapter 5.

RECURSI ON
| have already illustrated sonme of the situations in which a recursive
subprogram or function could be useful. Now lets |ook at some actual

progranm ng exanples. The Evaluate function in the listing bel ow uses
recursion to reinvoke itself for each new | evel of parentheses it
encount ers.

DECLARE FUNCTI ON Eval uat e# (For mul a$)
INPUT "Enter an expression: ", Expr$
PRI NT "That evaluates to"; Eval uate#(Expr$)

FUNCTI ON Eval uat e# (For nul a$)

"Search for an operator using INSTR as a table | ookup. If found,
"renmenber which one and its position in the string.
FOR Position% = 1 TO LEN(For mul a$)
Operation% = | NSTR("+-*/", M D$(Formnul a$, Position% 1))
| F Operation% THEN EXIT FOR
NEXT

"Cet the value of the left part, and a tentative value for the
"right part.

LeftVal # = VAL(For nmul a$)

Ri ght Val # = VAL(M D$(For mul a$, Position% + 1))

"See if there's another |evel to eval uate.
Paren% = | NSTR(Posi ti on% Formul a$, " (")

"There is, call ourselves for a new Ri ghtVal #.
| F Paren% THEN Ri ght Val # = Eval uat e#(M D$(For nul a$, Paren% + 1))

"No nore to evaluate, do the appropriate operation and exit.
SELECT CASE Operati on%

CASE 1 "addition
Eval uate# = LeftVal# + RightVal #
CASE 2 "subtraction
Eval uate# = LeftVal# - RightVal#
CASE 3 "mul tiplication
Eval uate# = LeftVal# * Ri ghtVal #
CASE 4 "division
Eval uate# = LeftVal# / R ghtVal #
END SELECT
END FUNCTI ON

When you run this program enter an expression like 15 * (12 + (100 / 8)).
To keep the code to a m ninmum Evaluate accepts only sinple, two-nunber
expressions. That is, it will not work with nore than one nath operator

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 74 -

within each pair of parentheses as in 10 * (3 + 4 + 5). However, the
parent heses may be nested to nearly any |evel.

This function begins by exam ning each character in the inconming fornula
string for a math operator. |If it finds one the operator nunmber (1 through
4) is remenbered, as well as its position in the fornula string. Next, VAL
is used to obtain the value of the digits to the left of the operator, as
well as the digits to the right. Notice that it was not necessary to use
LEFT$ to isolate the | eft-nmbst portion of the string, because VAL stops
exam ning the string when it encounters any non-digit character such as the

n +II Or n (n i
Once these val ues have been saved, the next test determines if any nore
parent heses followin the fornula. |If so, Evaluate calls itself, passing

only those characters that are beyond the next parenthesis. Thus, the same
routi ne eval uates each new level, returning to the I evel above only after

all levels have been exam ned. | encourage you to run this programin the
Qui ckBASI C editing environnent, and step through each statenent one by one
with the F8 Trace command. In particular, use the Watch Variable feature

to view the value of Position%and LeftVal# as the function recurses into
subsequent i nvocations.

It is inmportant to understand the need for stack variables in this
program and why STATIC nust not be used in the function definition. Wen
Eval uat e wal ks t hrough the incom ng string and determ nes which math
operator is specified, that operator nust be renenbered throughout the
course of the function. |If a static variable were used for Operati on%
then its previous value would be destroyed when Evaluate calls itself.

Li kewi se, LeftVal# cannot be overwitten either, or it would not hold the
correct val ue when Evaluate returns to itself fromthe | evel bel ow
Therefore, as you step through this programyou will observe that each new
i nvocation of Evaluate creates a new set of variabl es.

As you can see, stack variables are necessary for the proper functioning
of a subprogramor function that calls itself. They are al so necessary
when one procedure calls another procedure which in turn calls the first
one again. The key point is that each tinme a non-static routine is
i nvoked, new and uni que variables nust be created. Qherw se, the variable
contents froma previous | evel above will be overwitten.

Al t hough recursion is a powerful and necessary technique, it should be
used only when necessary. There is a substantial anount of overhead needed
to allocate stack nenory and clear it to zeros, so invoking a non-static
routine is relatively slow And as | described earlier, every non-static
string variable nmust be del eted when the routine exits, at a cost of 9
byt es api ece.

Sone progranmers use recursion even when there are other, nore efficient
ways to solve a problem For exanple, the Qi ckBASI C manual shows a
recursive function that calculates a factorial. (A factorial is derived
by nmultiplying a nunber by all of the whole nunbers |ess than itself. That
is, the factorial of 4 equals 4 * 3 * 2 * 1.) However, a factorial can
be cal culated faster and with | ess code using a sinple FOR NEXT | oop as
shown bel ow. This version of Factorial is 20 percent faster than the
exanpl e given in the Qi ckBASI C nanual

FUNCTI ON Fact ori al #(Nurber % STATIC
Seed# = 1
FOR X% = 1 TO Nunber %
Seed# = Seed# * X%

NEXT
Factori al # = Seed#
END FUNCTI ON

PASSI NG PARAMETERS TO PROCEDURES

As you have already | earned, BASIC normally passes data to a subprogram or
function by placing its address on the stack. And when an entire array is
specified, the address of the array descriptor is sent instead. But there

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 75 -

are some cases where BASI C i nposes restrictions on how variabl es and arrays
may be passed to a procedure. Let's |Iook now at sone of the ways to get
around those restrictions.

Wien using versions of BASIC earlier than PDS 7.1, it is not legal to
pass an array of fixed-length strings. |In fact, it is also inpossible to
pass a single fixed-length string directly. As you saw in Chapter 2, BASIC
copi es every fixed-length string argunment to a regular string, which adds
a lot of code and al so wastes string nmenory.

The sinplest solution for fixed-length strings is to define an
equi val ent TYPE that is conprised of a single string conponent. Since a
TYPE variable or array can legally be passed, this is the easiest and nost
di rect approach, as shown here.

TYPE FLen
S AS STRING * 100
END TYPE
DM MyString AS Flen
CALL Subprogran{M/String)

SUB Subprogram(FLString AS FLen)
END SUB

If the subprogrambeing called is in a separate nodule, then the TYPE
definition nust also be present in that file. However, the D M statenent
is needed only in the programthat passes the string. This also works with
fixed-length string arrays, except that the DM wuld have to be changed
to DOM MArray(1 TO Nuntl ements) AS FLen, and the subprogram s definition
woul d be changed to SUB Subprogran(FLString() AS FLen).

BASI C PDS 7.1 supports passing a fixed-length string array directly, so
this work-around is not needed with that version. Curiously, a single
fixed-length string may not be passed as a paraneter in BASIC 7.1. Since
a fixed-length string is closely related to a TYPE variable, this
limtation seens arbitrary at best.

BASIC 7.1 al so supports the use of BYVAL when passing nuneric argunents
to procedures. This is a particularly powerful feature, because it can
greatly reduce the anount of code needed to access those values within the
routine. It also elinmnates the need to make copi es when a constant is
passed as an argunment. To take advantage of this feature, you sinply
specify BYVAL in both the calling and receiving argunment |list, as shown
bel ow.

DECLARE SUB Subrouti ne(BYVAL Argl% BYVAL Arg2%
CALL Subroutine(Var1% Var2%

SUB Subroutine(BYVAL X% BYVAL Y%
END SUB

Because the actual value of the argunent is being passed, there is no way
to return information back to the caller. But in those situations where
an assignment to the original variable fromwi thin the routine is not
needed, BYVAL can elinmnate a | ot of conpiler-generated code when dealing
with integers. O course, you may use a mx of BYVAL and non- BYVAL
paraneters if you need the benefits of both methods in a single call.

As proof of this savings, disassenblies of a one-statenment subprogram
desi gned both ways is presented below, to show how an integer paraneter is
accessed when it is passed by address and by val ue.

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 76 -

SUB ByAddr ess(Parantg STATIC
LocVar % = Par ant
MOV S, [Par ant4g ;get the address of Parants

MOV AX [SI] ;then read the val ue there
MOV LocVar % AX ;assign that to LocVar%
END SUB

SUB ByVal ue(BYVAL Paran?g STATIC
LocVar % = Par anto

MOV AX, Par antb ;read Parantodirectly
MOV LocVar % AX ;and assign it to LocVar%
END SUB

Note that the savings are only within the subroutine, and not when it is
called. That is, 4 bytes are needed to pass an integer variabl e whether

by address or by value. |In fact, passing |arger data types requires nore
code to pass by value. Any variable can be passed by address with 4 bytes
of conpil er-generated code, because what is sent is a single address. But
to pass a doubl e precision nunber by value requires 16 bytes, since 4 bytes
of code are needed for each 2-byte portion of the nunber

In general, passing variables as parameters to a subprogram or function
is preferable to sharing them \Wien many vari abl es are shared throughout
a program you run the risk of introducing bugs caused by accidentally
using the sane variabl e name nore than once. However, sharing has sone
definite advantages in at |east two situations.

The first is when a procedure nmust be accessed as quickly as possi bl e.
Since a finite amount of code is needed to pass each paraneter, sonme anount
of time is also required to execute that code. Therefore, sharing a few,
carefully sel ected variables can inprove the speed of your prograns and
reduce their size as well. Another inportant use for SHARED is to conserve
data nenory. Nearly all prograns use at |east a few tenporary scratch
vari abl es, perhaps as FOR/ NEXT | oop counters. By dinensioning several such
vari abl es as bei ng shared throughout a program the sanme variables can be
used repeatedly. | often begin progranms with a DI M SHARED st at enent such
as DIM SHARED X, Y, Z, and then use those variables as often as possible.

One final trick | want to share is how to pass a | arge nunber of
paraneters using | ess code than would normally be necessary. Each argunent

that is passed to a procedure requires 4 bytes of code. |In a conplicated
routi ne that needs many paraneters, this can quickly add up. Wrse, these
bytes are added for every call. Therefore, a subprogramthat accepts 10

paraneters and is called 20 tines will add 800 bytes to the fina
executable file just to handle the paraneters!

One solution is to use an array, which is ideal when all of the
paraneters are the sane type of data. An entire array can be passed as a
single parameter since only the array descriptor's address is needed. Even
better, however, is to create a TYPE variable, and then assign all of the
paraneters to it. A TYPE variable can hold nearly any anount and type of
data, and it too can be passed using only 4 bytes. Al though this does
require a separate assignment for each TYPE conmponent, you sinply use the
TYPE where the regul ar vari abl es woul d have been assigned. By elimnating
t he added code to pass many paraneters, prograns that use a TYPE this way
will also be much faster

MODULAR PROGRAMM NG

Qui ckBASI C versions 4.0 and later let you | oad subprograns and functions
fromnultiple files into the editing environment at the sane tine. This
further enhances their reusability, since the different nodul es can be
treated as "bl ack boxes" whose purpose is already known. Once a routine
has been devel oped and debugged, it can be used again and again, w thout
further regard for the nanmes of the variables within the routines. I|ndeed,

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 77 -

many of the utility routines included with this book are provided as
separate nodul es, intended to be | oaded al ong with your prograns.

Any vari abl e nanme can be passed as an argunent to a procedure, even if
a different nane is used to represent the sane variable within the
procedure. |f you have defined a subprogram such as SUB MySub(X% Y!, Z3),
then you could call it using CALL MySub(A% B!, C¥). O course, the
vari abl es you pass nust be of the sane data type as the subroutine expects.

Because reusability is an inportant consideration in the design of any
procedure, it generally nakes sense to store it in its ow source file.
This | ets you conbine the sane nodul e repeatedly with any nunber of
prograns. The alternative would be to nerge the file into each program
that needs it. But mamintaining multiple copies of the sanme code wastes
di sk space. Further, if a bug is found in the routine, you will have to
identify all of the programs that contain it, and nanually correct each
one of them

Anot her inportant advantage of using separate files is that you can
exceed the usual 64K code size barrier. Unlike the data segment which is
conprised of the sumof all data in all nodules, an .EXE file can contain
nmul ti pl e code segnents. Each BASI C nodul e has a single code segnment, and
each of these can be as large as 64K In fact, dividing a programinto
separate files is the *only* way to exceed the usual 64K code size
[imtation.

Al t hough using a separate source file for each subprogram nakes sense
in many situations, there is one slight disadvantage. Wen all of the
various program nodul es are |inked together, each separate nodul e adds
approxi mately 100 bytes of overhead. MNone the less, for all but the
smal | est progranmmi ng projects, the advantages of using separate nodul es
wi Il probably outweigh the slight increase in code size.

I NCLUDE FI LES

Anot her useful BASIC feature that can help you to create nodul ar prograns
is the Include file. An Include file is a separate file that is read and
processed by BASIC at a specified place in your program The statenent
"$INCLUDE: 'filenane' tells OB or BCto add the statenents in the naned
file to your source code, as if that code had been entered manually. |If
a file extension is not given, then .BAS is assuned. Many of the files
that M crosoft provides with Qui ckBASIC use a . Bl extension, which stands
for "BASIC Include". Some programers use .INC, and you rmay use what ever
seens appropriate to the contents of the file.

Include files are ideal for storing DECLARE, CONST, TYPE, and COMVON
statenments. Except for COMON, none of these statenments add to the size
of your program and none of them create any executable code. Therefore,
you could create a single include file that is used for an entire project,
and add an appropriate '$INCLUDE directive to the beginning of each program
source file. Unused DECLARE and CONST statenents and TYPE definitions are
ignored by BASIC if they are not referenced. However, they do inpinge
slightly on avail able nenmory within the Qui ckBASIC editor, since BASIC has
no way to know that they are not being used. Simlarly, BC nust keep track
of the information in these statenments as it conpiles your program But
again, there is no inpact on the size of your final executable program

In general, | recomend that you avoid placing any executabl e statenents
into an include file. Because the code in an include file is normally
hi dden fromyour view, it is easy to mss a key statenment that is causing
a bug. Likew se, a '$DYNAM C or ' $STATI C conmand hi dden within an incl ude
file will obscure the true type of any arrays that are subsequently
di nensi oned. Perhaps worst of all is placing a DEFINT or other DEFtype
statenment there, for the sane reason

QUI CK LI BRARI ES

Quick Libraries contribute to nmodular programmng in two inmportant ways.
Perhaps the nost inportant use for a Quick Library is to allow access to

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 78 -

subprograns and functions that are not witten in BASIC. Al DGCS prograns
and subroutines--regardl ess of the | anguage they were originally witten
in--end up as .0BJ files suitable for LINKto join together. But the B
and BX editing environnents nanipul ate BASI C source code, and interpret
the comuands rather than truly conpile them Therefore, the only way you
can access a routine witten in assenbly |anguage or C wi thin Qui ckBASIC
is by placing the routine into a Quick Library.

Quick Libraries also let you store conpl eted BASI C subprograns and
functions out of the way fromthe rest of your program |f you have a
| arge nunber of subroutines in one program the list of names displ ayed
when F2 is pressed can be very long and confusing. Since QuickBASIC does
not display the routines in a Quck Library, there will be that many fewer
nanes to deal with. Another advantage of placing pre-conpiled BASIC
routines into a Quick Library is that they can take | ess nenory than when
the BASI C source code is |oaded as a nodule. This is true especially when
you have many conments in the program since conments are of course not
conpi | ed.

Be aware that there are a few di sadvantages to placing BASIC code into
a Quick Library. One is that you cannot step and trace through the code,
since it is not inits original BASIC source form Another is that Quick
Libraries are always stored in normal DOS nenory, as opposed to expanded
nmenory which BX [and VB/ DOS] can use. Wen a BASI C subprogram or function
is less than 16K in size and EMS is present, BX [and VB/DOS] will place
its source code in expanded nenory to free up as much conventional nenory
as possible.

ERROR AND EVENT HANDLI NG

As a BASI C programer, there are several types of errors that you nust dea
with in a program These errors fall into two general categories: conpile
errors and runtinme errors. Conpile errors are those that @B or BC issue,
such as "Syntax error” or "Include file not found". GCenerally, these are
easy to understand and correct, because the Qui ckBASIC editor places the
cursor beneath the offending statement. In sone cases, however, the error
that is reported is incorrect. For exanple, if your programuses a
function in a Quick Library that expects a string paranmeter and you forgot
to declare it, BASIC reports a "Type msmatch" error. After all, with a
statement such as X = FuncNane% Sone$), how coul d BASI C know t hat FuncNane%
is not sinply an integer array? Assunming that it is an array, BASIC
rejects Sone$ as being illegal for an el enent nunber

Runtime errors are those such as "File not found" which are issued when
your programtries to open a file that doesn't exist, or is not in the

specified directory. Qher common runtine errors are "lllegal function
call", "Qut of string space", and "Input past end". Many of these errors
can be avoided by an explicit test. |f you are concerned that string space

m ght be Iimted you can query the FRE("") function before dinensioning a
dynamic string array. However, some errors are nore difficult to
anticipate. For exanple, to determine if a particular directory exists you
nmust use CALL Interrupt to query a DCS servi ce.

The conventional way to handle errors is to use ON ERROR, and design an
error handling subroutine. There are a nunber of problens with using ON
ERROR, and nost professional programers try to avoid using it whenever
possi bl e. But ON ERROR does work, and it is often the sinplest and nost
direct solution in many prograns. The short |isting bel ow shows the
m ni mum st eps necessary to inplenment an error handl er usi ng ON ERROR

ON ERRCR GOTO Handl eErr

FI LES "*. XYZ"
END
Handl eErr :

SELECT CASE ERR

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 79 -

CASE 53: PRINT "File not found"
CASE 68: PRI NT "Device unavail abl e"
CASE 71: PRINT "Di sk not ready"
CASE 76: PRI NT "Path not found"
CASE ELSE: PRI NT "Error nunber"; ERR
END SELECT
RESUME NEXT

The statenment ON ERROR GOTO Handl eErr tells BASIC that if an error occurs,
the program should junp to the Handl eErr label. Wthout ON ERROR the
program woul d display an error nessage and then end. Since it is unlikely
that you have any files with an . XYZ extension, BASIC will go to the error
handl er when this programis run. Wthin the error handling routine, the
program uses the ERR function to determne the nunber of the error that
occurred. Had line nunbers been used in the program the |ine nunber in
whi ch the error occurred woul d al so be available with the ERL function

In this brief programfragnent, the nost likely error nunbers are
filtered through a SELECT CASE bl ock, and any others will be reported by
nunber. Regardl ess of which error occurred, a RESUVE NEXT statenent is
used to resune execution at the next program statenment. RESUME can al so
be used with an explicit line |abel or nunber to resunme there; if no
argunent is given BASIC resunmes execution at the line that caused the
error. In many cases a plain RESUVE will cause the programto enter an
endl ess | oop, because the error will keep happeni ng repeatedly.

In this case, the file will not exist no matter how many times BASIC
tries to find it. Therefore, a plain RESUME is not appropriate follow ng
a "File not found" or simlar error. Had the error been "D sk not ready",
you coul d pronpt the user to check the drive and then press a key to try
again. In that case, then, RESUVE woul d nake sense. Although BASIC s ON
ERRCR can be useful, it does have a nunber of inherent limtations.

Perhaps the worst problemwith ON ERROR is that it often increases the
program s size. When you use RESUME NEXT, you rnust also use the /x conpile
switch. Unfortunately, /x adds internal address |abels to show where each
statenment begins, so the RESUME statenent can find the line that caused the
error. These labels are included within the conpiled code and therefore
i ncreases its size.

Anot her problemwith ON ERROR is that it can hide what is really
happening in a program | recommend strongly that you REM out all ON ERROR
statenments while working in the Qui ckBASIC editing environnent. O herw se,
an |llegal function call or other error may cause Qui ckBASIC to go to your
error handler, and that handler mght ignore it if the error is not one you
were expecting and testing for. |[If that happens and your program uses
RESUME NEXT, you mnight never even know that an error occurred!

Yet another problemwith ON ERROR is that it's frankly a clunmsy way to
program Most | anguages let you test for the success or failure of the
nost recent operation, and act on or ignore the results at your discretion
Pascal , for exanple, uses the IOResult function to indicate if an error
occurred during the last input or output operation

Finally, BASIC generates errors for many ot herw se proper circunstances,
such as the FILES statenent above. You might think that if no files were
found that matched the . XYZ extension given, then BASIC woul d sinply not
di spl ay anything. Indeed, an inportant part of tool box products such as
Crescent Software's Qui ckPak Professional are the routines that replace
BASIC s file handling statenents. By providing replacenent routines that
let you test for errors without an explicit ON ERROR statenent, an add-on
library can help to inprove the organi zati on of your prograns.

As | mentioned earlier, sone errors can be avoi ded by using CALL
Interrupt to access DOS directly. (One inportant DOS service lets you see
if afile exists before attenpting to open it.) But critical errors such
as those caused by an open drive door require assenbly | anguage. In
Chapter 12 you will learn how to bypass BASI C and access DCS directly using
CALL Interrupt.

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -80 -

EVENT HANDLI NG

BASI C i ncl udes several forns of event handling, and |Iike ON ERROR these
too are avoi ded when possi bl e by many professional programrers. Event
handling lets your prograns performa GOSUB autonatically and w thout any
action on your part, based on one or nore conditions. Sone of the nore
conmonly used event statenents are ON KEY, ON TIMER, and ON COM Wth ON
KEY, you can specify that a particular key or conbination of keys will
tenmporarily halt the program and branch to a GOSUB routine designated as
the ON KEY handler. ON TIMER is sinilar, except it performs a GOSUB at
regul ar intervals based on BASIC s TIMER function. Likew se, ON COM
performs a GOSUB whenever a character is received at the specified
conmmuni cati ons port.

The concept of event handling is very powerful indeed. For exanple, ON
COM al | ows your programto go about its business, and al so handl e
characters as they arrive at the conmunications port. ON TIMER | ets you
simulate a crude formof nulti-tasking, where control is transferred to a
separate subroutine at one second intervals. Unfortunately, BASIC s event
handling is not truly interrupt driven, and the resulting code to inplenent
it adds considerably to a program s size

When any of the event handling nethods are used, BASIC calls an interva
event dispatcher periodically in your program These calls add five bytes
api ece, and one is added at either every statenent, or at every | abel ed
statenment [dependi ng on whether you conpiled using /v or /w respectively].
Thi s can increase your program s size considerably. Even worse, the
repeated calls have an adverse effect on the speed of nobst prograns. Like
ON ERROR, BASIC s event handling statenents provide a sinple solution that
is effective in many progranmmi ng situations. And also |ike ON ERROR they
are best avoided in inportant progranm ng projects.

Using purely BASI C techniques, the only alternative to event trapping
is polling. Polling sinply means that your program nmanually checks for
events, instead of letting BASIC do it automatically. The primary
advantage of polling is that you can control when and where this checking
occurs. The disadvantage is that it requires nore effort by you

To see if any characters have been received froma conmuni cations port

but are still waiting to be read you woul d use the LOF function. And to
see if a given anobunt of time has el apsed you nust query the TIMER function
periodically. |If true interrupt driven event handling were available in

BASIC, that would clearly be preferable to either of the two avail able
net hods. However, only with Crescent's P.D.Q product can such capability
be added to a BASI C program

PROGRAMM NG STYLE

Progranming style is a personal issue, and every progranmer devel ops his
or her own particular methods over tinme. Sone aspects of programm ng style
have little or no inpact on the quality of the final result. For exanple,
t he nunber of columms you indent a FOR/NEXT loop will not affect how
quickly a sort routine operates. But there are style factors that can help
or harmyour programs. One is that clearly commenting your code will help
you to understand and inprove it later. Another is when nore than one
progranmer is working on a large project simultaneously. |If neither
programmer can figure out what the other is doing, the programs quality
will no doubt suffer

Clearly, no one can or even should try to force a particular style or
i deol ogy upon you. However, | would like to share sone of the decisions
that | have nmade over the years, and explain why they nmake sense to ne.
O course, you are free to use or not use these opinions as you see fit.
Progranmers are as unique and varied as any other discipline, and no one
set of rules could possibly serve everyone equally. Watever conventions
you settle upon, be consistent above all el se

The nost inportant convention that | followis to use DEFINT A-Z as the
first statement in every program For me, using integers verges on
religion, and ny fingers could type DEFINT even if | were asleep. As |

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 81 -

have stated repeatedly, integers should be used whenever possible, unless
you have a conpelling reason not to. Integers are nmuch faster and snaller
than any other variable type BASIC offers. Nearly all of the available
third party add-on products use integers paraneters wherever possible, and
so should the routines you wite. The only reasonable exception to this
is when witing financial or scientific prograns, or other math-intensive
appl i cations.

Equal ly inportant is adding sufficient and appropriate comments. Sone
progranmers |ike to use coment headers that identify each rel ated bl ock
of code; others prefer to comment every line. | reconmend doi ng bot h,
especially if other people will be reading your prograns. | also prefer
usi ng an apostrophe as a conment delimter, rather than the nore fornmal
REM There are only so nany columms avail able for each comrent |ine, and
it seems a shane to waste the space REM requires.

When witing a subprogramor function that you plan to use again in
ot her projects, include a conplete headi ng comrent that shows the purpose
of the routine and the paranmeters it expects. |If each paraneter is listed
neatly at the beginning of the file, you can create a hardcopy index of
routines by printing that section of each file.

Avoi d comments that are obvious or redundant, such as this:

Count = Count + 1 '"increnent Count

If Count is keeping track of the nunber of lines read froma file, a nore
appropriate conment would be 'show that another line was read. Al so avoid
coments that are too cute or flip. Sinply state clearly what is happening
so you will know what you had in mnd when you cone back to the program
next nonth or next year.

Sel ecting nmeani ngful variable nanmes is equally valuable in the overal
design of a program |f you are keeping track of the current line in a
file, use a variable name such as CurLine. Although BASIC in sone cases
lets you use a reserved word as a variable nane, | reconmend agai nst that.
Over the years, different versions of BASIC have allowed or disall owed
di fferent keywords for variables. Wile QickBASIC 4.5 | ets you use Nane$
as a variable, there is no guarantee that the next version will. Al so, be
aware that variables nanes which begin with the letters Fn are ill egal
because BASI C reserves that for user-defined functions. Using the variable
FName$ to hold a file name nmay | ook legal, but it isn't.

Don't be ashamed to use GOTO when it is appropriate. There are nany
pl aces where GOTO is the nost direct way to acconplish sonething. As |
showed earlier in this chapter, GOTO when used correctly can sonetimes
produce snaller and faster code than any other method.

Use line | abels instead of |ine nunbers. The statenent GOSUB 1020
doesn't provide any indication as to what happens at |ine 1020. GOSUB
penFile, on the other hand, reads like plain English. The only exception
to this is when you are debugging a programthat crashes with the nessage
"Il egal function call at line no line nunber”. In that case, you shoul d
add |ine nunbers to your programand run it again. A programthat reads
a source file and prints each line to another file with sequential nunbers
is trivial to wite. | will also discuss debugging in depth in Chapter 4.

Even though using DEFINT is supposed to force all subsequent CONST, DEF
FN, and FUNCTI ON decl arations to be integer, a bug in Qui ckBASI C causes
untyped nanmes to occasionally assunme the single precision default.
Therefore, | always use an explicit percent sign (% to establish each
function's type. |In fact, | use whatever type identifier is appropriate
for functions and CONST statements, to make them easily distinguishable in
the programlisting. For exanple, in the statenent |IF Cur Row > MaxRows%
THEN Cur Row = MaxRows% | know t hat MaxRows% has been defined as a
constant. Sonme people prefer to use all upper-case letters for constants,
though | prefer to reserve upper case for BASIC keywords.

Al t hough BASI C supports the optional AS | NTEGER and AS SI NGLE directives
when defining a subprogramor function, that wastes a | ot of screen space.
| greatly prefer using the variable type identifiers. That is, | will use
SUB MySub(A% B!') rather than SUB MySub(A AS | NTECER, B AS SINGLE). The
same information is conveyed but with a lot |ess effort and screen clutter

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 82 -

A wel | - behaved subroutine will restore the PCto the state it was when
called. |If you have subprogramthat prints a string centered on the bottom
line of the screen, use CSRLIN and PCS(0) to read the current cursor
| ocati on before you change it. Then restore the cursor before you exit.

I like to indent two spaces within FOR NEXT and | F/ THEN bl ocks.

Al t hough sone people prefer indenting four or even eight columms for each
| evel, that can quickly get out of hand when the bl ocks are deeply nested.
Not hing is harder to read than code that extends beyond the edge of the
screen. But whatever you do, please *do not* change the tab stop settings
in the QuickBASIC editor, unless you are the only one who will ever have
to ook at your code. Even though the program nay | ook fine on your
screen, the indentation will be conpletely wong on everyone el se's PC

Wien creating a dynamc array | prefer REDOMto a previous ' $DYNAM C
statement. REDIMis clearer because it shows at the point in the source
where the array is dinensioned that this is a dynamc array. Qherw se you
have to scan backwards through your source code |ooking for the nmpbst recent
' SDYNAM C or ' $STATIC, to see what type of array it really is. By the sane
t oken, using ever-changi ng DEFtype statenents throughout your code is poor
practice. Further, if a variable is a string, always include the dollar
sign ($) suffix when you reference it. |f you use DEFSTR S or even worse,
DI M xxx AS STRING and then omit the dollar sign, nobody el se wll
under st and your program

| also prefer to explicitly dinension all arrays, and not |let BC create
themwi th the 11-el ement default (including elenent zero). |If you need
| ess than 11 elenments, the nenory is wasted. And if you need nore, then
your programw || behave unpredictably. Not dinensioning every array is
sl oppy progranm ng. Period.

Avoi d repeated calls to BASIC s internal functions if possible. 1In the
listing below, the first exanple creates 61 bytes of code, while the second
generates only 46 bytes.

Not recommended:

IF CSRLIN =1 ORCSRLIN =6 OR CSRLIN = 12 THEN
END | F

Much better:

Tenp = CSRLIN
IF Tenp = 1 OR Tenp = 6 OR Tenp = 12 THEN

END | F

As | stated earlier in this chapter, using SELECT CASE instead of IF wll
also elimnate this problem Miny BASIC statenents are translated into
calls, and each call takes a m nimum of five bytes.

Your prograns will be easier to read if you evaluate tenporary
expressions separately. Even though BASIC | ets you nest parentheses to
nearly any level, nothing is gained by packi ng many expressions into a
single statement. In the exanples below that strip the extension froma
file nane, the first creates only a few bytes | ess code. Although this may
seem counter to the other advice | have given, a slight code increase is
often nore than offset by a commensurate inprovenent in clarity.

File$ = LEFTS(File$, INSTR(File$, ".") - 1)

Dot = INSTR(File$, ".")
File$ = LEFT$(File$, Dot - 1)

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 83 -

The last issue | want to discuss is how to pronounce BASI C keywords and
vari abl e names. Don't laugh, but nmany programers have no i dea how to
communi cate the words LEFT$ or VARSEG over the tel ephone. Sone peopl e say
"X dollar" for X$ even though "X string" is so nmuch easier to say. Another
keyword that's hard to verbalize is VARPTR | prefer "var pointer" since
it is, after all, a pointer function. CHR$(13) is pronounced "character
string thirteen", again because that's the clearest and nost straight
forward interpretation. Likewi se, INSTR is pronounced "in string" and
LEFT$ would be said as "left string". |If you're not sure how to pronounce
sonet hi ng, use the cl osest equival ent English wording you can think of.

SUMVARY

In this chapter you have | earned how BASIC s control flow statements are
constructed, and how the conpil er-generated code is sinilar regardl ess of
whi ch statenents are used. You also | earned where GOSUB and GOTO shoul d
be used, and when subprograns and functions are nore appropriate. The

di scussi on on | ogical operations showed how AND, OR, EQV, and XOR operate
and how t hey can be used to advantage in your prograns.

| have explained in detail exactly what recursion is, and how recursive
subroutines can perform services that are not possible using any other
techni que. You have al so | earned about the inportance of the stack in
recursive and ot her non-static subroutines. Passing paraneters to
subprogranms and functions has al so been described in detail, along with
sone of the principles of nodul ar program and event handl i ng.

Finally, |I have shared with you sone of ny own personal preferences
regardi ng programmi ng style, and when and how such conventions can nmake a
difference. Although this is a personal issue, |I firmy believe it is
i mportant to develop a consistent style and stick with it.

In Chapter 4 you will |earn debuggi ng nmet hods using both the Qui ckBASIC
editing environment and M crosoft's CodeVi ew debugger. The successfu
design of a programis but one part of its developnent. Once it has been
witten, it nust also be nade to work correctly and reliably. As you will
| earn, there are many techniques that can be used to identify and correct
conmon programi ng errors.

CHAPTER 4

DEBUGAE NG STRATEG ES

There are nmany individual conponents which contribute to a conpleted
application. The logical flow of the program nust be determ ned, the user
i nterface nmust be designed, and appropriate al gorithnms nmust be sel ected.
But no matter how nuch effort you devote to the design and inplenentation
of a program the bottomline is it nust also work correctly.

In an ideal scenario, you would begin witing a programby first
jotting down sone notes that describe its operation. Next, you would
create an outline listing each of the program s najor conponents. You
woul d then determine all of the subroutines and functions that are needed,
and perhaps even create a flow chart showi ng each of the paths that could
be taken. Properly prepared for any situation that might arise, you
finally wite the actual code and find that it works perfectly. Now,
what's wwong with this picture? Few people actually programthat way!

In practice, many programers sinply start coding with little
forethought and no detailed plan. They begin with the first statenment and
continue to the last, occasionally reworking portions into subroutines as
necessary. After all, planning is not nearly as nuch fun as progranm ng
and everyone knows that fun is the nost inportant part. Believe it or not,
| agree. There's nothing really wong with plodding through a program

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook -84 -

stabbing here and there until it works. Indeed, sone great algorithns
devel oped out of ainm ess doodling. | have personally never drawn a flow
chart, and | have no plans to start now.

What | will address here is howto find and correct problenms when they
do occur. There are nore things that can go wong with a programthan can
go right, and tracking down an elusive "lIllegal function call" error that
appears only occasionally is definitely not nuch fun. How quickly you can
solve these problens is directly related to your understandi ng of
progranmng in general, and to your famliarity with the tools avail abl e.

In this chapter you will learn howto identify problens in your
prograns, and also how to solve them Progranmmng errors, or bugs, can be
as sinple as a msspelled variable name, and as conplex and ornery as an
internal flawin BASICitself. The BASIC editing environnent provides a
weal t h of powerful debugging features, and understandi ng how to use t hem
wi Il help you produce prograns that are reliable and error free.

COVMMON PROGRAMM NG ERRCRS

There are three distinct types of programrng errors: sinple msspellings
and ot her nami ng or syntax errors, incorrect logic such as m sunderstandi ng
or incorrectly coding an algorithm and failing to understand sone of the
finer points of the BASIC | anguage. No matter how carefully you type, no
matter how nuch forethought you apply to a particular problem and no
matter how often you read the BASIC manuals, it is inpossible to conpletely
avoi d maki ng m st akes.

The first category includes those errors caused by sinple m stakes
such as misspelling a variable or procedure nane. Trying to call a
subprogram that doesn't exist will be i mediately obvious, because BASIC
gi ves you an error nessage before the program can be run. But an incorrect
variable nane will return the wong results with no warning

Passi ng the wrong nunber of arguments to a procedure nmay or nmay not be
reported, depending on whether the routine has been declared. Assenbly
| anguage routines in a Quick Library can be particularly pesky in this
regard. Although BASIC automatically generates a DECLARE statenent for
BASI C subprograns and functions you have | oaded in source form it does not
do this for routines in a Qick Library. |If you call an assenbly |anguage
routine incorrectly, you will probably crash the PC. However, it is also
possible to corrupt string nenory and not know it. Wrse, a "String space
corrupt” error is often not reported until nuch later in the program |If
you run the short programbelow in the QuickBASIC 4.5 editor, it wll
appear to operate correctly.

X$ = SPACE$(1000) "create a string
POKE SADD(X$) - 2, 100 ‘'corrupt string nenory
PRI NT "Testi ng"

X% =1

PRI NT "Mre testing"
X% = 2

PRI NT "Yet nore testing"
X% = 3

Here, the POKE statenent is overwiting the back pointer that belongs to
X$, which is one type of string corruption that can occur. But QuickBASIC
doesn't know that this has happened, because it has no reason to check the
integrity of its string nenmory until another string assignment is nade.
However, adding the statement PRINT FRE("") anywhere after the POKE command
causes BASIC to check string nenory, and report the error. Even if your
program does not use POKE, calling a procedure incorrectly can cause it to
overwite nmenory in this fashion

Anot her sinple error is inadvertently using the same vari abl e nane
twice, or omtting a type declaration character froma variable nanme. For

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -85 -

exanple, if you are using a variable nanmed Bytes& to track how nany bytes
of a file have been read, accidentally using Bytes later on will give the
wong results. |If a DEFINT statenment is in effect, then Bytes will be an
integer variable. Qherwise, it will be single precision which is also
incorrect. Unless you use the DIM..AS statenent to declare a variable
explicitly, BASIC |l ets you have different variables with the sane nane.

That is, Var% Var!, and Var# can all coexist in the same program and each
is a unique variable.

Simlarly, using the wong variable entirely will cause your program
to operate incorrectly, and again with no error nmessage displayed. Mre
than once | have had a programwi th one FOR | oop nested wi thin another, and
used the outer |oop counter variable when | nmeant to use the inner one.

Anot her common situation is caused by changi ng the nanme of a variable
during the course of witing a program For exanple, you may have a
vari abl e naned BPtr that tracks where you are reading within a buffer. If
you | ater decide to change that nanme to Buf Pointer because it is nore
nmeani ngful , you nust al so renmenber to change all occurrences of the nane.

O course, BASIC s search and replace feature mnimzes that problem Mre
i mportant, though, you must nmake a nmental note to use the new nane as you
continue to devel op the program

Forgetting to declare a function can also lead to incorrect results
that produce no warning. |If an integer function is not declared, then
BASIC will dinmension an array with that name if the function expects a
nunmeric argument. \Wen BASI C encounters the statenent X = FuncNane% Y% it
assunes that FuncNane%is an integer array, and create an array containing

the default 11 elements. 1In this case X will be assigned a value of zero,
or you will receive a "Subscript out of range" error if Y%is not between 0O
and 11. | once observed an unexpl ai nable "Qut of string space" error that

was caused by the statenment Size = ScreenSize% ULRow, ULCol, LRRow, LRCol).
ScreenSi ze% was a function present in a Quick Library, but without a
DECLARE st atenment BASIC created a 4-di mensi onal integer array.

LOGE C ERRCRS

The second cause of bugs is logic errors, and these include addi ng when you
nmeant to subtract, or using the wong variable altogether. Prograns that
mani pul ate pointers (variables that hold the addresses of other variabl es)
are particularly prone to errors in logic. Another conmon logic error is
forgetting to trimthe leading or trailing blanks froma file or directory
nane before using it. |f the operator enters " c:\thisfile.dat" and you
try to open that file, BASIC will report a "Bad file nane" error

Anot her cause of logic errors is failing to consider all of the things
a user may enter. An inexperienced operator is likely to enter data that
you as the programer woul d never consider, or select nmenu itens in an
order that nmakes no sense. Indeed, never underestinmate the value of beta
testers. After you have exhausted all of the possibilities you can think
of, give the programto a 4 year old child, and ask himor her to try it
whil e you watch. Your uncle Ernie would be a good beta tester too, and the
| ess he knows about your program the nore valuable his contribution will
be. Peopl e who know absol utely nothing about conputers have an uncanny
knack for creating "Illegal function call" errors in a programthat you
just know is perfect.

Simlarly, you nmust consider all of the possible error conditions that
could happen in a program |In an error handl er that has a CASE stat enent
for each possibility you anticipate, also include a CASE ELSE cl ause for
t hose you haven't thought of. The short listing that foll ows shows a
typi cal error handler that incorporates this added safety measure.

ON ERRCR GOTO Handl eErr

thdieErh

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 86 -

SELECT CASE ERR
CASE 7, 14
PRI NT "Qut of nenory"
CASE 24, 25, 27
PRINT "Fix the printer"”

CASE 53

PRINT "File not found"
CASE ELSE

PRI NT "Error nunber"; ERR

END SELECT

The CASE ELSE cl ause lets you accommodate any possibility, and your user
can then at | east report to you what the error nunber was. This sinple
exanpl e doesn't include all of the possibilities, but you can certainly see
t he general concept.

Anot her common logic error is using the sane file nunber twi ce. Wen
a file has been opened as #1, that nunber remains in use until the file is
closed. This can be problematical when witing reusabl e nodul es, since
there is no way to know which files may be in use by the main program
Sone progranmers use #99 or another unlikely nunber in a routine that wll
be reused in many prograns. But even that approach is flawed, because you
have to remenber whi ch nunbers are used by which routines.

BASI C s FREEFI LE function is intended to solve this problem and it
returns the next available file nunber. Be sure to save the results
FREEFI LE returns, however, since the value will change as soon as the next
file is opened. The code bel ow shows both the wong and right ways to use
FREEFI LE

W ong:

OPEN "accounts.dat" FOR | NPUT AS #FREEFI LE
| NPUT #FREEFI LE, X$ ' FREEFI LE has changed!
CLCSE #FREEFI LE

Ri ght:

Fi |l eNum = FREEFI LE 'get and save the nunber
OPEN "accounts.dat" FOR | NPUT AS #Fi | eNum

I NPUT #Fil eNum X$

CLCSE #Fi | eNum

In the first exanple if FREEFILE returns, say, a value of 2, then it wll
return 3 at the I NPUT statenent which is of course incorrect. Therefore,
you nust save the val ue FREEFI LE returns, and use that for all subsequent
file accesses. This situation also occurs with | NKEY$, because once a
character has been returned it is no |onger avail able unless you saved it.
Two other frequent problens are attenpting to use LSET to assign
characters into a string that does not exist, and failing to clear a
counter variable within a static subprogramor function. The second
probl em can be especially frustrating, because the routine will work
correctly the first time it is invoked. |In the function below, a counter
returns the nunber of enbedded control characters it finds in a string.

FUNCTI ON Qi r | Count % Wor k$) STATI C
FOR X% = 1 TO LEN(Wr k$)

| F ASC(M D$(Work$, X% 1)) < 32 THEN
Count % = Count% + 1

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 87 -

END | F
NEXT

Ctrl Count % = Count % "return the count

END FUNCTI ON

The problemhere is that Count% retains its val ue between function

i nvocations. Therefore, each time CrlCount%is used it will return ever
hi gher values. One solution is to add the statement Count% = 0 at the
begi nni ng of the function. Another is to onit the STATIC option fromthe
function definition.

UNDERSTANDI NG BASI C S QUI RKS

The third type of error is caused by not understanding sone of BASIC s
finer points and quirks. For exanple, sone people do not realize that
omtting the third argument fromMD$ causes it to return all of the
remai ni ng characters in a string. To see if a drive letter was given as
part of a file nane and if so extract it, you mght use a statenent such as
IF MD$(FileNane$, 2) = ":" THEN Drive$ = LEFTS(Fil eNane$, 1). But since
the nunmber of characters was not specified to MD$, it returned all but the
first character in the string. Unless the string was a drive letter and
colon only ("C. "), the test for a colon could never work. The solution, of
course, is to use MD$(Fil eName$, 2, 1).

Anot her instance in which an intimte know edge of BASIC s
i di osyncraci es cones into play can affect the earlier exanple of a file
nane that contains |eading blanks. Mst programers do not use INPUT to
accept information, unless the programis very sinple and it will be used
only occasionally. However, asking for a file nane with INPUT is one way
to avoid that problem because INPUT strips all leading and trailing blank
spaces, as well as CHR$(9) tab characters. The nore useful LINE | NPUT, on
t he other hand, does not strip |eading blanks and tabs. Most progranmers
woul d never be so foolish as to enter a file nane with | eading blanks. So
this is yet another situation where it is inportant to consider all of the
possibilities.

It is also possible to crash a program by using the ASC function when
the string mght be null. Again, *you* would never press Enter alone in
response to a pronpt for a file nane or other mandatory information, but
soneone el se might.

Anot her BASIC quirk is caused by rounding errors. As you saw in
Chapter 2, adding or multiplying many nunbers in succession can produce
results that are not precisely correct. Instead of checking to see if a
value is zero, it is often better to conpare it to a very small nunber
That is, instead of IF Value# = 0 you would use | F Val ue# < .000001 or IF
Val ue# < . 000001 AND Val ue# > -.000001 or sonething simlar. Al so, sone
nunbers sinply cannot be represented at all. If you try to enter the
statenent X# = .00000000001 in the QuickBASIC 4.5 editor, the value will be
converted to 9.999999999999999D 12 as soon as you press Enter

Al t hough not technically a BASIC quirk, many programers forget that
variables within a DEF FN function are by default global. Unless you
i nclude an explicit STATIC statenment |isting each variable that is to be
local to the function, it is likely that an unexpected change will be nade
to a variable in the main program

Sone progranm ng situations require that you obtain the address of a
string variable using SADD. However, SADD is not legal for use with a
fixed-length string or the string portion of a TYPE variable. Mre
i mportant, when using BASIC PDS far strings you nust al so renenber to use
SSEG to get the string's data segnment. Using VARSEG will not create an
error; however, the programw |l not work correctly.

Related to that, it is inportant to renmenber that strings and dynam c
arrays nove around in nmenory--often at unexpected tinmes. The program bel ow
appends a zero character to one string for each zero that is found in

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 88 -

another string. Since BASIC may nove Work$ during the course of assigning
Zero$, this code will fail eventually:

Address = SADD(Wr k$)

FOR Y = Address TO Address + LEN(Work$) - 1
| F PEEK(Y) = 48 THEN Zero$ = Zero$ + "0"

NEXT

Anot her particularly insidious bug can result if you inadvertently add
parent heses around a variable that is passed to a subprogram or function.
In the exanpl e bel ow, a subprogramthat intentionally nodifies a paraneter
has been declared and is then called w thout the CALL keyword.

DECLARE SUB Squar e(Par antg
Square (Val ue®

SUB Squar e(Val ue% STATIC
Val ue% = Val ue% * Val ue%
END SUB

Because of the unnecessary and incorrect use of parentheses, a copy of the
argunent is sent to Square instead of the argunment itself, with the result
that Value%is never actually changed. The fix is to either renove the
parent heses, or add the word CALL. Another, related issue is placing a
DEFI NT after DECLARE statenents. |In the exanple below, the paraneters X,
Y, and Z are assumed by BASIC to be single precision, even though this is
clearly not what was intended.

DECLARE SUB (X, Y, 20 'X Y, and Z are singles!
DEFI NT A-Z

The final issue | want to address here is potential overflow errors. The
statenment IF IntVar%* 14 > 1000000 can never be true, because BASIC
perforns integer math assuming an integer range only. Unless you conpile
your programusing the /d debug option, the error will be unreported in a
conpiled program |If this statenent is executed within the @B environnent,
BASIC will report an overflow error, even though the instruction certainly
appears to be legal. But since integer math assunmes an integer result, the
product of IntVar%times 14 will overflow the range of integer values if
IntVar%is greater than 2, 340.

One solutionis to use a long integer for IntVar, and BASIC will then
use the range of long integers for the comparison. Using a long integer
wast es nmenory, however, and cal cul ations on long integers are slower and
require nmore code to inplement. A nuch better solution is to use CLNG
(Convert to Long), which tells BASIC to assunme a long integer result.

The staterment IF CLNE IntVar® * 14 > 1000000 will create a | ong
i nteger version of IntVar% and then multiply the result times 14 and use
that for the subsequent conparison. Unlike the copies that BASI C nmakes
whi ch steal DGROUP nenory, the long integer conversion in this instance is
handl ed within the CPU s registers. CLNG when used this way is really just
a conpiler directive, as opposed to a called library routine. Another
solution is to add an anpersand after the constant 14, thus: |IF IntVar%*
14& > 1000000. Again, no additional DGROUP nenory is used to handle 14 as
a long integer val ue.

Anot her interesting use of CLNG and CI NT--unrel ated to debuggi ng but
worth nentioning none the less--is to reduce the size of conparison code.
Wien you use a statenment such as |IF X% > VAL(Sone$), a floating point

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -89 -

conparison is performed even if Some$ holds an integer value. By replacing
that exanple with IF X% > CI NT(VAL(Sone$)) 6 bytes of code can be saved.
The CINT tells BASIC that it will not have to performany floating point
roundi ng when it conpares the two val ues.

DEBUGGE NG AND TESTI NG TECHNI QUES

When you are developing a large application that is conprised of many

i ndi vi dual nodul es, there are several useful debugging techniques you can
enploy. One is to create short test-bed prograns that exercise each
subprogram and function. Finding an error in a conplex programw th many
i nt erdependenci es between subroutines can be a tedi ous prospect at best.
If you instead create a snall program whose sole purpose is to test a
particul ar subprogram you will be better able to focus on just that
routine.

Anot her useful technique for detecting and preventing sporadic errors
is to test your code on "boundary conditions". |If you have a routine that
reads and process a file in 4K (4096 byte) increnents, test it with a file
that is exactly 4096 bytes long, as well as with other test files that are
4095 and 4097 bytes | ong.

Perhaps nothing is nore frustrating than having a programfail with
the nmessage "xxx at line No Iine nunber”. This nmessage is a throw back to
t he days when all BASIC prograns had to use line nunbers. Now that |ine
nunbers are not required in nodern conpil ed BASIC, nost programers do not
use them opting instead for nore descriptive line |abels when | abels are
needed at all. Wen an error does occur and the program has been conpil ed
with /d, BASIC reports the nunber of the nearest nunbered |ine preceding
the line in which the error occurred.

A good solution to track down the cause of such errors is to use a
variant on a hardware debuggi ng techni qgue known as the "cut in half"
nethod. In a conplex electronic circuit that does not work, using this
techni que nmeans that the circuit is first checked at its md-point for the
correct signal. |If the circuit tests correctly at that point, then the
error is in the second half. Therefore, the test engi neer would "cut in
hal f" again, and test at a point hal fway between the mddle and the end.

If the test fails there, then the problemnmust |ie between the mddle of
the circuit and that point.

In a purely software situation, you would add a |ine nunber to a line
that falls approximately hal f-way through the program [|f that nunber is
reported, then the problemis occurring in the second half of the program
An enhancenent to this technique that | reconmmend is to add, say, ten line
nunbers in evenly spaced increnents throughout the program This will |et
you quickly isolate the problemto a nuch snaller portion of the program

Besi des the |ine nunber (or lack of |ine nunber) that BASIC reports,
the segnent and address at which the error occurred is also reported. This
is information is frankly useless in a purely BASIC environnent. You nust
either use CodeViewto identify the line that is associated with the error
or view the assenbly | anguage output that BC can optionally generate.
These will be described in the section on advanced debugging later in this
chapter.

Finally, it is inmportant to point out that you should never use ON
ERROR while a programis being devel oped. ON ERROR can hi de progranm ng
errors that you need to know about. As an exanple, a LOCATE statenent with

incorrect values will generate an "lIllegal function call" error. But if ON
ERROCR is in effect and your program uses RESUVE NEXT for errors it is not
expecting, you may never even know that an error occurred. If you run the
conpl et e program bel ow you can see that there is no indication that an
error occurred at the obviously illegal LOCATE statenent.

CLS

ON ERRCR GOTO Handl eErr
LOCATE 100, -90

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -90 -

PRINT "My program seens to work fine."
END

Handl eErr :
RESUVE NEXT

USI NG THE QB AND (BX EDI TI NG ENVI RONVENTS

The single nost powerful debugging feature that is available to you is the
BASI C editing environnent. More than just an editor that you can use to
enter program statenents, the @B environment is exactly that: a conplete
editing environment for devel oping and testing BASIC prograns. The BASIC
editor lets you enter program statenents, single-step through a program
exam ne vari abl e val ues, and nuch nore. Besides being able to execute
conmands singly and in sequence, you can also trace into subroutines and
functions, and even run your programin reverse.

The prinmary advantage of using the @B environment instead of a
separate editor is the enhanced debuggi ng capabilities. |In nost high-Ileve
| anguages, you first wite a programusing an editor, and then conpile and
run it to see if it works correctly. |If an error occurs, you nust start
the editor again, |load your program and study the code to see what went
wong. |In contrast, QB lets you run your programat the same tine it is
being edited. You can even nodify the programwhile it is running and then
resune execution, view and change variabl e val ues, and change the order in
whi ch statenents are executed.

Further, BASIC can be instructed to stop and return to the edit node
when the programreaches a certain statenment, or when a particul ar | ogical
conditi on becones true. For exanple, you can tell BASICto halt the
program when a variable takes on a specified value. These are extrenely
power f ul debuggi ng tool s which have no equal in any other |anguage. In the
sections that follow, | will describe each of these capabilities in detail

STEP AND TRACE DEBUGGE NG

Early versions of Mcrosoft BASIC offered a very primtive trace capability
that displayed the Iine nunbers of the currently executing statements.
Al 't hough this was better than nothing, interpreting a blur of Iine nunbers
flashing by on the screen required a |lot of mental effort. Wen Mcrosoft
i ntroduced Qui ckBASI C version 3.0 they added greatly inmproved debugging in
the formof a step and trace feature. To activate step and trace you woul d
enter a STOP statenment at a selected point in the source code. Wen the
program reached that point you could then execute each statenent in
sequence by pressing a function key. QuickBASIC 3 al so provided the
ability to display continuously the value of a single variable in a w ndow
at the top of the screen

QUi ckBASI C 4.0 offered an inproved version of this feature, using
additional function keys to control how a program proceeds. This method
has been continued with little change through current versions of
Qui ckBASI C and BASIC PDS. O course, the primary reason you would want to
step through a programone statenment at a tinme is to determne why it is
not working. For exanple, if you have code that opens a file for output
but the file is never created, you would step through that portion of the
code to see which statenents are being executed and which are not. In
particular, stepping through a programlets you see which path an IF or
CASE test is taking.

Two function keys are used to single-step through a program and four
additional options are available to assist program debuggi ng. Each time
the F10 key is pressed, the current statenment is executed and the program

advances to the next statenment. |If you have just |oaded the program being
tested, you will press F10 once to get to the first instruction. Pressing
F10 agai n executes that statement, and continues to the next one. If the

current statenent is related to screen activity, the screen is swtched
nonentarily to display the program s output rather than the source code.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook -91 -

The screen is also switched during a CALL statenent or function invocation
in case that routine perforns screen output. You can optionally toggle
bet ween vi ewi ng the output and edit screens manually by pressing F4.

In some cases you nay want to treat a subroutine as a single
statenment, which is what F10 does. That is, CALL MySub is handl ed as
single statement, and all of the statenents within the routine are executed

as one operation. |In other cases, however, you nmay need to trace into a
subprogram GOSUB routine, DEF FN, or function, to step through its
statements as well. This is what F8 is for. Wen F8 is pressed at a CALL

or GOSUB statenent or function invocation, BASIC traces into the procedure
and lets you watch as it executes each statenent individually.

Two additional capabilities |l et you navigate a program nore quickly.
Pressing F7 tells BASIC to execute all of the statenents up to the current
cursor location. This way, you are spared fromhaving to watch a |ong
sequences of commands that you know are working correctly. For exanple,
steppi ng through a FOR'NEXT | oop that initializes 1000 elenents in an array
is usually pointless. Therefore, when you reach that spot in the program
you woul d manual Iy nove the cursor to the statenment follow ng the NEXT, and
press F7.

It is also possible to force execution to a particular point in the
program usi ng the "Set next statenent” option of the Debug menu. Unlike
F7, though, the statenents that precede the selected line will not be
executed. Therefore, this option is equivalent to adding a tenporary GOTO
to the program causing it to junp to the specified |ine.

One of the nost powerful features of the BASIC editor is that you can
actually nodi fy your program then resune execution. 1In earlier versions
of Qui ckBASI C, maki ng even the slightest change to a program-even if only
to a single comrent--the entire programwoul d have to be reconpiled. BASIC
can now preserve variabl e values and i ndeed the entire program state during
nost types of editing operations.

The last inportant step operation | want to nention nowis the Hi story
feature. This too nmust be selected froma nenu, and using it will slow
your program s operation considerably. Wen the H story option is selected
fromthe Debug menu, BASIC renenbers the | ast 25 program statenents, and
| ets you step through your programin reverse. For exanple, if a variable
has taken on an incorrect value, you can wal k backwards through the program
to see what statenments caused that to happen. Were F8 steps forward
t hrough your program Shift-F8 instead steps backward.

WATCH VARI ABLES AND BREAK PO NTS

As powerful as BASIC s single-step feature is, it is only half of the
story. Equally inmportant is the Watch capability that lets you view a
programis variables in real tine. One or nore variables may be placed into
a special Watch window at the top of the editing screen, and their val ues
wi Il be displayed and updated after each statenent is executed. Between
the Step and Watch features, you can observe all aspects of your programs
operation as it is executing.

Besi des wat chi ng vari abl e val ues, you can al so nonitor conpl ex
expressions and function results. For exanple, you could watch the val ue
of X%* Y+ Z% ASC(Wrk$), or the result of a function such as
StrFunction$(Array$(), Count% . Because each variable or expression is
updated after every program statenent, your programw |l run nore slowy
when many itens are displayed in the watch wi ndow. However, this is seldom
a problemin a debugging situation, and the ability to see precisely what
i s happeni ng far outwei ghs the m nor speed penalty.

Being able to watch the results of expressions as well as sinple
variables of fers sonme useful and interesting techniques. As an exanple,
suppose you are watching a string variable naned Buffer$. |If Buffer$ is
very long, you can use LEFT$ or MD$ to watch just a portion of the string:
M D$(Buffer$, CurPointer% 70). This expression displays the 70-character
portion of Buffer$ that is currently pointed to by CurPointer% (assum ng,
of course, you are using variables with those nanes).

Li kewi se, if you are observing a string but nothing is showing in the

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook -92 -

wat ch wi ndow, you could watch "{" + Wrk$ + "}". This displays "{}" if the
string is null, and shows if there are leading or trailing blanks or
CHR$(0) bytes. Adding braces also lets you see if the string contains
characters that begin past the edge of the visible w ndow.

One particularly powerful use of BASIC s Watch capability is related
to the fact that all of the expressions are eval uated anew at each
statement. Earlier | nentioned how insidious "String space corrupt” errors
can be, because BASIC checks the integrity of its string nmenory only when a
string is being assigned. Therefore, watching the expressi on FRE(Any$)
tells BASIC to evaluate string nenory after every source line. Thus, as
soon as string menory is corrupted it will be inmediately reported. This
techni que can be extended to identify a "Far heap corrupt” error as well,
by wat ching the expression FRE(-1).

Besi des the Step and Watch capabilities, there are two additiona
features you shoul d understand: Break Points and Watch Points. Wen a
programis very large and conplex, it becones inpractical to step and trace
t hrough every statenent. Also, in sone cases you nmay not know at which
statenment an error is occurring.

Pressing F9 sets up a Break Point which tells BASICto halt when it
reaches that point in the program regardless of howit arrived there. You
can have multiple break points, and the programw |l run normally until the
specified statement is about to be executed. Sinply place the cursor on
the line at which the programis to stop, and press F9. That line will be
hi ghlighted to showthat it is currently a Break Point. Pressing F9 again
renoves the Break Point.

A Watch Point tells BASIC to execute the program until a certain
conditi on becones true. Sonme exanples of Watch Points are X% = 100,
ABS(Total #) > 1000, and FRE("") < 1000. |In the first exanple you are
telling BASIC to stop the programand return to the editor when X% equal s
100. The second exanple will stop the program when the absol ute val ue of
Total # exceeds 1000, and the third halts it when there are | ess than 1000
bytes of string space renaining.

Consi dered together, these debugging features are extrenely powerful.
You can tell BASIC, in effect, "Run until the value of Count% hits 14; then
stop the program and |et me wal k backwards through the programto see how
t hat happened. "

USI NG / D TO DETECT ERRCRS

Anot her very powerful debuggi ng solution at your disposal is to conpile
your programwi th the /d debug option. Wen creating an .EXE file in the
BASI C envi ronnment fromthe Run nmenu, you would sel ect the "Produce debug
code" option. Conpiling with /d tells BCto add three inportant safeguards
to the code it generates. Sone of these debugging i ssues were described in
Chapter 1, but they deserve el aboration here.

The first code addition is a call to a central event handler prior to
every BASI C program statenent, to detect if Crl-Break was pressed.
Normal Iy, a conpiled BASIC programis inmmune frompressing Crl-Break and
Crl-C unless the programis processing an | NPUT statement. BASIC adds
break checking to I et you get out of an endless |oop or other sinilar
situation, wthout having to reboot your conputer

The second addition is an overflow test foll ow ng each integer and
long integer addition, subtraction, and nultiplication, to detect results
t hat exceed the range of |legal values. |If you have a statenent such as X%
= Y%* Z%and the result after multiplying is greater than 32767, the
overflowtest will detect that and produce an error nessage. Oherw se, X%
woul d be assigned an erroneous val ue and your program woul d have no way to
detect it. Floating point operations do not need any additional testing,
because overflows are detected and reported whether or not /d is used.

The | ast additional code that BASIC adds when /d is used is array
el enent bounds checking. |f you have dimensioned an array and attenpt to
assign an elenent that doesn't exist, a conpiled BASIC programwill
normally ignore the error. For exanple, if an array has been di mensi oned
using DM Array%{1 TO 100) and you then have the statenment Array%200) =

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 93 -

12, BASIC will store the value 12 at what woul d have been the 200th
elenment. This can lead to disastrous consequences such as overwiting an
el ement in another array, or corrupting string nenory. Wen /d is used
BASI C adds additional code to check every array el enent referenced, and
reports an error if that el enment does not exist.

Because of the added checking for overflow errors and illegal el enent
nunbers, a programconpiled with /d will be larger and run nore slowy than
one in which /d is not used. Therefore, you should not rel ease a program
for general use that has been conpiled with the debug option. ne
exception worth noting is that QuickBASIC versions 4.0 and 4.5 contain a
bug that generates incorrect code for certain long integer array
operations. The only solution when that happens is to use /d. This way,
the routine that cal cul ates el ement addresses and checks for illega
el enent nunbers is used, rather than the incorrect in-line code that BC
produces directly.

You could also conmpile with the /ah (huge array) switch, which uses
the sane routine to calculate and check array el ement addresses. Using /ah
has an advantage over /d in this case, because your programw || not be
halted if Crl-Break is pressed. Using /ah al so avoids the extra code and
time to check for overflow errors. However, /ah affects dynam c arrays
only, and errors with static arrays will not be prevented.

When a programis run in the BASIC editor, the same protection that /d
provides is enployed. This added debug testing within the editor is one
nore contributor to its sl owness when conpared to a fully conpiled program

ADVANCED DEBUGE NG

Al t hough being able to step through your programand watch its variables in
the BASIC editing environnent is very powerful, there are still sone
l[imtations inherent in that process. For exanple, it is possible that a
programwi |l work perfectly in the editor, but not when it has been
conpiled to an . EXE program Mcrosoft has tried to nake the BASIC editor
as conpatible with BC as possible, but the editor is an interpreter and not
a true conpiler. There are bound to be sone differences in how the program
runs. Another limtation is that sone prograns are just too large to be
run within the editor. Finally, if you receive an error nessage from an
executabl e programthat lists only a segnment and address, there is no way
to determine where the error occurred using the editor

In these cases you will need to work with the actual conpiled program
To relate an error address to the original BASIC source statenment you mnust
be able to see the assenbly | anguage code that BC generates, along with the
original BASIC source. One way to do this is with the Mcrosoft CodeVi ew
debugger. CodeVi ew conmes with BASIC PDS [and VB/ DOS Prof essional Edition]
as well as with Mcrosoft's Macro Assenbl er. CodeVi ew provi des a debuggi ng
environment that is simlar to the QB editor, except it is intended for
tracing through a programthat has already been conpil ed.

Another way is to instruct BC to generate an assenbly | anguage source
listing as it conpiles your program This listing shows a mx of BASIC
source statenments and the resultant assenbly |anguage code and addresses.
However, the listing is not as clear or easy to follow as the display that
CodeVi ew presents. But if you do not have CodeView, this is your only
choice. | wll describe this method first.

CREATI NG AN ASSEMBLY LANGUAGE SOURCE LI STI NG
To create an assenbly | anguage list file you use the conpiler's /a switch

and then specify a list file name. The syntax is shown bel ow, followed by
a sanple list file that is generated.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook -94 -

You enter this:

bc program/a [/other options] , , listfile;

LI STFI LE. LST contains this:
PAGE 1
25 June 91
14: 28: 08
M crosoft (R) Qui ckBASI C Conpil er Version 4.50

O fset Data Source Line

0030 0006 CLS
0030 0006 | NPUT Count %

0030 ** | 00002: nov ax, OFFFFh

0033 ** push ax

0034 ** call B$SCLS

0039 *=* nov ax, of fset <const >
003C ** push ax

003D ** call 0000h

0040 ** pop ax

0041 ** add ax, 000Dbh

0044 ** push cs

0045 ** push ax

0046 ** call B$INPP

004B ** jmp $+04h

004D ** dw 0002h

004F ** db 00h

0050 ** db 02h

0051 ** nov bx, of f set COUNT%
0054 ** push ds

0055 ** pop es

0056 ** push es

0057 ** push bx

0058 ** call B$RD 2

005D 0008 |IF Count% < 100 THEN

005D 0008 Count % = 100

005D 0008 END IF

005D ** call B$PECS

0062 * % cnp word ptr COUNT% 64h
0067 ** il $+03h

0069 ** jmp | 00003

00o6C ** nov COUNT% 0064h

0072 0008 PRI NT Count %
0072 0008 END

0072 0008
0072 0008
0072 ** 00003: push COUNT%
0076 ** call B$PEI2
oo7B ** call B$CEND
0080 ** call B$CENP
0085 0008

43981 Bytes Avail abl e
43643 Bytes Free

0 Warning Error(s)
0 Severe Error(s)

Here, the list file shows the original BASIC source code, as well as the
generated assenbly | anguage instructions. The colum at the left holds the
code addresses, and these correspond to the addresses that BASIC displ ays

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 95 -

when a program crashes with an error nessage. Unfortunately, several BASIC
statenments are grouped together, so it is not immedi ately apparent which
address goes with which source statenent. For exanmple, after the BASIC
statenment | NPUT Count% the earlier assenbly |anguage instructions that
clear the screen are shown. Simlarly, the call to BSPECS is actually part
of the INPUT code, although it is listed following the IF test.

When BASI C di spl ays an error nmessage and ends your program by
di spl ayi ng a segnented address, only the address portion is meaningful.
The segnent in which a programis running will depend on nany factors,
i ncludi ng the DCS version (and thus its size), the FILES= and BUFFERS=
val ues specified in CONFI G SYS, and whet her TSR prograns and devi ce drivers
are | oaded. Each of these factors cause the programto be | oaded at a
hi gher segnment, although the addresses within that segnent never change.
Also, in a multi-nodule program a different segnent is used for each
nodul e's source file. Therefore, if the message is "lIllegal function cal
in nmodul e XYZ at address 3456:1234", you would conpile XYZ.BAS to create a
list file instead of the main program The code in the vicinity of address
1234 will be where the error occurred.

USI NG M CROSCFT CCDEVI EW

Al t hough compiling with the /a switch lets you view the assenbly | anguage
code that BASIC creates, there is little you can actually do with that
information. CodeView is a nmuch nore powerful debugging tool, and it lets
you step through an .EXE file as it is running. This lets you follow the
conpi | ed program s execution path, and also view its assenbly | anguage
instructions. Further, CodeView can trace into BASIC s library routines,
as well as calls to C or assenbly | anguage routines that you have witten.

CodeVi ew can al so be used to see how many bytes of code are generated
for each BASIC statenment. This is a good way to conpare the relative
efficiency of different programmi ng nethods, to see which ones produce |ess
code. It is inportant to understand that the size of the assenbly |anguage
code generated for a given BASIC statenent is a conbination of two factors:
t he nunber of bytes the conpiler generates for each occurrence of the
statenment, and the size of the called routine within BASIC s runtinme
library. O course, the called routine is added to your program only once.
However, the code that sets up and calls the routine is added each tine the
statenment is encountered.

Conpiling a programfor use with CodeViewis very sinple, and nerely
requires the addition of special conpiler and |inker option switches. Note
that you cannot conpile a programfor CodeView fromwi thin the Qui ckBASIC
editor; you nust conpile and link manually fromthe DOS conmand |ine, as
shown bel ow. Al so notice that the BASIC program nmust be saved as ASCl |
text, and not with the special "Fast Load" nethod that (B optionally uses.

bc program/zi [/other options];
link program/co [/other options];
CV program

The /zi option tells BCto wite additional information into the object
file, which is used by LINK and CodeView to relate each line of BASIC
source code to its resultant assenbly code. The nore neaningfully named
/co switch is required so LINK will know to do |ikew se. You may be
interested to know that /zi is naned after Mcrosoft |egend Mark

Zi bi kowski, whose initials (MZ) al so appear as the first two bytes in every
DOS . EXE file.

Once the program has been conpiled and |Iinked, start CodeVi ew by
entering CV followed by the file's first nane (that is, w thout the .BAS or
. EXE extension). You will then be presented with a screen very simlar to
that of the B editor. Most versions of CodeView initially show the BASIC
source code. In other versions, you nust press AlIt-R-Rto "restart" the
programand bring it to the first source line. | should point out that

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 96 -

CodeView is a quirky program and it is often referred to as the program
that people "love to hate". It has sone glaring onissions, many aspects of
its interface are inconsistent and downright obnoxious, and | personally
woul d be lost without it.

When the BASIC source is displayed, you may press F4, F7, F8, and F10,
whi ch performthe sane functions as their BASIC editor counterparts. One
i mportant difference, however, is that you nmay also press F3 to show a m X
of BASI C and assenbly | anguage code. Stepping through the programw th F8
and F10 will execute either a single BASIC statenent or a single assenbl er
conmand, depending on the context. That is, if you are in the BASIC view
node, then you will step through the BASIC code. |f the assenbly |anguage
code is being displayed, then you will step through that instead.

Figure 4-1 [not avail able here, sorry] shows a screen snapshot of a
short sanple program as di splayed by CodeView when it is first started in
the BASIC view node. Figure 4-2 [al so unavail able] shows the sane program
after pressing F10 to execute up to the first statenment, followed by F3 to
view a mx of BASIC and assenbly | anguage. This screen is in a 50-1line
node to allow the entire programto be displayed. Al though it is not shown
here, CodeVi ew can continuously display the processor's registers in a
smal | window at the right side of the screen. The register display is
alternately activated and deactivated by pressing F2.

FI 4-1: The CodeVi ew di spl ay when using the BASI C vi ew node.

FI G4-2: The CodeVi ew di splay for the sane program but using the assenbly
| anguage vi ew node.

Notice in Figure 4-2 that CodeVi ew di spl ays each BASI C st at enent indented
and with a line nunber. This lets you identify where each BASI C comand
starts, and al so which bl ock of assenbly | anguage code it is associated
with. The nunbers at the left edge of the display show the segrment and
address of each instruction in hexadeci mal notation. The segnment val ue
never changes within a single program nodul e, although the addresses

i ncrease based on the nunber of bytes in each assenbly | anguage
instruction. As you can see, sone assenbly | anguage commands are as short
as one byte, and others are as long as six.

In the first instruction, CLS, a value of -1 (FFFF hex) is passed to
the CLS routine as a flag to show that no argunent was given. Had the
BASI C statement been CLS 2, then a value of 2 would have been noved into AX
instead. N ne bytes of code are generated each tinme CLS is used, not
counting the code within B$SCLS. Besides showi ng the B$SCLS routi ne nane,
CodeVi ew al so shows the segnment and address at which B$SCLS resi des.
Knowi ng the routine's address is of little practical use in this situation
and it is displayed solely for informational purposes.

The I NPUT staterment is fairly conplicated to set up, and I won't
bel abor what every assenbly | anguage instruction does. But several itens
are worth discussing. The first is that CodeView attenpts to relate every
nunber it encounters to a variable or procedure address. |n many cases
this is confusing, because sone nunbers are sinply that, and have no
relationship to a variable or procedure address.

For exanple, at address 39 the assenbly | anguage conmand MOV AX 40 is
shown as MOV AX, b$STRTAB END+10 (0040), as if there was sone significance
to the fact that the value 40 is an address ten bytes past the end of an
internal string table. Likewi se, two instructions later the value 40 is
represented as being 31 bytes past the beginning of the B$LENDRW procedure.
Two instructions past that the value 13 (0D hex) is added to AX, and again
CodeView tries to establish a significance where none exi sts.

In not one of these cases are the values shown related to the naned
address, and you should therefore treat those naned | abels with skepticism
The only synbolic nanmes that are neaningful in nost cases are variable and
procedure nanes that do not have an extra value added to them In the
instruction MOV Wrd Ptr [COUNT% (0036)], bSHEAP_FI RST (0064) at address 6C

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 97 -

the address for Count% (36) is valid, while the value 64 named b$HEAP FI RST
is meaningless. In this case, 64 hex represents the value 100 in the BASIC
statement Count% = 100. Whiatever b$HEAP FI RST may represent, it has no
nmeani ng here.

| suggest that you enter this short programand then step through it
one statenment at a time, just to get a feel for how CodeVi ew operates. You
should also try tracing into sone of the BASIC Ilibrary calls, as well as
into a sinple subprogramor two of your own. Again, you may use either F10
or F8 to step through the code, but only F8 will trace into code that is
being called. You can also use F8 to trace into some BIOCS interrupts, but
you should never try to trace through a DOS interrupt (21 hex). Many DOS
services never return, or return in a non-standard rmanner, and a | ocked-up
PCis the likely result. You will not hurt anything if you do trace into a
DOS interrupt, but be prepared to press Crl-At-Del

Besi des being able to view and step through the assenbly | anguage code
that BASI C creates, you can also view and nodi fy your progranis data
directly. |If you have pressed F2 to display the CPU s registers, CodeView
wi Il show the value currently in every nenory address that is about to be
accessed. For exanple, if the next statenent to be executed is MOV Wrd
Ptr [COUNT%, 10, CodeView will show the current contents of the variable
COUNT%

A range of menory addresses may be di splayed by entering commands into
the i mmedi ate wi ndow at the bottom of the screen. Wen CodeViewis first
started, the cursor is placed at the bottomline in that window As wth
the BASIC editor, the F6 key is used to toggle between the code output and
i medi ate wi ndows. Unlike the BASIC editor, however, you may type conmands
regardl ess of which windowis active.

The three primary commands you will find useful are D U and R The
D (Dunp) command tells CodeView to display a range of nenory, starting at a
given address. For exanple, D O neans to show the 32 bytes that start at
address 0 in the default data segnment. Likew se, D ES:100 neans to start
at address 100 in the segment held in the ES register. Unfortunately,
CodeView is particularly obtuse in this regard, because in sonme cases the
nunbers you enter are assunmed to be decinmal while in others it assumes
hexadeci mal. Which is which depends on your view perspective (sel ected
with F3), and | won't even begin to offer a reason or explain the confusing
rules. |If you don't get what you expect, try adding an "&H' prefix to the
nunber. And if you start by using &H and CodeView reports a syntax error
then try it without the &H

When the contents of nenory are displayed, they are shown as
i ndi vidual bytes, rather than as integer words which is generally nore
useful. In the listing below, two string constants have been displayed in
response to the conmand D (. For space reasons, the segrment and address
whi ch CodeVi ew adds to the I eft of each row of values are instead shown
above the rows.

>D &H40

5676: 0040
02 00 44 00 48 69 23 00 4A 00 41 42 43 44 45 46
5676: 0050
47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56

As you |l earned in Chapter 2, BASIC near strings have a 4-byte descriptor
with the first two bytes holding the string' s current |length, and the
second two bytes its current address. Beginning with the first two nunbers
di spl ayed, the 02 00 represents the Iength of a 2-character string, and the
44 00 indicates the address which is 44. The data itself is a CHR$(&H48)
followed by a CHR$(&H61) ("H "), and it imediately follows the string
descriptor. When two bytes are used to store an integer word, the |east
significant byte is kept in the |ower nenory address. Therefore, the val ue
0002 is actually listed as 02 00 (CodeVi ew adds an extra bl ank between
bytes for clarity).

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -98 -

I mredi ately following the six bytes for the string "H" and its
descriptor is another descriptor. This one shows that the string has a
length of 23 Hex bytes, and its data starts at address 4A Hex. Again, the
val ue 0023 is shown as 23 00, and the address 004A is displayed as 4A 00.
This string contains the data "ABCDEFGH JKLMNOPQRSTUV".

The U (Unassenbl e) command can be used to show t he assenbly | anguage
source code at any arbitrary segnent and address. The command U 2000: 1000
wi || unassenbl e the code at address 2000: 1000, though again you nay need to
use U &H2000: &H1000 in sone vi ew nodes. The U command is not used that
frequently, since CodeViewis used nost often to step through code in
sequence, rather than to exam ne an arbitrary bl ock of instructions.

The R command | ets you change the contents of a register, and this
m ght be useful when debuggi ng your own assenbly | anguage subrouti nes.

When you type, for exanple, RCX and press Enter, the current value of the
CX register is displayed and you are pronpted for a new value. Pressing
Enter al one cancels the command and | eaves the current register contents
intact. Qherwi se, the value you enter will be assigned to CX. This is
simlar to BASIC s imredi ate wi ndow, in which you can assign new val ues to
a vari abl e.

The | ast CodeVi ew features worth describing here are Watch Vari abl es
and Watch Points, which are simlar to the same features in @B. Unlike B
t hough, you cannot use an expression as the target of a Watch; it nust be a
sinmpl e variable nanme, array elenent, or address. Watch Variables nmay be
added using the pull-down nenu, or by pressing Alt-Wand then typing the
variable nane. |If you are in the BASIC view node you rmay add only BASIC
vari abl es; in the assenbly | anguage view node you can add only assenbly
| anguage variables. To nonitor the contents of a nenory address requires
the Wcommand. For exanple, W40 will set up address 40 as the target of a
\Wat ch.

Al t hough CodeVi ew does support Watch points, whereby the programwl|
run continuously until a given expression is true, you won't want to use
that feature. Asking CodeView to stop when, say, CX becones greater than
100 will cause your programto run at |ess than one thousandth its norna
speed. Therefore, | have never found using Watch Points effective in any
situation--it is always too sl ow.

| have avoi ded discussing the | atest versions of CodeView, in favor of
focusi ng on those features which are common to all versions. CodeView 3.10
which is included with BASIC 7.1 has several new conveni ence features, and
a few new bugs as well. Many of the comrands that in earlier versions have
to be entered manual |y are now avail abl e by sinply typing new val ues onto
the display. For instance, where ol der versions of CodeView required you
to enter Dunp conmands repeatedly, the new version updates the displayed
val ues in a range of addresses constantly. And to change the address
range, you may now sinply nmove the cursor to the segnment and address
nunbers and type new ones. An option to display nmenory val ues as words or
even single and doubl e precision values is also present in version 3.10.

Now t hat you have seen what CodeView is all about and howto use it, |
want to conclude this chapter with a practical exanple. As | nmentioned in
Chapter 3, the amount of stack nmenmory that is needed in a non-static
subprogram or function can be difficult to determ ne. The cal culation
itself is trivial: sinply add up the nunber of bytes needed by every
variable in the routine. Each integer requires two bytes, single
precision, long integer, and string variables need four bytes, and so
forth. The problem of course, is who wants to do all that counting,
especially when there may be hundreds of variables. Counting is what
conputers are for, no?

The solution is that BASIC knows how nmany bytes are needed for the
subprogram and the very first thing a subprogram does when it is invoked
is to call another routine that allocates the necessary stack space. So
rather than use trial and error nethods to increase the stack in smal
i ncrenents, you can use CodeView to directly see how many bytes of stack
space are being requested. Here's how that's done, using the exanple
pr ogram shown bel ow.

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook -99 -

DEFI NT A-Z
DECLARE SUB St ackTest (Dumy)

Test = 10
CALL StackTest (Test)
END
SUB St ackTest (AnyVar)
X = 100
Y =10
Z = AnyVar
END SUB

Save this programas an ASCII file using the nane TEST.BAS, and then
conpile it with the /o and /zi options. Next, link TEST.OBJ for CodeVi ew
using the /co option. Then start CodeView by entering CV TEST. Once you
are in CodeVi ew and vi ewi ng the BASI C source, press F10 to skip past
BASIC s start-up code. At this point the cursor should be on the first
statenment, Test = 10. Finally, press F3 to show a mix of BASIC and
assenbly | anguage source code. The display should | ook simlar to that
shown in Figure 4-3 [unavail abl e].

FI G4-3: How to determi ne the anpbunt of stack nenory needed for a non-static
procedure.

Notice the first statement within the TestStack subprogramat line 7, where
the value 6 (erroneously | abel ed b$STRTAB+6) is assigned to the CX
register. This is the nunber of bytes of stack space being requested from
the BSENRA routine which is called in the next instruction. B$ENRA is the
routine that actually allocates the stack nenory, and it uses the val ue
BASI C sends in CX to know how nmany bytes are needed. TestStack has three
| ocal variables and each is a two-byte integer, hence six bytes are
required to store themon the stack

For a very large program the value assigned to CX will of course be
much larger. Further, if one subprogramcalls another, it will be up to
you to add up all of the CX values to deternine the total stack nenory
requirements. But this is very nmuch easier than counting vari abl es.

SUMVARY

In this chapter you have | earned howto identify and correct common
progranm ng errors. You have also | earned the inportance of understandi ng
BASI C s various quirks, and how sonme statenents do not always do exactly
what you thought they would. | have shown several debuggi ng strategies,
i ncluding a software adaptati on of the "cut in half" hardware technique.

Per haps your nost powerful debugging ally is the Qi ckBASI C and BX
editing environments. These powerful editors let you single step through a
program nonitor variable values and function results, and halt your
program when a specified condition occurs.

When BASIC terminates a program prenmaturely with an error nessage and
a segnented address, you can either use the BC conpiler's /a option to
generate a source listing, or use CodeView to see where the error occurred.
CodeVi ew can al so be used to step and trace through a programat the
assenbly | anguage source level, and to determ ne the nunber of bytes of
stack menory a non-static procedure requires.

In Chapter 5 you will learn about conpiling and |inking BASIC
prograns. | wll present a conplete overview of the many BC and LI NK
options that are avail able, and discuss the relative nerits of each

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 100 -

CHAPTER 5

COWPI LI NG AND LI NKI NG

The final step in the creation of any programis conpiling and linking, to
produce a stand-alone .EXE file. Although you can run a programin the
BASI C editing environnent, it cannot be used by others unless they al so
have their own copy of BASIC. 1In preceding chapters | explained the
fundanmental role of the BASIC conpiler, and how it translates BASIC source
statenments to assenbly | anguage. However, that is only an internedi ate
action. Before a final executable program can be created, the conpiled
code in the object file nmust be joined to routines in the BASIC | anguage
library. This process is called linking, and it is performed by the LINK
programthat cones wth BASIC

In this chapter you will |earn about the many options and features
available with the BASIC conpiler and LINK By thoroughly understandi ng
all of the capabilities these progranms offer, you will be able to create
applications that are as small and fast as possible. Many programmers are
content to let the BASIC editor create the final program using the pull down
nmenu sel ections. And indeed, it is possible to create a program w t hout
i nvoki ng BC and LI NK manual | y--many progranmmers never advance beyond
BASIC s "Make .EXE' nenu. But only by understanding fully the nany options
that are available will you achi eve the highest performance possible from
your prograns.

"Il begin with a brief summary of the conpiling and |inking process,
and explain how the two processes interact. | will then nove on to nore
advanced aspects of conpiling and Iinking. BC and LINK are very conpl ex
prograns whi ch possess many features and capabilities, and all of their
many options will be described throughout this chapter. You may al so refer
back to Chapter 1, which describes conpiling in nore detail

AN OVERVI EW OF COVPI LI NG AND LI NKI NG

When you run the BC EXE conpiler, it reads your BASIC source code and
transl ates sone statenents directly into the equival ent assenbly | anguage
conmands. In particular, integer math and conpari sons are converted
directly, as well as integer-controlled DO, WH LE, and FOR | oops. Floating
point arithnmetic and conparisons, and string operations and conpari sons are
instead translated to calls to existing routines witten by the progranmers
at Mcrosoft. These routines are in the BCOM and BRUN |ibraries that comne
wi th BASI C.

As BC conpiles your program it creates an object file (having an .0OBJ
extension) that contains both the translated code as well as header
information that LINK needs to create a final executable program Sone
exanpl es of the information in an object file header are the nane of the
original source file, copyright notices, offsets within the file that
speci fy external procedures whose addresses are not known at conpile tineg,
and code and data segnment names. |In truth, nost of this header infornmation
is of little or no relevance to the BASIC progranmer; however, it is usefu
to know that it exists. Al Mcrosoft-conpatible object files use the sane
header structure, regardless of the original source | anguage they were
witten in.

The LINK programis responsible for conbining the object code that BC
produces with the routines in the BASIClibraries. Alibrary (any file
with a .LIB extension) is nerely a collection of individual object files,
conbi ned one after the other in an organi zed manner. A header portion of
the .LIB file holds the name of each object file and the procedure nanes
contained therein, as well as the offset within the library where each

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 101 -

object nodule is located. Therefore, LINK identifies which routines are
bei ng accessed by the BASI C program and searches the library file for the
procedures with those nanes. Once found, a copy of that portion of the
library is then appended to the .EXE file being created.

LINK can also join rmultiple object files conpiled by BCto create a
singl e executable program and it can produce a Quick Library conprised of
one or nore object files. Quick Libraries are used only in the editing
environment, primarily to |l et BASIC access non-BASI C procedures. Because
the BASIC editor is really an interpreter and not a true conpiler, Quick
Li braries were devised as a way to let you call conpiled (or assenbl ed)
subroutines during the devel oprent of a program

When LINK is invoked it reads the header information in each object
file conpiled by BC, and uses that to know which routines in the specified
library or libraries nust be added to your program Since every externa
routine is listed by name, LINK sinply exam nes the library header for the
sanme nane. It is worth nmentioning that BASIC places the nanme of the
default library in the object file, so you don't have to specify it when
linking. For exanple, when you conpile a stand-al one program (with the /0)
swi tch) using BC version 4.5, it places the nane BCOWS5. LIB in the header

BASI C i s not responsible for determ ning where external routines are
located. |If your programuses a PRINT statenment, the conpiler generates
the instruction CALL 0000: 0000, and identifies where in the object file
that instruction is located. BASIC knows that the print routine will be
| ocated in another segnment, and so | eaves roomfor both a segnent and
address in the Call instruction. But it doesn't know where in the fina
executable file the print routine will end up. The absol ute address
depends on how many other nodules will be linked with the current object
file, and the size of the main program

In fact, LINK does not even know in which segment a given routine wll
ultimately reside. Wiile it can resolve all of the code and data addresses
anong nodul es, the absolute segnment in which the programwi |l be | oaded
depends on whether there are TSR prograns in nenory, the version of DCS
(and thus its size), and the nunber of buffers specified in the host PC s
CONFI G SYS file, anong other factors. Therefore, all .EXE files also have
a header portion to identify segnent references. DOS actually nodifies the
program assigning the final segnment values as it |oads the programinto
nmenory. Figure 5.1 shows how DOS, file buffers, and device drivers are
| oaded in nmenory, before any executabl e prograns.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 102 -

I
]
Fom e e e e e !
: Vi deo nenory !
I R R R T | <-- top of DOS nenory (640K boundary)
| |
: Far heap storage |
for dynamic arrays
| |
e e e e e e e e e — -
| String nmenory
e e e e e e e e e — -
: The stack
e e e e e e e e e — -
: Vari abl e data
e e e e e e e e e — -

<-- this address is changeabl e

e e e e e e e e e — -
e e e e e e e e e — -

i File control bl ocks

e e e e e e e e e — -

| File buffers

e e e e e e e e e — -

: DOS program

R <-- address 0000: 0600
: Bl OS work area

R <-- address 0000: 0400
| Interrupt vectors

A + <-- bottom of mnenory

Figure 5-1: DOS and BASIC nenory organi zation.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 103 -

It is inportant to understand that library routines are added to your
program only once, regardl ess of how many times they are called. Even if
you use PRINT three hundred tines in a program only one instance of the
PRINT routine is included in the final .EXE file. LINK sinply nodifies
each use of PRINT to call the sane nenory address. Further, LINKis
generally smart enough to not add all of the routines in the library.
Rather, it just includes those that are actually call ed.

However, LINK can extract only entire object files froma library. |If
a single object nodul e contains, say, four routines, all of themwl| be
added, even if only one is called. For BASIC nodules that you wite, you
can control which procedures are in which object files, and thus how they
are conbined. But you have no control over how t he object nodul es provided
with BASIC were witten. |f the routines that handl e POS(0), CSRLIN, and
SCREEN are contained in a single assenbly | anguage source file (and they
are), all of themare added to your programeven if you use only one of
t hose BASI C st at enents.

Now t hat you understand what conpiling and |inking are all about, you
may wonder why it is necessary to know this, or why you would ever want to
conpile manually fromthe DOS command |ine. The nost inportant reason is
to control fully the many available conpile and |ink options. For exanple,
when you let the BASIC editor conpile for you, there is no way to override
BC s default size for the comunications receive buffer. Likew se, the
Qui ckBASI C editor does not let you specify the /s (string) option that in
many cases will reduce the size of your prograns.

LINK offers many powerful options as well, such as the ability to
conbi ne code segnents to achieve faster performance during procedure calls.
Anot her inportant LINK option lets you create an .EXE file that can be run
under CodeView. Again, these options are not selectable fromw thin the
Qui ckBASI C envi ronnment [but PDS and VB/DOS Pro Edition let you select nore
options than Qui ckBASIC], and they can be specified only by conpiling and
linking manually. Al of these options are established via command |ine
switches, and each will be discussed in turn nmonentarily.

Finally, BASIC PDS includes a nunber of *stub files* which reduce the
size of your prograns, although at the expense of decreased functionality.
For exanple, if your program does not use the SCREEN statenment to enable
graphi cs node, a stub file is provided to elininate graphics support for
the PRINT staterment. BASIC PDS [and the VB/DOS Pro Edition] also support
program overl ays, and to use those requires linking manually from DGCS.

To conpil e a programyou run BC. EXE specifying the nane of the BASIC
program source file. BC accepts several optional paraneters, as well as
many optional comrand |ine switches. The general syntax for BCis as
follows, with brackets used to indicate optional information

bc program|[/options] [, object] [, listfile] [;]

In nost cases you will sinply give the nanme of the BASIC source file, any
option switches, and a termnating semcolon. A typical BC command is as
fol |l ows:

bc program/ o;

Here, a BASIC source file named PROGRAM BAS is being conpiled, and the
output object file will be called PROGRAM OBJ. The /o0 option indicates
that the programwi |l be a stand-alone .EXE file that does not require the
BRUN i brary to be present at runtine. |If the semicolon is omtted, the
conpiler will pronpt for each of the file nane paranmeters it needs. For
exanpl e, entering bc program/o invokes the conpiler, which then pronpts
you for the output and listing file names. Pressing Enter in response to

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 104 -

any pronpt tells BC to use the source file's first nane. You may al so
start BCwith no source file nane, and let it pronpt for that as well

In nost cases the default file names are acceptable; however, it is
not uncomon to want the output file placed into a different directory.
This is done as foll ows:

bc program \objdir\ /o;

[Note that if the trailing backslash were omtted from\objdir\ above, BC
woul d create an output file named CBJDIR OBJ in the root directory. O
course, that is not what is intended. Therefore, a trailing backslash is
added to tell BC to use the default nane of PROGRAM CBJ, and to pl ace that
file in the directory named \OBJD R]

If you are letting BC pronpt you for the file names, you would enter
the output path name at that pronpt position. You rmay also include a drive
letter as part of the path, or a drive letter only to use the default
directory on the specified drive. The listing that follows shows a typica
BC session that uses pronpting.

C>bc program/o

M crosoft (R) Qui ckBASI C Conpil er Version 4.50
(C Copyright Mcrosoft Corporation 1982-1988
Al rights reserved.

Si nul t aneously published in the U S. and Canada.

oj ect Fil ename [PROGRAM OBJ]: d:\objects\ <Enter>
Source Listing [NUL.LST]: <Enter>

43965 Bytes Free
43751 Bytes Avail abl e

0 Warning Error(s)
0 Severe Error(s)
(O

Al t hough you can override the default file extensions, this is not comon
and you shouldn't do that unless you have a good reason to. For exanple,
the command BC source.txt , output.out; will conpile a BASIC source file
nanmed SOURCE. TXT and create an object nodul e named OQUTPUT. QUT. Since there

are already standard default file extension conventions, | reconmend
agai nst using any others you devi se.
The optional list file contains a source listing of the BASIC program

showi ng the addresses of each program statenent, and uses a .LST extension
by default. There are a nunber of undocunented options you can specify to
control howthe list file is formatted, and these are described later in
this chapter in the section *Conpiler Metacomrands*. A list file may al so
i ncl ude the conpil er-generated assenbly | anguage i nstructions, and you
specify that with the /a option switch. Al of the various conmand options
wi Il be discussed in the section foll ow ng.

Notice that the positioning of the file nane deliniting conmas nust be
mai nt ai ned when the object file name is omtted. |If you plan to accept the
default file name but also want to specify a listing file, you nust use two
conmas |ike this:

bc source , , listfile;

The Bytes Avail abl e and Bytes Free nessages i ndicate how rmuch worki ng
menory the conpiler has at its disposal, and how much of it rerained free
whil e conpiling your program BC nust keep track of many different kind of
information as it processes your source code, and it uses its own interna
DGROUP nmenory for that. For exanple, every variable that you use nust be
remenbered, as well as its address.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 105 -

When BASI C sees a statement such as X = 100, it mnmust look inits
synbol table to see if it has already encountered that variable. If so,
it creates an assenbly | anguage instruction to store the value 100 at the
correspondi ng address. Qherwi se, it adds the variable X to the table,
assigns a new address for it, and then adds code to assign the value 100 to
that address. Wen you use PRINT X later on, BASIC will again search its
table, find the address, and use that when it creates the code that calls
the PRI NT routine.

O her data that BASIC nust renenber as it works includes the nunber
and type of argunments for each SUB or FUNCTION that is declared, line |abe
nanes and their correspondi ng addresses, and quoted string constants. As
you may recall, in Chapter 2 | explained that BC naintains a table of
string constants, and stores each in the final programonly once. Even
when the sane quoted string is used in different places in a program BC
remenbers that they are the sane and stores only a single copy. Therefore,
an array is used by BCto store these strings while your programis being
conpi | ed.

In nost cases you can sinply ignore the Bytes Avail able and Bytes Free
nessages, since how nmuch menory BASIC used or had available is of no
consequence. The only exception, of course, is when your programis so
| arge that BC needed nore than was avail able. But again, you will receive
an error nmessage when that occurs. However, if you notice that the Bytes
Free value is approaching zero, you should consider splitting your program
i nto separate nodul es

The error nessage display indicates any errors that occurred during
conpilation, and if so how many. This display is nostly a throw back to
the earlier versions of the BASIC conpiler, because they had no devel opnent
environment. These days, nobst people get their programworking correctly
in the BASIC editor, before attenpting to conpile it. O course, there
nmust still be a facility for reporting errors.

In nost cases, any errors that BC reports will be severe errors.

These include a m snmatched nunber of parentheses, using a reserved word as
a variable nane (for exanple, PRINT = 12), and so forth. One exanple of a
warning error is referencing an array that has not been di mensioned. When
thi s happens, BASIC creates the array with a default 11 elenents (0 through
10), and then reports that it did this as a warning.

One interesting quirk worth nentioning is that BASIC will not let you
conpi l e a program naned USER BAS. |If you enter BC USER, BC assunes that
you intend to enter the entire program manual |y, statenment by statenent!
This too nmust be a hol dover fromearlier versions of the conpiler; however,
when USER. BAS is specified it will appear that the conpil er has crashed,
because not hi ng happens and no pronpt is displayed. In ny testing with
BASIC 7.1, any statenents | entered were al so ignored, and no object file
was created.

COWPI LER OPTI ONS

Al of the options available for use with the BASIC conpiler are descri bed
inthis section in al phabetical order. Sone options pertain only to BASIC
7 PDS, and these are noted in the acconpanyi ng di scussion. Each option is
specified by listing it on the BC conmand line, along with a preceding
forward slash (/). Al so, these options apply to the BC conpiler only, and
not necessarily to the @B and BX editing environments.

/A

The /a (assenbly) switch tells BC to include the assenbly | anguage source
code it creates inthe listing file. The format of the file was described
in detail in Chapter 4, so | won't belabor that here. Note, however, that
a file name nmust be given in the list file position of the BC conmand |ine.
Oherwise, alist file will not be witten.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 106 -

/ Ah

Using /ah (array huge) tells BASIC that you plan to create dynamic arrays
that may exceed 64K in total data size. This option affects numeric, TYPE,
and fixed-length string arrays only, and not conventional string arrays.
Normal |y, BASIC cal cul ates the el enent addresses for array references
directly, based on the segnent and other information in the array
descriptor. This is the nost direct nmethod, and thus provi des the fastest
performance and smal | est code.

When /ah is used, all access to non-string dynamc arrays is instead
made through a called routine. This called routine cal cul ates the segnent
and address of a single array el enment, and because it nust also mani pul ate
segment val ues, increases the size of your prograns. Therefore, /ah should
be avoi ded unless you truly need the ability to create huge arrays. Even
if a particular array does not currently exceed the 64K segrment limt,
BASI C has no way to know that when it conpiles your program

To minimze the size and speed penalty /ah inposes, it may be used
sel ectively on only sone of the source nodules in a program |If you have
one subprogramthat needs to nanipul ate huge arrays but the rest of program
does not, you should create a separate file containing only that subprogram
and conpile it using /ah. Wen the programis linked, only that nodule's
array accesses will be slower.

Note that the /ah switch is also needed if you plan to create huge
arrays when running prograns in the BASIC editor. However, with the BASIC
editor, using /ah does not inpinge on available nenmory or nake the program
run slower. Rather, it nerely tells BASIC not to display an error nessage
when an array is dinensioned to a size greater than 64K. [The BASIC editor
al ways uses the slower code that checks for illegal array el ements anyway,
so it can report an error rather than | ock up your conputer.]

One limtation that /ah will not overcone is BASIC s linmt of 32,767
elenents in a single dinension. That is, the statenment REDIM Array% 1 to
32768) will fail, regardless of whether /ah is used. There are two ways to
exceed this limt: one is to create a TYPE array in which each elenent is
conprised of two or nmore variables. The other is to create an array that
has nore than one di nension. The brief program bel ow shows how to access a
2-dinmensional array as if it had only a single dinension

DEFI NT A-Z
B pick an arbitrary group size, and nunber of groups (in this
' case 100, 000 el enents)

G oupSi ze = 1000: Num oups = 100

----- di mensi on the array
REDIM Array(1l TO G oupSize, 1 TO NumG oups)

----- pi ck an el enent nunber to assign (note use of a long integer)
El ement & = 50000

BEEE calculate the first and second subscripts
First = ((Element& - 1) MDD G oupSize) + 1
Second = (Elenent& - 1) \ GoupSize + 1

----- assign the appropriate array el enent
Array(First, Second) = 123

B show how to derive the original elenent based on First and
' Second (CLNG i s needed to prevent an Overflow error)
CalcEl & = First + (Second - 1) * CLNE G oupSi ze)

/C

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 107 -

The /c (conmuni cations) option lets you specify the size of the receive
buffer when witing progranms that open the COM port. The val ue specified
represents the total buffer size in bytes, and is shared when two ports are
open at once. For exanple, if two ports are open and the total buffer size
is 4096 bytes, then each port has 2048 bytes avail able for itself.

A receive buffer is needed when perform ng comunications, and it
accunul ates the incom ng characters as they are received. Each tine a
character is accepted by the serial port, it is placed into the receive
buffer automatically. Wen your program subsequently uses | NPUT or | NPUT$
or GET to read the data, it is actually reading the characters fromthe
buffer and not fromthe hardware port. Wthout this buffering, your
program woul d have to wait in a loop constantly |ooking for each character
whi ch woul d preclude it from doing anything el sel

Conmruni cations data is received in a continuous stream and each byte
nmust be processed before the next one arrives, otherwise the data will be
lost. The comunications port hardware generates an interrupt as each
character is received, and the communications routines within BASIC act on
that interrupt. The byte is retrieved fromthe hardware port using an
assenbly | anguage I N instruction, which is equivalent to BASIC s I NP
function. This allows the characters to accurulate in the background,
wi t hout any additional effort on your part.

As each byte is received it is placed into the buffer, and a pointer
i s updated showi ng the current ending address within the buffer. As your
program reads those bytes, another pointer is updated to show the new
starting address within the buffer. This type of buffer is called a
circular buffer, because the starting and endi ng buffer addresses are
constantly changing. That is, the buffer's end point "waps" around to the
begi nni ng when it becones full.

The receive buffer whose size is specified with /c is located in far
nmenory. However, BASIC al so naintains a second buffer in near nenory, and
its size is dictated by the optional LEN= argunment used with the OPEN
statenment. Because near nenory can be accessed nore quickly than far
menory, it is sensible for BASIC to copy a group of characters fromthe far
receive buffer to the near buffer all at once, rather than individually
each tinme you use GET or | NPUTS.

When /c is not specified, the buffer size defaults to 512 bytes. This
nmeans that up to 512 characters can be received with no intervention on
your part. If nore than 512 bytes arrive and your programstill hasn't
renoved them using | NPUT$ or CET, new characters that cone later will be
lost. It is also possible to stipulate hardware handshaki ng when you open
t he comunications port. This neans that the sender and receiver use
physi cal control wires to indicate when the buffer is full, and when it is
okay to resume transmitting.

In many progranming situations, the 512 byte default will be nore than
adequate. However, if many characters are being received at a high baud
rate (9600 or greater) and your programis unable to accept and process
t hose characters quickly enough, you should consider using a |arger buffer
Fortunately, the buffer is located in far nmenory, so increasing its size
wi Il not inpinge on available string and data stored i n DGROUP

/D

The /d (debug) option switch is intended solely to help you find problens
inaprogramwhile it is being devel oped. Because /d causes BC to generate
addi ti onal code and thus bloat your executable program it should be used
only during devel oprent.

When /d is specified, four different types of tests are added to your
program The first is a call to a routine that checks if Crl-Break has
been pressed. One call is added for every BASI C source statenment, and each
adds five bytes of code to your final executable program The second
addition is a one-byte assenbly | anguage I NTO instruction follow ng each
i nteger and long integer math operation, to detect overflow errors.

The third is a call to a routine that cal cul ates array el enent
addresses, to ensure that the elenent nunber is in fact legal. Normally,

Ethan Winer: PC Magazine's BASIC Techniques and UtilitiesBook - 108 -

el enent addresses are conputed directly w thout checking the upper and

| ower bounds, unless you are using huge (greater than 64K) arrays. Wthout
/d, it is therefore possible to corrupt nenory by assigning an el ement that
doesn't exist.

The final code addition inplenments GOSUB and RETURN statenments using
alibrary routine, rather than calling and returning fromthe target |ine
directly. Normally, a GOSUB statenent is translated into a three-byte
assenbly | anguage *near call* instruction, and a RETURN i s inpl enent ed
using a one-byte *near return*. But when /d is used, the library routines
ensure that each RETURN did in fact result froma correspondi ng GOSUB, to
detect RETURN wi thout GOSUB errors. This is acconplished by incrementing
an internal variable each time GOSUB is used, and decrenenting it at each
RETURN. If that variable is decrenmented bel ow 0 during a RETURN st at enent,
t hen BASI C knows that there was no correspondi ng GOSUB. These library
routi nes are added to your programonly once by LINK, and conprise only a

few bytes of code. However, a separate five-byte call is generated for
each GOSUB and RETURN st at enment .
Many aspects of the /d option were described in detail in Chapters 1

and 4, and there is no need to repeat that information here. But it is
i mportant to renenber that /d al ways makes your prograns |arger and run
nore slowy. Therefore, it should be avoi ded once a programis running
correctly.

lE

The /e (error) option is necessary for any programthat uses ON ERROR or
RESUME with a line |abel or nunber. 1In nmpbst cases using /e adds little or
no extra code to your final .EXE program unless ON ERROR and RESUME are
actually used, or unless you are using |line nunbers. For each |ine nunber
four bytes are added to renenber the nunmber itself as well as its position
inthe file [two bytes each]. As with /d, every GOSUB and RETURN st at enent
is inplemented through a far call to a library routine, rather than by
calling the target line directly. Wthout this added protection it would
not be possible to trap "RETURN without GOSUB" errors correctly, or recover
fromthemin an ON ERROR handl er.

Al so see the /x option which is needed when RESUME is used al one, or
with a 0 or NEXT argunent. The /x switch is closely related to /e, and is
descri bed separately bel ow

/[Fpa and /Fpi (BASIC PDS and | ater)

When M crosoft introduced their BASIC conpiler version 6.0, they included
an alternate nethod for performing floating point math. This Floating
Point Alternate library (hence the /fpa) offered a neani ngful speed

i mprovenent over the | EEE standard, though at a cost of slightly reduced
accuracy. This optional math library has been continued with BASIC 7 PDS
and is specified using the /fpa comand switch

By default, two parallel sets of floating point math routines are
added to every program Wen the programruns, code in BASIC s runtine
startup nmodul e detects the presence of a math coprocessor chip, and selects
whi ch set of math routines will be used. The coprocessor version is called
the Inline Library, and it nerely serves as an interface to the 80x87 math
coprocessor that does the real work in its hardware. (Note that inline is
really a misnoner, because that terminplies that the conpiler generates
coprocessor instructions directly. It doesn't.) The second version is
called the Emulator Library, because it imtates the behavior of the
coprocessor using assenbly | anguage subrouti nes.

Al though the ability to take advantage of a coprocessor automatically
is certainly beneficial, there are two problens with this dual approach
code size and execution speed. The coprocessor version is nuch snmaller
than the routines that performthe cal cul ations nanually, since it serves
only as an interface to the coprocessor chip itself. Wen a coprocessor is
in fact present, the entire emulator library is still |oaded into nenory.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 109 -

And when a coprocessor is not installed in the host PC, the library code to
support it is still |oaded. The real issue, however, is that each BASIC
mat h operation requires additional time to route execution to the
appropriate routines.

Since BC has no way to know if a coprocessor will be present when the
program eventually runs, it cannot know which routine nanmes to call
Therefore, BASIC uses a system of software interrupts that route execution
to one library or the other. That is, instead of using, say, CALL
MiltSingle, it instead creates code such as INT 39h. The Interrupt 39h
vector is set when the programstarts to point to the correct library
routine. Unfortunately, the extra level of indirection to first read the
interrupt address and then call that address inpacts the program s speed.

Recal | that Chapter 1 explained howthe library routines in a BRUN
style programnodify the caller's code the first tinme they are invoked.

The conpiler creates code that uses an interrupt to access the library
routines, and those routines actually rewite that code to produce a direct
call. A though this code nodification increases the tinme needed to call a
library routine initially, subsequent calls will be noticeably faster.
BASI C statements executed many tinmes within a FOR or DO loop will show the
greatest inprovenent, but statenments executed only once will be rmuch sl ower
t han usual

In a sinmlar fashion, the coprocessor routines that are in BASIC s
runtine library alter the caller's code, replacing the interrupt commands
wi th equi val ent coprocessor instructions. Each floating point interrupt
that BC generates includes the necessary variabl e addresses and ot her
argunents within the caller's code. These argunents are in the sanme format
as a coprocessor instruction. The first tine an interrupt is invoked, it
subtracts the "magi c value" &C32 fromthe bytes that conprise the
interrupt instruction, thus converting the instruction into a coprocessor
conmand. This will be covered in Chapter 12 and | won't belabor it here.

Since the alternate floating point nmath routines do not use a
coprocessor even if one is present, the interrupt method is not necessary.
BC sinply hardcodes the library subroutine nanes into the generated code,
and the programis linked with the alternate math library. Besides the
speed i nprovenent achi eved by avoiding the indirection of interrupts, the
alternate math library is also inherently faster than the enulator library
when a coprocessor is not present.

The /fpi switch tells BASIC to use its nornal nethod of including both
the coprocessor and enulator math libraries in the program and determ ning
which to use at runtine. (See the discussion of /fpa above.) Using /fp
is actually redundant and unnecessary, because this is the default that is
used if no math option is specified.

/Fs (BASI C PDS only)

BASI C PDS of fers an option to use far strings, and this is specified with
the /fs (far strings) switch. Wthout /fs, all conventional (not fixed-
I ength) string variables and string arrays are stored in the same 64K
DGROUP nenory that holds nuneric variables, DATA itens, file buffers, and
static nunmeric and TYPE arrays. Using the /fs option tells BASICto
instead store strings and file buffers in a separate segnent in far menory.

Al t hough a programusing far strings can subsequently hold nore data,
the capability comes at the expense of speed and code size. Cbviously,
nore code is required to access strings that are stored in a separate data
segrment. Furthernmore, the string descriptors are nore conpl ex than when
near strings are used, and the code that acts on those descriptors requires
nore steps. Therefore, you should use /fs only when truly necessary, for
exanpl e when BASIC reports an Qut of string space error

Far versus near strings were discussed in depth in Chapter 2, and you
should refer to that chapter for additional informtion

[One very unfortunate linmtation of VB/DOS is that only far strings
are supported. The decision nakers at M crosoft apparently decided it was
too much work to also wite a near-strings version of the fornms library.
So users of VB/DOS are stuck with the additional size and speed overhead of

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 110 -

far strings, even for small prograns that woul d have been better served
wi th near strings.]

/& (BASIC PDS and | ater)

The /g2 option tells BASIC to create code that takes advantage of an 80286
or later CPU. Each new generation of Intel mcroprocessors has offered
addi tional instructions, as well as performance optim zations to the
internal microcode that interprets and executes the original instructions.
When an existing instruction is recoded and i nproved within the CPU, anyone
who owns a PC using the newer CPU will benefit fromthe performance
i ncrease. For exanple, the original 8086/8088 had several instructions
that performed poorly. These include Push and Pop, and Mul and Div. When
Intel released the 80186, they rewote the nicrocode that perforns those
instructions, increasing their speed noticeably. The 80286 is an offshoot
of the 80186, and of course includes the sane optimzations. The 80386 and
80486 of fer even nore inprovenents and additions to the original 8086
i nstruction set.

Besi des the enhancenents to existing instructions, newer CPU types
al so include additional instructions not present in the original 8086. For
exanpl e, the 80286 offers the Enter and Leave conmmands, each of which can
repl ace a | engthy sequence of instructions on the earlier mnicroprocessors.
Anot her useful enhancenent offered in the 80286 is the ability to push
nunbers directly onto the stack. Were the 8086 can use only registers as
argunents to Push, the instructions Push 1234 and Push Offset Variable are
legal with 80186 and | ater CPUs. Likew se, the 80386 offers several new
conmands to directly performlong integer operations. For exanple, adding
two |l ong integer values using the 8086 instruction set requires a nunber of
separate steps. The 80386 and |ater CPUs can do this using only one
i nstruction.

If you are absolutely certain that your programw |l be run only on
PCs with an 80286 or |ater nicroprocessor, the /g2 option can provide a
nodest inprovenent in code size and performance. In particular, prograns
that use /g2 can save one byte each tine a variable address is passed to a
routine. Wien /g2 is not used, the comrmand PRI NT Wrk$ results in the code
shown bel ow.

PRI NT Work$
Mov AX, OF f set Work$ "this requires 3 bytes
Push AX "this requires 1 byte
Cal | B$PESD "a far call is 5 bytes

When /g2 is used, the address is pushed directly rather than first being
| oaded into AX, as shown follow ng.

PRI NT Work$
Push O fset Work$ "this requires 3 bytes
Cal | B$PESD "this call is 5 bytes

Wth the rapid proliferation of 80386 and 80486 [and Pentiun] conputers,

M crosoft should certainly consider adding a /g3 switch. Taking advantage
of 80386 instructions could provide substantially nore inprovenent over
80286 instructions than the 80286 provi des beyond the 8086.

[In fact, Mcrosoft has added a /g3 switch to VB/DOS. Unfortunately,
it does little nore than the /g2 switch. Mst of a programis execution is
spent running code inside the Mcrosoft-supplied runtinme libraries. But
those libraries contain only 8088 code! Using /g2 and /g3 affect only the
conpi | er-generated code, which has little inmpact on a program s overal
performance. Until Mcrosoft wites additional versions of their runtine

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 111 -

libraries using 80386 instructions (yeah, right), using /g2 or /g3 wll
offer very little practical inprovenent.]

/1x (BASIC PDS and | ater)

Anot her inportant addition to BASIC 7 PDS is its integral |SAMdata file
handl er. Mcrosoft's | SAM (I ndexed Sequential Access Method) offers three
key features: The first is indexing, which |lets you search a data file very
quickly. A sinple sequential search reads each record fromthe disk in
order until the desired information is found. That is, to find the record
for customer David Eagle you would start at the beginning of the file, and
read each record until you found the one containing that nane. An index
system on the other hand, keeps as many nanes in nmenory as will fit, and
searches nmenory instead of the disk. This is many tinme faster than reading
the disk repeatedly. If M. Eagle is found in, say, the 1200th position
t he i ndex nmanager can go directly to the corresponding record on di sk and
return the data it contains

The second | SAM feature is its ability to maintain the data file in
sorted order. In nost situations, records are stored in a data file in the
order they were originally entered. For exanple, with a sal es database,
each time a custoner purchases a product a new record is added hol di ng the
itemand price for the item Wen you subsequently step through the data
file, the entries will nost likely be ordered by the date and tinme they
were entered. [SAMI|ets you access records in sorted order--for exanple,
al phabetically by the custonmer's | ast name--regardl ess of the order in
whi ch the data was actually entered

The last inportant | SAMfeature is its ability to establish
rel ati onshi ps between files, based on the information they contain. Many
busi ness applications require at |east two data files: one to hold nanes
and addresses of each custonmer which rarely changes, and another to hold

the products or other itens that are ordered periodically. It would be
i mpractical and wasteful to duplicate the name and address information
repeatedly in each product detail record. |nstead, nmany database prograns

store a unique custonmer nunber in each record. Then, it is possible to
determ ne which sales record goes with which customer based on the matching
nunbers in both files. A programthat uses this technique is called a
rel ati onal database.

To help the BASIC | SAM routines operate efficiently, you are required
to provide sonme informati on when conpiling your program Each of the /i
switches requires a letter indicating which option is being specified, and
a nuneric value. For each field in the file that requires fast (indexed)
access, | SAM nust reserve a block of menory for file buffers. This is the
purpose of the /ii: switch. Notice that /ii: is needed only if nore than
30 indexes will be active at one tine.

The /ie: option tells | SAM how much EMS nenory to reserve for buffers,
and is specified in kilobytes. This allows other applications to use the
remai ning EMS for their own use

The /ib: option switch tells | SAM how many 2K (2048-byte) *page
buffers* to create in nmenory. |In general, the nore nmenory that is reserved
for buffers, the faster the | SAM program can work. O course, each buffer
that you specify reduces the amount of menory that is available for other
uses in your program

An entire chapter in the BASI C PDS manual is devoted to explaining the
ISAMfile system and there is little point in duplicating that information
here. Please refer to your BASI C docunentation for nore exanpl es and
tutorial information on using |SAM In particular, advice and formnulas are
gi ven that show how to cal cul ate the numeric val ues these options require.

In Chapter 6 1 will cover file handling and indexing techniques in
detail, with acconpanyi ng code exanpl es showi ng how you can create your own
i ndexi ng net hods.

/Lp And /Lr (BASIC PDS only)

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 112 -

BASIC 7 PDS includes an option to wite prograns that operate under QOS/ 2,
as well as Ms-DOS. Although OS/2 has yet to be accepted by nost PC users,
many programers agree that it offers a nunber of interesting and powerf ul
capabilities. By default, BC conpiles a programfor the operating system
that is currently running. |If you are using DOS when the programis
conpi l ed and linked, the resultant programw |l also be for use with DCS.
Similarly, if you are currently running OS/2, then the programw |l be
conpil ed and linked for use with that operating system

The /1p (protected) switch lets you override the assunption that BC
makes, and tell it to create OS/2 instructions that will run in protected
node. The /Ir (real) option tells BC that even though you are currently
runni ng under OS/ 2, the programw |l really be run with DOS. Again, these
switches are needed only when you need to conpile for the operating system
that is not currently in use.

/ Mof

Wth the introduction of QuickBASIC 4.0, Mcrosoft standardi zed on the | EEE
format for floating point data storage. Earlier versions of Qui ckBASIC and
GWBASI C used a faster, but non-standard proprietary nunmeric format that is

i nconpati ble with other conpilers and | anguages. |n many cases, the
internal nuneric format a conpiler uses is of little consequence to the
progranmer. After all, the whole point of a high-level |language is to

shi el d the programrer from machi ne-specific details.

One inportant exception is when nuneric data is stored in a disk file.
While it is certainly possible to store nunbers as a string of ASClI
characters, this is not efficient. As | described in Chapter 2, converting
bet ween bi nary and decinmal formats is time consunming, and al so wastes disk
space. Therefore, BASIC (and nost other |anguages) wite nuneric data to a
file using its native fixed-length format. That is, integers are stored in
two bytes, and doubl e-precision data in eight.

Al t hough Qui ckBASIC 4 and | ater conpilers use the | EEE format for
nuneric data storage, earlier version of the conpiler do not. This neans
that values witten to disk by prograns conpiled using earlier version of
Qui ckBASI C or even GWMBASI C cannot be read correctly by prograns built
using the newer conpilers. The /nbf option tells BASICthat it is to
convert to the original Mcrosoft Binary Format (hence the MBF) prior to
witing those values to disk. Likew se, floating point nunbers read from
disk will be converted from MBF to | EEE before being stored in nenory.

[Even when /nbf is used, all floating point nunbers are still stored in
nmenory and mani pul ated using the | EEE method. It is only when nunbers are
read fromor witten to disk that a conversion between MBF and | EEE f or mat
i s perforned.]

Notice that current versions of Mcrosoft BASIC al so include functions
to convert between the MBF and | EEE formats manual ly. For exanple, the
statement Val ue# = CVDMBF(Fi el ded$) converts the MBF-format nunber held in
Fi el ded$, and assigns an |EEE-format result to Value#. When /nbf is used,
however, you do not have to performthis conversion explicitly, and using
Val ue# = CVD(Fi el ded$) provides the identical result.

Al so see the data fornmat discussion in Chapter 2, that conpares the
| EEE and MBF storage nethods in detail

/O

BASI C can create two fundanentally different types of .EXE progranms: One
type is a stand-al one programthat is conpletely self-contained. The other
type requires the presence of a special runtime .EXE library file when it
runs, which contains the routines that handle all of BASIC s comrands. By
default, BASIC creates a programthat requires the runtine . EXE library,
whi ch produces snaller programfiles. However, the runtine library is also
needed, and is |oaded along with the programinto nmenory. The differences
bet ween t he BRUN and BCOM prograns were described in detail in Chapter 1
The /o switch tells BASIC to create a stand-al one programthat does

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 113 -

not require the BRUN library to be present. Notice that when /o is used,
the CHAIN command is treated as if you had used RUN, and COVMON vari abl es
may not be passed to a subsequently executed program

/G (BASIC PDS and | ater)

Each tinme you invoke a BASI C subprogram function, or DEF FN function, code
BC adds to the subprogramor function creates a stack frane that renmenbers
the caller's segnent and address. Nornmally, Call and Return statements in
assenbly | anguage are handled directly by the mcroprocessor. DEF FN
functions and GOSUB statenents are translated by the conpiler into near
calls, which neans that the target address is located in the sane segnent.
Invoking a formal function or subprogramis instead treated as a far call,
to support multiple segnments and thus | arger prograns. Therefore, a RETURN
or EXIT DEF statenent assunes that a single address word is on the stack
where EXIT SUB or EXIT FUNCTI ON expect both a segnent and address to be
present (two words).

A problemcan arise if you invoke a GOSUB routine within a SUB or
FUNCTI ON procedure, and then attenpt to exit the procedure frominside that
subroutine with EXIT SUB or EXIT FUNCTION. If a GOSUB is active, EXIT SUB
will incorrectly return to the segnent and address that are currently on
the stack. Unfortunately, the address is that of the statement foll ow ng
the GOSUB, and the "segnent" is in fact the address portion of the origina
caller's return location. This is shown in Figure 5-2.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 114 -

+-- This is the original caller's segnent and address to return to.

r
\%
[¢"]
=
(%]
-
D
—
c
-
>
[%)]
(1%
«Q
>
—

e e e e e e eemeeeeeaaaa i
1
1
e e e e e e eemeeeeeaaaa i
-> 1 Caller's return address | <-+
oo L
| GOSUB's return address | <-
R TSR o
I (next avail able | ocation)) !
R R REEEREEEEEEEEEEEEEEEE Lo
|
|
I | I |
| | I |
|
l
These addresses will incorrectly -+

be used as a segnment and address.

Figure 5.2: The stack frame within a procedure while a GOSUB i s pendi ng.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 115 -

To avoid this potential problem the original caller's segnment and address
are saved when a subprogramor function is first invoked. The current
stack pointer is also saved, so it can be restored to the correct value, no
matter how deeply nested GOSUB calls may becone. Then when the procedure
is exited, another library routine is called that forces the originally
saved segnment and address to be on the stack in the correct position
Because this process reduces the speed of procedure calls and adds to
the resultant code size, the /ot option was introduced with BASIC 7 PDS.
Using /ot tells BASIC not to enploy the |arger and sl ower nethod, unless
you are in fact using a GOSUB statenment within a procedure. Since this
optimzation is disabled autonatically anyway in that case, it is curious
that Mcrosoft requires a switch at all. That is, BC should sinply
optim ze procedure calls where it can, and use the ol der nethod only when
it has to.

/R

The /r switch tells BASIC to store multi-dinensioned arrays in row, rather
than colum order. Al arrays, regardless of their type, are stored in a
conti guous bl ock of nenmory. Even though string data can be scattered in
different places, the table of descriptors that conprise a string array is
contiguous. When you dinension an array using two or nore subscripts, each
group of rows and colums is placed i mediately after the precedi ng one.

By default, BASIC stores nulti-dinmensioned arrays in colum order, as shown
in Figure 5-3.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 116 -

i Array(s, 2) ;"
P EEETEE o
i\ Array(4, 2)
oo o
I Array(3, 2) | +-- toward hi gher addresses
o e e e e m - - - I

| Array(2, 2) |
tommmmmmeaaa :
 Array(1, 2)
tommmmmmeaaa :

i Array(5, 1)
tommmmmmeaaa :
 Array(4, 1)
tommmmmmeaaa :
 Array(3, 1)
tommmmmmeaaa :
 Array(2, 1)
tommmmmmeaaa :
 Array(1, 1)

Fom e e o +

Fi gure 5.3: How BASIC stores a 2-di nensional array di nensi oned created
using DM Array(1 TO5, 1 TO 2).

As you can see, each of the elenents in the first subscript are stored in
successi ve nmenory | ocations, foll owed each of the elenments in the second
subscript. |In some situations it nay be necessary to maintain arrays in
row order, for exanple when interfacing with another |anguage that expects
array data to be organized that way [notably FORTRAN]. Wen an array is
stored in row order, the elenents are arranged such that Array(1l, 1) is
followed by Array(1l, 2), which is then followed by Array(2, 1), Array(2,
2), Array(3, 1), and so forth.

Al t hough many of the BC option switches described here are al so
available for use with the @B editing environment, /r is not one of them

/'S

The /s switch has been included with BASIC since the first BASCOM 1.0
conpiler, and it remai ns perhaps the | east understood of all the BC
options. Using /s affects your prograns in two ways. The first is
partially described in the BASIC manuals, which is to tell BC not to
conbine like string constants as it conpiles your program As you | earned
in Chapter 2, BASIC nakes avail able as nuch string nenory as possible in
your prograns, by consolidating identical constant string data. For
exanple, if you have the statement PRINT "lInsert disk in drive A" seven
tinmes in your program the nessage is stored only once, and used for each
i nstance of PRI NT.

In order to conbine like data the BC conpiler exam nes each string as
it is encountered, and then searches its own nenory to see if that string
is already present. Having to store all of the strings your program uses
just to check for duplicates inpinges on BC s own working nenory. At sone
point it will run out of nenory, since it also has to renenber variable and
procedure nanes, line |labels and their correspondi ng addresses, and so on
When this happens, BC has no recourse but to give up and display an "Qut of
menory" error nessage

The /s switch is intended to overcone this problem because it tells
the conpiler not to store your programs string constants. |Instead of
retaining the strings in nenory for conparison, each is sinply added to the

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 117 -

object file as it is encountered. However, strings four characters |ong or
shorter are always conbi ned, since short strings are very conmmon and doi ng
that does not require nuch of BC s menory.

The second [undocunented] thing /s does is to add two short (eight
byt es each) assenbly | anguage subroutines to the very begi nning of your
program Two of the nbst common string operations are assignnments and
concat enati ons, which are handled by routines in the runtine library.

Normal Iy, a call to either of these routines generates thirteen bytes of
code, including the statements that pass the appropriate string addresses.

The subroutines that /s adds are accessed using a near rather than a
far call, and they receive the string addresses in CPU regi sters rather
than through the stack. Therefore, they can be called using between three
and nine bytes, depending on whether the necessary addresses are already in
the correct registers at the tine. The inevitable trade-off, however, is
that calling one subroutine that in turn calls another reduces the speed of
your prograns slightly.

In many cases--especially when there are few or no duplicated string
constants--using /s will reduce the size of your programs. This is
contrary to the Mcrosoft docunmentation which inplies that /s will mnake
your prograns |arger because the duplicate strings are not conbined. |
would like to see Mcrosoft include this second feature of /s as a separate
option, perhaps using /ss (string subroutine) as a designator

/T

The /t (terse) switch tells BC not to display its copyright notice or any
warni ng (non-fatal) error messages. This option was not docunented unti
BASI C PDS, even though it has been avail able since at |east Qui ckBASIC 4.0.
The only practical use | can see for /t is to reduce screen clutter, which
is probably why @B and BX use it when they shell to DOS to create an . EXE
progr am

IV and /W

Any prograns that use event handling such as ON KEY, ON COM ON PLAY, or
the like [but not ON GOTO or ON GOSUB] require that you conpile using
either the /v or /woption switches. These options do simlar things,
addi ng extra code to call a central handler that deternmines if action is
needed to process an event. However, the /v switch checks for events at
every program statenent while /w checks only at nunbered or |abeled |ines.
In Chapter 1 | described how event handling works in BASIC, using
polling rather than true interrupt handling. There you saw how a five-byte
call is required each tine BASIC needs to see if an event has occurred.
Because of this added overhead, many programrers prefer to avoid BASIC s
event trapping statements in favor of nanually polling when needed.
However, it is inmportant to point out that by using |ine nunbers and | abel s
sparingly in conjunction with /w, you can reduce the amount of extra code
BASI C creates thus controlling where such checking is perforned.

/X

Like the /e switch, /x is used with ON ERROR and RESUME; however, /X
i ncreases substantially the size of your final .EXE programfile. Wen
RESUME, RESUME 0, or RESUVME NEXT are used, BASIC needs a way to find where
execution is to resune in your program Unfortunately, this is not a
sinmple task. Since a single BASIC source statenent can create a |ong
series of assenbly | anguage comands, there is no direct correlation
between the two. When an error occurs and you use RESUVE with no argunent
telling BASIC to execute the sane statement again, it can't know directly
how many bytes earlier that statenent begins.

Therefore, when /x is specified, a nunbered |line marker is added in
the object code to identify the start of every BASIC source statenent.

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 118 -

These markers conprise a linked list of statenment addresses, and the RESUVE
statenment wal ks through this list |ooking for the address that nost closely
precedes the of fending BASIC statenment. Because of the overhead to store

t hese addresses--four bytes for each BASI C source statenent--nany

pr of essi onal progranmers avoi d using /x unless absol utely necessary.
However, the table of addresses is stored within the code segnment, and does
not take away from DGROUP nenory.

/Z (BASIC PDS and | ater)

The /z switch is meant to be used in conjunction with the Mcrosoft editor
This editor is included with BASIC PDS, and allows editing prograns that
are too large to be contained within the @B and @BX editing environnents.
When a programis conpiled with /z, BASIC includes |ine nunber information
in the object file. The Mcrosoft editor can then read these nunbers after
an unsuccessful conpile, to help you identify which lines were in error
Because the addition of these line nunber identifiers increases a programs
size, /z should be used only for debugging and not in a final production

In general, the Mcrosoft editor has not been wi dely accepted by BASIC
progranmers, primarily because it is large, slow, and conplicated to use.
M crosoft also includes a newer editing environment called the Programer's
Wor kbench with BASI C PDS; however, that too is generally shunned by serious
devel opers for the same reasons.

/ zd

Like /z, the /zd switch tells BC to include |line nunber information in the
object file it creates. Unlike /zi which works with CodeView (see the /z
switch below), /zd is intended for use with the earlier SYMDEB debugger
included with MASM4.0. It is extrenely unlikely that you will ever need
to use /zd in your progranm ng

1Z

The /zi option is used when you will execute your programin the M crosoft
CodeVi ew debugger. CodeVi ew was described in Chapter 4, and there is no
reason to repeat that information here. Like /z and /zd, /zi tells BCto
i ncl ude additional information about your programin the object file.

Besi des i ndi cating which assenbl er statenents correspond to which BASIC
source lines, /zi also adds variable and procedure nanes and addresses to
the file. This allows CodeView to display neaningful nanes as you step

t hrough the assenbly | anguage conpiled code, instead of addresses only.

In order to create a CodeVi ew conpati bl e program you nust also |ink
with the /co LINK option. Al of the options that LINK supports are listed
el sewhere in this chapter, along with a conpl ete expl anati on of what each
does.

Not e that CodeVi ew cannot process a BASIC source file that has been
saved in the Fast Load format. This type of file is created by default in
Qui ckBASI C, when you save a newy created program Therefore, you nust be
sure to select the ASCII option button manually fromthe Save File dial og
box. 1In fact, there are so many bugs in the Fast Load nethod that you
shoul d never use it. Problens range from Qui ckBASI C hangi ng during the
| oadi ng process to conpletely destroying your source filel

If a programthat has been saved as ASCI| is accidentally danmaged, it
is at |east possible to reconstruct it or salvage nost of it using a DCOS
tool such as the Norton Uilities. But a Fast Load file is conpressed and
encrypted; if even a single byte is corrupted, @B will refuse to load it.
Since a Fast Load file doesn't really load that much faster than a plain
ASCIl file anyway, there is no conpelling reason to use it.

[Rat her than fix the Fast Load bug, which M crosoft clainms they cannot
reproduce, beginning with PDS version 7 BASIC now defaults to storing
prograns as plain ASCI| files.]

Ethan Winer: PC Magazine's BASIC Techniquesand UtilitiesBook - 119 -

COWPI LER METACOMVANDS

There are a nunber of conpiler netaconmands that you can use to control how
your programis fornmatted in the listing file that BC optionally creates.

Al though these list file formatting opti ons have been avail abl e since the
original |1BM BASCOM 1.0 conpiler [which Mcrosoft wote], they are not
docunented in the current versions. As with '$I NCLUDE and ' $DYNAM C and

t he ot her docunented metacomands, each list formatting option is preceded
by a REM or apostrophe, and a dollar sign. The requirenment to inbed

nmet acommands within remarks was orig